JPS6366377B2 - - Google Patents

Info

Publication number
JPS6366377B2
JPS6366377B2 JP57118165A JP11816582A JPS6366377B2 JP S6366377 B2 JPS6366377 B2 JP S6366377B2 JP 57118165 A JP57118165 A JP 57118165A JP 11816582 A JP11816582 A JP 11816582A JP S6366377 B2 JPS6366377 B2 JP S6366377B2
Authority
JP
Japan
Prior art keywords
weight
less
corrosion resistance
lead frame
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57118165A
Other languages
Japanese (ja)
Other versions
JPS599149A (en
Inventor
Shinichiro Yahagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP11816582A priority Critical patent/JPS599149A/en
Publication of JPS599149A publication Critical patent/JPS599149A/en
Publication of JPS6366377B2 publication Critical patent/JPS6366377B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Die Bonding (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は安価にして耐食性およびめつき性に優
れた低Cr−Fe系合金からなるICリードフレーム
材料に関する。 近時のエレクトロニクス分野等の発展に伴い、
IC(集積回路)の需要が飛躍的に増大し、そのリ
ードフレーム材料の需要も増大し、安価なリード
フレーム材料の開発が当業界の待望するところに
なつている。 一般にこれらリードフレーム材は帯材となした
後、裁断、打抜き加工を施し、その表面にCu、
Ag、Au等がめつき等により被覆され、これにシ
リコンチツプをボンデイング(ダイボンデイン
グ)し結線(ワイヤボンデイング)することによ
りICとして使用されるものである。従つて、こ
れらリードフレーム材料はめつき性が良好である
ことを必要とし、さらにその端子部がIC基盤等
にはんだ付けされるために耐食性とともに良好な
はんだ付け性が要求される。 従来、リードフレーム材料は銅合金あるいは曲
型的には42%Ni−Fe合金で代表される熱膨脹制
御合金等で形成されていた。しかしながら、前述
したようにリードフレーム材料の需要の増大によ
る大量生産に伴い、従来材よりも少しでも安価な
材料を提供することは実用上極めて有益である。 安価な材料としては純鉄を用いればよいが、純
鉄は耐食性が劣るため実用に供し得ない。また通
常のFe−Cr系合金、例えばSUS430(17%Cr−
Fe、SUS410(13%Cr−Fe)等の実用鋼種は耐食
性は良好であるが、はんだ付け性およびめつき性
が著しく劣り、リードフレーム材料として使用す
ることは全く顧みられなかつた。 しかるところ、本発明者は純鉄およびFe−Cr
系合金の安価な点に着目し、純鉄における耐食性
を改善し、同時に従来のFe−Cr系合金のはんだ
付け性およびめつき性を改善するために種種検討
したところ、通常のFe−Cr系合金におけるより
も少量のCrを含有せしめ且つ酸化物形成元素の
C、Si、Mn、Alの上限値を規定することにより
ICリードフレーム材料としての諸特性が具備さ
れることを見い出し、本発明を完成したものであ
る。 すなわち、本発明によれば、Cr5.0〜10.5重量
%、C0.05重量%以下、Si0.50重量%以下、
Mn0.30重量%以下、Al0.05重量%以下を含有し、
残部が実質的にFeからなる材料、およびこれに
さらにNb、Ti、Ta、Znの1種または2種以上
を合計で0.6重量%以下および/またはNi3.0重量
%以下およびCu2.0重量%以下の1種または2種
を含有したリードフレーム材料が提供される。 以下に本発明をより詳細に説明する。 今、Fe−Cr系合金における耐食性およびめつ
き性をCr含量との関係で説明すると第1図およ
び第2図のようになる。第1図は温度49℃、湿度
98%で96時間の湿潤試験を行つた場合のCr含量
と単位面積当りの発錆個数との関係を示すもので
あり、この図よりCr含量が0〜4重量%までは
試料の全面に発錆が生ずるが、Cr含量が5重量
%以上になると発錆が急激に減少し、実用上十分
な耐食性を有することがわかる。また、第2図は
試料上に銅ストライクめつきを施した後、さらに
全面に銀めつきを施し、これを450℃に加熱した
ホツトプレート上にのせて大気中で5分間放置し
た場合のCr含量と単位面積当りのフクレ発生個
数との関係を示すものであり、この図からめつき
性はCr含量が少い程良好であり、Cr含量が10.5重
量%を越えると急激に劣化することがわかる。従
つて、耐食性およびめつき性の両特性を共に具備
せしめるためにはCr含量を5.0〜10.5重量%の範
囲とする。 また本発明は上述のような低Cr領域とすると
ともにC、Si、Mn、Alの上限値を規定する必要
がある。すなわちSi、Al、Mn等の酸素との親和
力の大きい元素(脱酸元素)を含有すると、
SiO2、Al2O3、MnO等の酸化物できやすく、特
に帯鋼まで加工する途中における焼鈍中や、加工
終了後の大気中放置等により極く表層に強固な酸
化膜が形成されることが多い。これらの酸化皮膜
はその後のめつき工程、はんだ付け工程におい
て、化学処理またははんだフラツクスの還元作用
によつても十分に除去されず、めつき性、はんだ
付け性を阻害させると考えられる。したがつて実
用上の上限をそれぞれSi:0.50重量%、Al:0.05
重量%、Mn:0.30重量%とする。 またCは0.05重量%を越えて含有すると炭化物
等の形成が著しく、耐食性が劣化したりまたオー
ステナイト領域を増大させ、熱処理時のフエライ
トの安定性を阻害することになるためその上限は
0.05重量%とする。また多量のC添加はオーステ
ナイト域からの加熱後の冷却によつてマルテンサ
イト化し、ひずみ等発生の原因となり、超精密な
寸法精度を要求されるIC等のリードフレーム材
料として不適当になるためである。 本発明にあつては、上記基本合金の耐食性をよ
り向上させるためにNb0.6重量%以下、Ti0.6重
量%以下、Ta0.6重量%以下、Zn0.6重量%以下
の量で含有せしめてもよい。この場合Nb、Ti、
Ta、Zrの各元素は単独で含有せしめてもあるい
は2種以上を含有せしめてもよいがこれら元素の
合計量が0.6重量%を越えると金属間化合物、炭
化物等の第2相が多くなり耐食性が劣化するので
避けなければならない。 また、上記基本合金にNi3.0重量%以下および
Cu2.0重量%以下の1種または2種を含有させて
もよい。これによりめつき性がより向上する。す
なわち、めつき下地効果としてめつき膜とのなじ
みがよくなるためにめつき性が向上するものと思
われる。しかしNiが3.0重量%を越えると、フエ
ライト相が不安定化するほか高価となり本発明の
意図にそぐわなくなる。またCuが2.0重量%を越
えるとフエライト相を不安定化するとともに固溶
しきれずに粒界等に存在するCuが熱間加工性を
著しく阻害するので避けなければならない。 さらに本発明では基本合金にNb、Ti、Ta、
Zrの1種または2種以上とNiおよびCuの1種ま
たは2種とも上述した含量範囲において併有させ
てもよい。これによりNb、Ti、Ta、Zrを含有
させることによる耐食性の向上とともにNi、Cu
を含有させることによるめつき性の向上がともに
図れることになる。 なお、本発明の各合金に所望によりMoを0.2〜
4.0重量%含有させてもよい。これによりフエラ
イト相の安定化、耐食性の向上が期待できる。 以上のような本発明によれば、極めて低廉にし
てめつき性、耐食性、はんだ付け性等に優れた
ICリードフレーム材料が提供され、実用的に極
めて有用である。 以下に実施例を示す。 実施例 次表に示すような成分組成となるように各成分
を調整して各合金試料を調整した。溶製は大気中
にて行い、ガス成分の除去には十分注意を払つた
結果、O:20〜80ppm、N:60〜100ppmであつ
た。 各試料のうちNo.1〜No.4は本発明の実施例を、
またNo.5〜No.7は比較例を示す。これら各試料
を前述した耐食性試験およびめつき性試験に供し
た。また、はんだ付け性試験としてメニスコグラ
フ法による自動はんだ付け試験装置を使用し、下
記の条件にて試験し、はんだ槽への装入直後の試
片のうける最大浮力と、10秒後の浮力の差(%)
ではんだ付けを判定した(大きい程はんだ付け性
良)。 はんだ種類 60%Sn−40%Pb 温 度 220℃ 非ハロゲンフラツクス使用 試験片 0.25t×10w(冷延素材のまま) はんだへの浸漬深さ 2mm これらの試験結果を次表に示す。
The present invention relates to an IC lead frame material made of a low Cr-Fe alloy that is inexpensive and has excellent corrosion resistance and plating properties. With the recent development of the electronics field,
The demand for ICs (integrated circuits) has increased dramatically, and so has the demand for lead frame materials, and the development of inexpensive lead frame materials has become a long-awaited goal in the industry. Generally, these lead frame materials are made into strips, then cut and punched, and the surface is coated with Cu.
It is coated with Ag, Au, etc. by plating, etc., and is used as an IC by bonding a silicon chip (die bonding) and connecting it (wire bonding). Therefore, these lead frame materials are required to have good fitting properties, and furthermore, since their terminal portions are soldered to an IC board or the like, they are required to have good corrosion resistance and good solderability. Conventionally, lead frame materials have been made of copper alloys or thermal expansion control alloys such as 42% Ni-Fe alloys. However, as described above, with the increasing demand for lead frame materials leading to mass production, it is extremely useful in practice to provide materials that are even slightly cheaper than conventional materials. Pure iron may be used as an inexpensive material, but pure iron has poor corrosion resistance and cannot be put to practical use. Ordinary Fe-Cr alloys, such as SUS430 (17% Cr-
Although practical steels such as Fe and SUS410 (13% Cr-Fe) have good corrosion resistance, their solderability and plating properties are extremely poor, and their use as lead frame materials has not been considered at all. However, the inventor has discovered that pure iron and Fe-Cr
Focusing on the low cost of Fe-Cr-based alloys, we investigated various types to improve the corrosion resistance of pure iron and at the same time improve the solderability and plating properties of conventional Fe-Cr-based alloys. By containing a smaller amount of Cr than in the alloy and specifying the upper limit values of oxide-forming elements C, Si, Mn, and Al.
The present invention was completed based on the discovery that the material has various characteristics suitable for an IC lead frame material. That is, according to the present invention, Cr5.0 to 10.5% by weight, C0.05% by weight or less, Si0.50% by weight or less,
Contains Mn 0.30% by weight or less, Al 0.05% by weight or less,
A material in which the balance is essentially Fe, and further contains one or more of Nb, Ti, Ta, and Zn in a total of 0.6% by weight or less and/or 3.0% by weight or less of Ni and 2.0% by weight of Cu. A lead frame material containing one or two of the following is provided. The present invention will be explained in more detail below. Now, the corrosion resistance and plating properties of Fe-Cr alloys are explained in relation to the Cr content as shown in FIGS. 1 and 2. Figure 1 shows a temperature of 49℃ and humidity.
This figure shows the relationship between the Cr content and the number of rusted particles per unit area when a 96-hour wet test was conducted at 98% humidity. From this figure, it can be seen that when the Cr content is 0 to 4% by weight, rust occurs on the entire surface of the sample. Rust occurs, but when the Cr content increases to 5% by weight or more, rusting rapidly decreases, indicating that the material has corrosion resistance sufficient for practical use. Figure 2 shows the results of Cr strike plating on the sample, then silver plating on the entire surface, placing it on a hot plate heated to 450°C and leaving it in the air for 5 minutes. This figure shows the relationship between the content and the number of blisters per unit area. From this figure, it can be seen that the lower the Cr content, the better the plating properties, and that it deteriorates rapidly when the Cr content exceeds 10.5% by weight. . Therefore, in order to provide both corrosion resistance and plating properties, the Cr content should be in the range of 5.0 to 10.5% by weight. Further, in the present invention, it is necessary to set the above-mentioned low Cr region and to define the upper limit values of C, Si, Mn, and Al. In other words, when containing elements (deoxidizing elements) such as Si, Al, and Mn that have a high affinity for oxygen,
Oxides such as SiO 2 , Al 2 O 3 , MnO, etc. are easily formed, and a strong oxide film is formed on the very surface layer, especially during annealing during processing to the steel strip, or when left in the atmosphere after processing. There are many. It is thought that these oxide films are not sufficiently removed during the subsequent plating and soldering processes even by chemical treatment or the reducing action of solder flux, and thus impede the plating and soldering properties. Therefore, the practical upper limits are Si: 0.50% by weight and Al: 0.05%.
Weight %, Mn: 0.30 weight %. Furthermore, if C exceeds 0.05% by weight, the formation of carbides will be significant, which will deteriorate corrosion resistance and increase the austenite region, inhibiting the stability of ferrite during heat treatment, so the upper limit is
The content shall be 0.05% by weight. In addition, adding a large amount of C converts the austenite region into martensite upon cooling after heating, causing distortion, making it unsuitable as a lead frame material for ICs etc. that require ultra-precise dimensional accuracy. be. In the present invention, in order to further improve the corrosion resistance of the basic alloy, Nb is contained in an amount of 0.6% by weight or less, Ti 0.6% by weight or less, Ta 0.6% by weight or less, and Zn 0.6% by weight or less. You can. In this case Nb, Ti,
Each element of Ta and Zr may be contained alone or in combination of two or more types, but if the total amount of these elements exceeds 0.6% by weight, second phases such as intermetallic compounds and carbides increase, resulting in poor corrosion resistance. should be avoided as it will cause deterioration. In addition, Ni3.0% by weight or less is added to the above basic alloy.
One or two types of Cu may be contained in an amount of 2.0% by weight or less. This further improves plating properties. In other words, it is thought that the plating properties are improved because the plating base effect improves the compatibility with the plating film. However, if Ni exceeds 3.0% by weight, the ferrite phase becomes unstable and becomes expensive, which does not meet the intent of the present invention. Further, if Cu exceeds 2.0% by weight, it must be avoided because it destabilizes the ferrite phase and Cu that is not completely dissolved and exists at grain boundaries etc. significantly impedes hot workability. Furthermore, in the present invention, the basic alloy includes Nb, Ti, Ta,
One or more types of Zr and one or more types of Ni and Cu may be used together within the above-mentioned content range. This improves corrosion resistance by containing Nb, Ti, Ta, and Zr, as well as improves Ni, Cu
By including this, it is possible to improve the plating properties. Additionally, if desired, Mo may be added to each alloy of the present invention from 0.2 to
It may be contained in an amount of 4.0% by weight. This can be expected to stabilize the ferrite phase and improve corrosion resistance. According to the present invention as described above, it is extremely inexpensive and has excellent plating properties, corrosion resistance, solderability, etc.
IC lead frame materials are provided and are of great practical utility. Examples are shown below. Examples Each alloy sample was prepared by adjusting each component so as to have the composition shown in the following table. The melting was carried out in the atmosphere, and sufficient care was taken to remove gas components, resulting in O: 20-80 ppm and N: 60-100 ppm. Of each sample, No. 1 to No. 4 are examples of the present invention.
Moreover, No. 5 to No. 7 show comparative examples. Each of these samples was subjected to the corrosion resistance test and plating test described above. In addition, as a solderability test, an automatic soldering test device using the meniscograph method was used, and the test was conducted under the following conditions. (%)
Soldering was determined by (the larger the value, the better the soldering performance). Solder type: 60%Sn-40%Pb Temperature: 220℃ Test piece using non-halogen flux: 0.25t x 10w (as cold-rolled material) Depth of immersion in solder: 2mm The results of these tests are shown in the table below.

【表】 上表より、本発明実施例のものは比較例のもの
に比べて耐食性、めつき性およびはんだ付け性が
ともに優れたものであることが明らかである。
[Table] From the above table, it is clear that the samples of the examples of the present invention are superior in corrosion resistance, plating properties, and solderability compared to the samples of the comparative examples.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐食性試験におけるCr含量と単位面
積当りの発錆個数との関係図である。第2図はめ
つき性試験におけるCr含量と単位面積当りのフ
クレ発生個数との関係図である。
FIG. 1 is a diagram showing the relationship between the Cr content and the number of rusted particles per unit area in a corrosion resistance test. FIG. 2 is a diagram showing the relationship between the Cr content and the number of blisters per unit area in the plating test.

Claims (1)

【特許請求の範囲】 1 Cr5.0〜10.5重量%、C0.05重量%以下、
Si0.50重量%以下、Mn0.30重量%以下、Al0.05重
量%以下を含有し、残部が実質的にFeからなる
リードフレーム材料。 2 Cr5.0〜10.5重量%、C0.05重量%以下、
Si0.50重量%以下、Mn0.30重量%以下、Al0.05重
量%以下を含有し、さらにNb、Ti、Ta、Zrの
1種または2種以上を合計で0.6重量%以下含有
し、残部が実質的にFeからなるリードフレーム
材料。 3 Cr5.0〜10.5重量%、C0.05重量%以下、
Si0.50重量%以下、Mn0.30重量%以下、Al0.05重
量%以下を含有し、さらにNi3.0重量%以下およ
びCu2.0重量%以下の1種または2種を含有し、
残部が実質的にFeからなるリードフレーム材料。 4 Cr5.0〜10.5重量%、C0.05重量%以下、
Si0.50重量%以下、Mn0.30重量%以下、Al0.05重
量%以下、Nb、Ti、Ta、Zrの1種または2種
以上を合計で0.6重量%以下を含有し、さらに
Ni3.0重量%以下およびCu2.0重量%以下の1種ま
たは2種を含有し、残部が実質的にFeからなる
リードフレーム材料。
[Claims] 1 Cr5.0 to 10.5% by weight, C0.05% by weight or less,
A lead frame material containing 0.50% by weight or less of Si, 0.30% by weight or less of Mn, and 0.05% by weight of Al, with the balance essentially consisting of Fe. 2 Cr5.0-10.5% by weight, C0.05% by weight or less,
Contains 0.50% by weight or less of Si, 0.30% by weight or less of Mn, and 0.05% by weight of Al, and further contains 0.6% by weight or less of one or more of Nb, Ti, Ta, and Zr in total, and the remainder A lead frame material consisting essentially of Fe. 3 Cr5.0-10.5% by weight, C0.05% by weight or less,
Contains 0.50% by weight or less of Si, 0.30% by weight or less of Mn, 0.05% by weight or less of Al, and further contains one or both of 3.0% by weight or less of Ni and 2.0% by weight or less of Cu,
A lead frame material in which the remainder is essentially Fe. 4 Cr5.0-10.5% by weight, C0.05% by weight or less,
Contains 0.50 wt% or less of Si, 0.30 wt% or less of Mn, 0.05 wt% or less of Al, and 0.6 wt% or less of one or more of Nb, Ti, Ta, and Zr in total, and
A lead frame material containing one or both of 3.0% by weight or less of Ni and 2.0% by weight or less of Cu, with the remainder essentially consisting of Fe.
JP11816582A 1982-07-07 1982-07-07 Material for lead frame Granted JPS599149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11816582A JPS599149A (en) 1982-07-07 1982-07-07 Material for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11816582A JPS599149A (en) 1982-07-07 1982-07-07 Material for lead frame

Publications (2)

Publication Number Publication Date
JPS599149A JPS599149A (en) 1984-01-18
JPS6366377B2 true JPS6366377B2 (en) 1988-12-20

Family

ID=14729713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11816582A Granted JPS599149A (en) 1982-07-07 1982-07-07 Material for lead frame

Country Status (1)

Country Link
JP (1) JPS599149A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026642A (en) * 1983-07-22 1985-02-09 Nippon Mining Co Ltd Iron alloy for lead frame
JPS60102151A (en) * 1983-11-09 1985-06-06 Riken Vitamin Co Ltd Novel emulsifier composition and method for improving quality of starch food
JPS60103158A (en) * 1983-11-11 1985-06-07 Hitachi Metals Ltd Material for lead frame of ic
JPS61119656A (en) * 1984-11-15 1986-06-06 Hitachi Metals Ltd Material for lead frame for ic
JPS61119653A (en) * 1984-11-15 1986-06-06 Hitachi Metals Ltd Material for lead frame for ic
JPH07116555B2 (en) * 1985-06-11 1995-12-13 大同特殊鋼株式会社 Lead frame material and manufacturing method thereof
JPS6355968A (en) * 1986-08-26 1988-03-10 Mitsui Haitetsuku:Kk Lead frame
JPS63109155A (en) * 1986-10-28 1988-05-13 Nippon Steel Corp Cu coated steel sheet having superior corrosion resistance, solderability and adhesion
JPH0788529B2 (en) * 1987-02-02 1995-09-27 日本鋼管株式会社 Manufacturing method of ferritic stainless steel for lead frame
JPH0210761A (en) * 1988-06-28 1990-01-16 Mitsui High Tec Inc Lead frame and its manufacture
JP2534954Y2 (en) * 1991-05-22 1997-05-07 株式会社トーキン Piezoelectric vibration gyro
JP2534958Y2 (en) * 1991-06-21 1997-05-07 株式会社トーキン Piezoelectric vibration gyro
JP2534964Y2 (en) * 1991-09-30 1997-05-07 株式会社トーキン Surface mount type vibration gyro
JPH0573518U (en) * 1992-03-11 1993-10-08 株式会社トーキン Piezoelectric vibration gyro
US5591392A (en) * 1992-11-24 1997-01-07 Nippon Steel Corporation Steel plate having good corrosion resistance to condensed water
JP5598013B2 (en) * 2010-02-19 2014-10-01 富士ゼロックス株式会社 Image carrier for image forming apparatus, process cartridge, and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215265A (en) * 1975-07-24 1977-02-04 Telcon Metals Ltd Lead frame for semicoductors
JPS5230715A (en) * 1975-09-05 1977-03-08 Showa Denko Kk High chromium ferritic stainless steel
JPS5479117A (en) * 1977-12-07 1979-06-23 Nisshin Steel Co Ltd Production of ridginggfree single phase ferrite stainless steel
JPS5750457A (en) * 1980-09-12 1982-03-24 Hitachi Metals Ltd Ic lead frame material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215265A (en) * 1975-07-24 1977-02-04 Telcon Metals Ltd Lead frame for semicoductors
JPS5230715A (en) * 1975-09-05 1977-03-08 Showa Denko Kk High chromium ferritic stainless steel
JPS5479117A (en) * 1977-12-07 1979-06-23 Nisshin Steel Co Ltd Production of ridginggfree single phase ferrite stainless steel
JPS5750457A (en) * 1980-09-12 1982-03-24 Hitachi Metals Ltd Ic lead frame material

Also Published As

Publication number Publication date
JPS599149A (en) 1984-01-18

Similar Documents

Publication Publication Date Title
JPS6366377B2 (en)
JPS6252464B2 (en)
US5147469A (en) Process for producing copper-based alloys having high strength and high electric conductivity
JPS63109130A (en) Copper alloy for electronic equipment
JP3777756B2 (en) Electronic equipment parts made of ferritic free-cutting stainless steel
US5205878A (en) Copper-based electric and electronic parts having high strength and high electric conductivity
JPS6314056B2 (en)
JPS6239218B2 (en)
JPS6215622B2 (en)
JPS60152646A (en) Material for lead frame for semiconductor
JPS6215621B2 (en)
JPH02122035A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS6244691B2 (en)
JPH02197013A (en) Cable conductor with high bending strength
JPS62130247A (en) Copper alloy for electronic appliance
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPS6338545A (en) High strength conductive copper alloy
JPS6160132B2 (en)
JPH01198439A (en) Lead material for plastic-pin-grid-array ic
JPS60218442A (en) Copper alloy for lead frame
JPS61119656A (en) Material for lead frame for ic
JP3273193B2 (en) High-strength, high-conductivity copper-based alloy with excellent resistance to solder heat release
JPH02205624A (en) Production of alloy for semiconductor equipment lead frame
JPS6157379B2 (en)
JP3260451B2 (en) Thin plate for Cu alloy spring excellent in electric conductivity and spring limit value and method of manufacturing the same