JPS6351666A - Semiconductor memory cell - Google Patents

Semiconductor memory cell

Info

Publication number
JPS6351666A
JPS6351666A JP61196094A JP19609486A JPS6351666A JP S6351666 A JPS6351666 A JP S6351666A JP 61196094 A JP61196094 A JP 61196094A JP 19609486 A JP19609486 A JP 19609486A JP S6351666 A JPS6351666 A JP S6351666A
Authority
JP
Japan
Prior art keywords
region
semiconductor
particles
film
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61196094A
Other languages
Japanese (ja)
Inventor
Kazuo Terada
寺田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61196094A priority Critical patent/JPS6351666A/en
Publication of JPS6351666A publication Critical patent/JPS6351666A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To provide a higher integration and to prevent a soft error from being caused by such radioactive particles as alpha-particles by a method wherein a second conductivity type third semiconductor region, which comes into contact to a first conductivity type second semiconductor region, is formed in a semiconductor film on an insulator film and is connected to a bit line, is provided and a capacity connected to a first semiconductor region is so contrived as to be included. CONSTITUTION:Storage nodes and a N-type region 104 constituting the current-flow electrode on one side of a MOSFET are completely surrounded with an insulator excluding a place where the region 104 comes into contact with a P-type region 105. Therefore, the insulation between the storage nodes of a plurality of neighboring memory cells is easy. Moreover, in the N-type region, as the region 104 and the P-type region 105, which is a part coming into contact to the region 104, are a thin Si film surrounded with an insulator, the number of minority carriers to generate by the incidence of such radioactive particles as alpha-particles in this part is very small. As a N-type region 106 connected to a bit line is also completely surrounded with an insulator excluding places where the region 106 comes into contact with the P-type region 105 and a conductor film 110, the number of minority carriers to be generated by the incidence of such radioactive particles as alpha-particles in these parts is very small.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高集積化に適し、且つα粒子などの放射性粒子
によって引き起こされるソフトエラーの   ゛発生が
少ない半導体メモリセルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor memory cell that is suitable for high integration and less likely to generate soft errors caused by radioactive particles such as α particles.

[従来の技術1 高集積半導体メモリ用メモリセルとして1つのトランジ
スタと1つのコンデンサから構成されるメモリセル(以
下ITICセルと略す)は、構成要素が少なく、メモリ
セル面積の微小化が容易であるため、広く使われている
[Conventional technology 1 A memory cell (hereinafter abbreviated as ITIC cell) consisting of one transistor and one capacitor as a memory cell for highly integrated semiconductor memory has a small number of constituent elements, and the memory cell area can be easily miniaturized. Therefore, it is widely used.

1T1Cセルからの出力電圧はメモリセルにある容量(
以下セル容量と呼ぶ)に比例するため、高集積化しても
安定な動作を保証するためには、そのセル容量を」−分
に大きくする必要がおる。さらに高集積化を図るために
は、メモリセル自体の面積を小さくする必要がおる。そ
のため、1T1Cセルを高集積化するためには小面積で
十分な容量値をもったセル容量を必要とする。従来この
ようなセル容量として、溝部に形成した容量や積層構造
の容量が提案されていた。
The output voltage from the 1T1C cell is determined by the capacitance (
Since it is proportional to the cell capacity (hereinafter referred to as cell capacity), in order to guarantee stable operation even with high integration, it is necessary to increase the cell capacity by . In order to further increase integration, it is necessary to reduce the area of the memory cell itself. Therefore, in order to highly integrate a 1T1C cell, a cell capacitor with a small area and a sufficient capacitance value is required. Conventionally, as such cell capacitors, capacitors formed in grooves and capacitors with a laminated structure have been proposed.

溝部に形成したセル寄倒の例として、例えば1985年
国際電子デバイス会1(1985Internatio
n−al Electron [)evice t−1
eeting)予稿集710ページの論文” Buri
ed Storage Electrode (BSE
) Ce1lfor )Iegabit DRA)Is
”で提案されているものがおる。このBSEセルは、シ
リコン基板上に形成した溝内部に絶縁体膜をはさんで導
電体を埋め込んだ形のセル容量をもち、溝内に埋め込ん
だ導電体を電荷を貯蔵する電極(情報保持時には電気的
に浮いた状態になる、以下記憶ノードと呼ぶ)として、
シリコン基板を反対電極として用いるものである。溝内
に埋め込んだ導電体はシリコン基板表面に形成されたス
イッチング用MO3FETの一方の通電電極に接続され
ている。このBSEセルは次のような長所を持つ。すな
わち、(1)隣り合う複数のメモリセルの記憶ノード間
の絶縁が容易なため、それらのメモリセルの間隔を十分
に小さくできる。(2)記憶ノードが絶縁体膜に囲まれ
ているため、α粒子などの放射性粒子が入射してシリコ
ン基板内に多量の少数キャリアが注入されても、それら
を記憶ノードに収集する確率が低い。
As an example of cell leaning formed in a groove, for example, the 1985 International Electronic Devices Conference 1 (1985 International
n-al Electron [)evice t-1
710-page paper in the proceedings” Buri
ed Storage Electrode (BSE
) Ce1lfor ) Iegabit DRA) Is
This BSE cell has a cell capacitance in the form of a conductor buried inside a trench formed on a silicon substrate with an insulating film sandwiched between the conductor and the conductor buried in the trench. as an electrode that stores charge (it becomes electrically floating when storing information, hereinafter referred to as a storage node).
A silicon substrate is used as a counter electrode. The conductor buried in the groove is connected to one current-carrying electrode of a switching MO3FET formed on the surface of the silicon substrate. This BSE cell has the following advantages. That is, (1) since insulation between storage nodes of a plurality of adjacent memory cells is easy, the interval between these memory cells can be made sufficiently small; (2) Since the storage node is surrounded by an insulating film, even if a large amount of minority carriers are injected into the silicon substrate due to incidence of radioactive particles such as α particles, there is a low probability that they will be collected in the storage node. .

すなわら、α粒子などの放射性粒子によるソフトエラー
が起こりにくい。
In other words, soft errors caused by radioactive particles such as α particles are less likely to occur.

し発明が解決しようとする問題点] しかしながら、BSEセルには次のような問題点がある
。シリコン基板上のMOSFETの通電電極などのよう
に、シリコン基板上のシリコン基板とは反対導電型の電
極にα粒子などの放射性粒子が入射した場合、ファネリ
ング効果と呼ばれる少数キャリアの加速収集現象が生じ
ることがIEEEElectron  Device 
 Letters  1 V叶、  ED−32,No
、2゜258ページのC,t′luの論文” Alph
a−Particle−Induced Field 
and Enhanced Co11ection o
rCarriers”に)ホベられている。この現象が
おるため、たとえBSEセルにおいても、もしα粒子な
どの放射性粒子が記憶ノードの接続されたMOSFET
の一方の通電電極に入射した場合には、かなりの量の少
数キャリアを記録ノードに収集してしまう。そのため、
この場合にはBSEセル構造の効果がなくなり、通常の
1T1Cセルと同様にソフトエラーが生じやすい。
Problems to be Solved by the Invention] However, the BSE cell has the following problems. When radioactive particles such as α particles are incident on an electrode of the opposite conductivity type to that of the silicon substrate, such as a current-carrying electrode of a MOSFET on a silicon substrate, an accelerated collection phenomenon of minority carriers called the funneling effect occurs. IEEE Electron Device
Letters 1 V Kano, ED-32, No
, 2゜258 pages of C, t'lu's paper" Alpha
a-Particle-Induced Field
and Enhanced Co11ection o
Because of this phenomenon, even in a BSE cell, if radioactive particles such as alpha particles
When incident on one of the current-carrying electrodes, a considerable amount of minority carriers will be collected at the recording node. Therefore,
In this case, the effect of the BSE cell structure is lost, and soft errors are likely to occur as in a normal 1T1C cell.

メモリセルの記憶ノードにα粒子などの放射性粒子によ
って生成された少数キャリアが流入して生じるソフトエ
ラーと同様に、ビット線に同様の少数キャリアが流入し
て生じるソフトエラーもメモリにとっては重大な問題で
ある。ところが83日セルなど従来のメモリセルでは、
ビット線に必ずMOSFETの一方の通電電極(これは
シリコン基板上のシリコン基板とは反対導電型の電極で
ある)がつながっている。そのため、これらのメモリセ
ルを用いたメモリでは、上記電極にα粒子などの放射性
粒子が入射した場合、ファネリング効果が起こり、ビッ
ト線に少数キャリアが流入してソフトエラーが起こりや
すい。
Just as soft errors occur when minority carriers generated by radioactive particles such as alpha particles flow into storage nodes of memory cells, soft errors that occur when similar minority carriers flow into bit lines are also a serious problem for memory. It is. However, with conventional memory cells such as 83-day cells,
One current-carrying electrode of the MOSFET (this is an electrode of the opposite conductivity type to the silicon substrate on the silicon substrate) is always connected to the bit line. Therefore, in a memory using these memory cells, when radioactive particles such as α particles are incident on the electrode, a funneling effect occurs, minority carriers flow into the bit line, and soft errors are likely to occur.

ソフトエラーの起こりにくいメモリセルとして、IEE
E Electron Device Letters
s 、 VOL。
IEE is a memory cell that is less prone to soft errors.
E Electron Device Letters
s, VOL.

EDL−4,No、1.8ページのR,D、Jolly
らの論文”A Dynamic RAM Ce1l  
in Recrystal!1zedPOIySi l
 1con”に薄いシリコン股上に形成したコニ1Cセ
ルが提案されている。しかし、このメモリセルの場合に
は、スイッチング用MO3FE王の基板を一定電位電源
に接続することが困難である。その結果、このメモリセ
ルでは基板が電気的に浮いた不安定なMOSFETをス
イッチングトランジスタとして使わなければならない。
EDL-4, No. 1.8 page R, D, Jolly
Paper “A Dynamic RAM Ce1l” by et al.
In Recrystal! 1zedPOIySi l
A Koni 1C cell formed on a silicon layer as thin as 1con" has been proposed. However, in the case of this memory cell, it is difficult to connect the MO3FE substrate for switching to a constant potential power supply. As a result, In this memory cell, an unstable MOSFET whose substrate is electrically floating must be used as a switching transistor.

本発明の目的は、高集積化に適し、α粒子などの放射性
粒子によるソフトエラーが起こりにくく、さらに基板電
位が安定したMOSFETをスイッチングトランジスタ
として使える半導体メモリセルを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor memory cell that is suitable for high integration, is less prone to soft errors due to radioactive particles such as α particles, and can use a MOSFET with a stable substrate potential as a switching transistor.

[問題点を解決するための手段] 本発明は第1導電型半導体基板と、該半導体基板の一主
面上の一部に形成された絶縁体膜と、−部が該絶縁体膜
上に存在し一部が前記半導体基板に接触した半導体膜と
を少なくとも構成要素としてMOSFETを構成し、前
記半導体膜に、前記絶縁体膜上の該半導体膜に形成され
た第2導電型第1半導体領域、該第1半導体領域および
前記半導体基板に接するように前記半導体膜に形成され
た第1導電型第2半導体領域、該第2半導体領域に接し
、前記絶縁体膜上の半導体膜に形成され且つビット線に
接続された第2導電型第3半導体領域を設け、前記第1
半導体領域に接続された容量を含むことを特徴とする半
導体メモリセルである。
[Means for Solving the Problems] The present invention includes a first conductive type semiconductor substrate, an insulating film formed on a part of one main surface of the semiconductor substrate, and a - part on the insulating film. A first semiconductor region of a second conductivity type formed in the semiconductor film on the insulator film is configured to constitute a MOSFET at least as a component of a semiconductor film which is present and a part of which is in contact with the semiconductor substrate; , a first conductivity type second semiconductor region formed in the semiconductor film so as to be in contact with the first semiconductor region and the semiconductor substrate; a third semiconductor region of a second conductivity type connected to a bit line;
A semiconductor memory cell characterized by including a capacitor connected to a semiconductor region.

[実施例] 以下、本発明の実施例について図面を参照して説明する
[Examples] Examples of the present invention will be described below with reference to the drawings.

第1図(a)および(b)はそれぞれ本発明の半導体メ
モリセルの他の実施例の構造を示す平面図および断面図
で、第1図(b)は第1図(a) (7) 117−1
17゛線に沿う断面図である。箇1図(a)、 (b)
において、101はP型シリコン結晶基板、102は絶
縁体膜、104.105.106はシリコン膜で104
はそのN型領域、105はそのP型頭域、106はその
N型?J[、io8はゲー トiit体s、109.1
10ハl1体膜、111は高濃度P型頭滅、112.1
13は絶縁体膜、114は溝開口部、115はコンタク
ト孔、116は活性領域と素子分離領域の境界、118
はシリコン膜104、105.106の境界、109°
はこのメモリセルと隣接する他のメモリセルの対応する
部分をそれぞくくなるのを避けるため、一部の線を省略
して示している。
FIGS. 1(a) and 1(b) are a plan view and a cross-sectional view showing the structure of another embodiment of the semiconductor memory cell of the present invention, respectively, and FIG. 117-1
17 is a cross-sectional view taken along line 17. Figure 1 (a), (b)
, 101 is a P-type silicon crystal substrate, 102 is an insulating film, 104, 105, and 106 are silicon films.
is its N-type region, 105 is its P-type head region, and 106 is its N-type? J[, io8 is gate iit body s, 109.1
10 Harl 1 body membrane, 111 high concentration P type head loss, 112.1
13 is an insulating film, 114 is a trench opening, 115 is a contact hole, 116 is a boundary between an active region and an isolation region, 118
is the boundary between silicon films 104, 105 and 106, 109°
In order to avoid obscuring the corresponding portions of this memory cell and other adjacent memory cells, some lines are omitted.

本図のシリコン膜104.105.106、ゲート絶縁
体膜108、導電体膜109はNfヤネルMO3FET
を、シリコン膜104、絶縁体膜102、高濃度P型頭
域111は溝部に形成されたセル容量をそれぞれ構成す
る。このMOSFETのゲート電極となる導電体膜10
9はワード線を兼ねている。導電体膜110はビット線
として使われる。P型頭I4.105、高濃度P型頭I
Ji!111はP型シリコン基板101と電気的につな
がってあり一定電位が供給されている。
The silicon films 104, 105, 106, gate insulator film 108, and conductor film 109 in this figure are Nf Yarnel MO3FETs.
The silicon film 104, the insulator film 102, and the highly doped P-type head region 111 each constitute a cell capacitor formed in the trench. A conductive film 10 that becomes the gate electrode of this MOSFET
9 also serves as a word line. The conductor film 110 is used as a bit line. P type head I4.105, high concentration P type head I
Ji! 111 is electrically connected to the P-type silicon substrate 101 and supplied with a constant potential.

第1図(a)、 (1))のメモリセルでは、記憶ノー
ドおよびMOSFETの一方の通電電極を構成するN型
領域104が、P型頭賊105と接する場所を除いて、
完全に絶縁体によって囲まれている。そのため、隣り合
う複数のメモリセルの記憶ノード間の絶縁が容易でおる
。その上、N型領域は104とそれに接する部分のP型
領域105は絶縁体に囲まれた薄いシリコン膜にあるた
め、この部分においてα粒子などの放射性粒子の入射に
よって発生する少数キャリアの数は極めて少ない。その
ため、ファネリング効果が起こり多くの少数キャリアが
記憶ノードに加速収集される確率はほとんどない。
In the memory cell of FIG. 1(a), (1)), except for the location where the N-type region 104 constituting the storage node and one of the current-carrying electrodes of the MOSFET contacts the P-type head 105,
Completely surrounded by insulation. Therefore, insulation between storage nodes of a plurality of adjacent memory cells can be easily achieved. Furthermore, since the N-type region 104 and the P-type region 105 in contact with it are located in a thin silicon film surrounded by an insulator, the number of minority carriers generated by the incidence of radioactive particles such as α particles in these regions is small. Very few. Therefore, there is almost no probability that a funneling effect will occur and many minority carriers will be acceleratedly collected in the storage node.

同様に第1図(a)、 (b)のメモリセルでは、ビッ
ト線に接続されたN型領域106もP型領1.i 10
5と導電体膜110と接する場所を除いて、完全に絶縁
体によって囲まれている。そのため、この部分において
α粒子などの放射性粒子の入射によって発生する少数キ
ャリアの数は極めて少なく、ファネリング効果が起こり
、多くの少数キャリアがビット線に7Jfl速収集され
るra率はほとんどない。
Similarly, in the memory cells of FIGS. 1(a) and 1(b), the N-type region 106 connected to the bit line is also connected to the P-type region 1. i 10
5 and the conductor film 110 are completely surrounded by an insulator. Therefore, in this part, the number of minority carriers generated by the incidence of radioactive particles such as α particles is extremely small, a funneling effect occurs, and there is almost no ra rate at which many minority carriers are collected on the bit line at a rate of 7 Jfl.

さらに第1図(a)、(b)の実施例では、シリコン膜
上の薄膜MO8FETをスイッチングトランジスタとし
て用いているが、このMOSFETの基板105とシリ
コン基板101が同じ導電型で接しているため、このM
OSFETの基板が一定電位電位電源に接続されている
ことになる。
Furthermore, in the embodiments shown in FIGS. 1(a) and 1(b), a thin film MO8FET on a silicon film is used as a switching transistor, but since the substrate 105 of this MOSFET and the silicon substrate 101 are of the same conductivity type and are in contact with each other, This M
The substrate of the OSFET is connected to a constant potential power source.

以上のように、本発明の半導体メモリセルでは、上記実
施例のように溝の中に形成したセル容量と容易に組み合
わせることができるため、小面積で充分な容量値を得る
ことができる、BSEセルのように記憶ノード間の絶縁
が容易なため高集積化が図れる、α粒子などの放射性粒
子によるソフトエラーが起こりにくい、などの特徴を得
ることができる。
As described above, the semiconductor memory cell of the present invention can be easily combined with the cell capacitance formed in the trench as in the above embodiment, so that a sufficient capacitance value can be obtained in a small area. Features such as high integration can be achieved because storage nodes can be easily insulated like in cells, and soft errors due to radioactive particles such as alpha particles are less likely to occur.

以上説明の便宜上、第1図(a)、(b)に示される構
造の実施例を用いたが、本発明はこれに限るものではな
い。トランジスタの種類、導電型は他の適当なものでも
構わない。
For convenience of explanation, the embodiments having the structures shown in FIGS. 1(a) and 1(b) have been used above, but the present invention is not limited thereto. The type and conductivity type of the transistor may be other suitable ones.

[発明の効果] 以上説明したように本発明のメモリセルによれば高集積
化に適し、α粒子などの放射性粒子によるソフトエラー
が起こりにくく、さらに基板電位が安定したMOSFE
Tをスイッチングトランジスタとして使えるなどの効果
を有するもので必る。
[Effects of the Invention] As explained above, the memory cell of the present invention is suitable for high integration, is resistant to soft errors caused by radioactive particles such as α particles, and has a stable substrate potential.
This is necessary because it has an effect such that T can be used as a switching transistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の半導体メモリセルの一実施例の
構造を示す平面図、第1図(b)は第1図(a)の11
7−117°線断面図でおる。 102・・・絶縁体膜 105.111・・・P型頭域 106・・・N型領域
FIG. 1(a) is a plan view showing the structure of an embodiment of the semiconductor memory cell of the present invention, and FIG.
It is a sectional view taken along the line 7-117°. 102...Insulator film 105.111...P-type head region 106...N-type region

Claims (1)

【特許請求の範囲】[Claims] (1)第1導電型半導体基板と、該半導体基板の一主面
上の一部に形成された絶縁体膜と、一部が該絶縁体膜上
に存在し一部が前記半導体基板に接触した半導体膜とを
少なくとも構成要素としてMOSFETを構成し、前記
半導体膜に、前記絶縁体膜上の該半導体膜に形成された
第2導電型第1半導体領域、該第1半導体領域および前
記半導体基板に接するように前記半導体膜に形成された
第1導電型第2半導体領域、該第2半導体領域に接し、
前記絶縁体膜上の半導体膜に形成され且つビット線に接
続された第2導電型第3半導体領域を設け、前記第1半
導体領域に接続された容量を含むことを特徴とする半導
体メモリセル。
(1) a first conductivity type semiconductor substrate, an insulating film formed on a part of one main surface of the semiconductor substrate, a part of which is on the insulating film and a part of which is in contact with the semiconductor substrate; a second conductivity type first semiconductor region formed in the semiconductor film on the insulator film, the first semiconductor region and the semiconductor substrate; a first conductivity type second semiconductor region formed in the semiconductor film so as to be in contact with the second semiconductor region;
A semiconductor memory cell characterized in that a third semiconductor region of a second conductivity type is formed in a semiconductor film on the insulating film and connected to a bit line, and includes a capacitor connected to the first semiconductor region.
JP61196094A 1986-08-20 1986-08-20 Semiconductor memory cell Pending JPS6351666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61196094A JPS6351666A (en) 1986-08-20 1986-08-20 Semiconductor memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61196094A JPS6351666A (en) 1986-08-20 1986-08-20 Semiconductor memory cell

Publications (1)

Publication Number Publication Date
JPS6351666A true JPS6351666A (en) 1988-03-04

Family

ID=16352113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61196094A Pending JPS6351666A (en) 1986-08-20 1986-08-20 Semiconductor memory cell

Country Status (1)

Country Link
JP (1) JPS6351666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224450A (en) * 1990-01-26 1991-10-03 Miyoujiyou Shokuhin Kk Production of food by current injection heating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635459A (en) * 1979-08-30 1981-04-08 Fujitsu Ltd Semiconductor memory device and manufacture thereof
JPS5982761A (en) * 1982-11-04 1984-05-12 Hitachi Ltd Semiconductor memory
JPS61287258A (en) * 1985-06-14 1986-12-17 Hitachi Ltd Semiconductor memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635459A (en) * 1979-08-30 1981-04-08 Fujitsu Ltd Semiconductor memory device and manufacture thereof
JPS5982761A (en) * 1982-11-04 1984-05-12 Hitachi Ltd Semiconductor memory
JPS61287258A (en) * 1985-06-14 1986-12-17 Hitachi Ltd Semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224450A (en) * 1990-01-26 1991-10-03 Miyoujiyou Shokuhin Kk Production of food by current injection heating

Similar Documents

Publication Publication Date Title
JP2733911B2 (en) Semiconductor device and manufacturing method thereof
US3662356A (en) Integrated circuit bistable memory cell using charge-pumped devices
US4833644A (en) Memory cell circuit having radiation hardness
JPS6351666A (en) Semiconductor memory cell
JP2554332B2 (en) 1-transistor type dynamic memory cell
US4903094A (en) Memory cell structure having radiation hardness
JPH0691212B2 (en) Semiconductor memory
JPS627153A (en) Semiconductor memory
JPS5978561A (en) Semiconductor memory device
JPS61140171A (en) Semiconductor memory device
JPS63124455A (en) Semiconductor storage device
JPS6329968A (en) Semiconducotr memory cell
JPS60236260A (en) Semiconductor memory device
JPH02129960A (en) Semiconductor memory
JPH0691216B2 (en) Semiconductor memory device
JPH0695566B2 (en) Semiconductor memory cell
JPS63209159A (en) One-transistor type dynamic memory cell
JPS63209158A (en) One-transistor type dynamic memory cell
JPH06291283A (en) Semiconductor memory cell
JPS6113389B2 (en)
JPS6053072A (en) Semiconductor memory device
JPS63104466A (en) Mos type dynamic random access memory (ram)
JPH02209765A (en) Semiconductor device
JPS63211668A (en) One-transistor type dynamic memory cell
JPS62154289A (en) Semiconductor integrated circuit device