JPH0788529B2 - Manufacturing method of ferritic stainless steel for lead frame - Google Patents

Manufacturing method of ferritic stainless steel for lead frame

Info

Publication number
JPH0788529B2
JPH0788529B2 JP62020407A JP2040787A JPH0788529B2 JP H0788529 B2 JPH0788529 B2 JP H0788529B2 JP 62020407 A JP62020407 A JP 62020407A JP 2040787 A JP2040787 A JP 2040787A JP H0788529 B2 JPH0788529 B2 JP H0788529B2
Authority
JP
Japan
Prior art keywords
cold rolling
present
annealing
rolling
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62020407A
Other languages
Japanese (ja)
Other versions
JPS63190122A (en
Inventor
智良 大北
正 井上
隆良 下村
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP62020407A priority Critical patent/JPH0788529B2/en
Publication of JPS63190122A publication Critical patent/JPS63190122A/en
Publication of JPH0788529B2 publication Critical patent/JPH0788529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) 繰返し曲げ特性に優れたリードフレーム用フェライト系
ステンレス鋼の製造法。
DETAILED DESCRIPTION OF THE INVENTION "Purpose of Invention" (Field of Industrial Application) A method for producing a ferritic stainless steel for lead frames, which is excellent in repeated bending properties.

(従来の技術) 高信頼性が要求されるICリードフレーム材料(特に気密
性の要求される一部のセラミックパッケージを除く)と
しては、強度が高く、曲げ特性が良好で、熱的軟化温度
も高くて耐食性、耐熱性に優れ、AuまたはAgメッキ性の
良好な42Ni合金が従来において広く用いられている。
(Prior art) As an IC lead frame material that requires high reliability (excluding some ceramic packages that require airtightness in particular), it has high strength, good bending characteristics, and thermal softening temperature. 42Ni alloy, which is high and has excellent corrosion resistance and heat resistance and good Au or Ag plating property, has been widely used in the past.

ところで近時においては、このリードフレーム材料に対
し、より一層の低価格化の要求から耐食性、耐熱性が優
れ、熱的軟化温度が高くて、前記42Niよりも安価なステ
ンレス鋼が注目されて来たが、この材料は表面に緻密な
酸化膜を形成するためメッキ性が好ましくないという欠
点を有している。そこで最近、例えば特開昭56−4374
7、特開昭59−200795、201455、219195、特開昭60−196
962、4259、特開昭52−1865号のように表面処理技術が
進歩し、ステンレス表面に純金属およびそれらの合金を
被覆してメッキ性を良好にした材料が多数開発されてい
る。
By the way, in recent years, stainless steel, which has excellent corrosion resistance and heat resistance, has a high thermal softening temperature, and is cheaper than 42Ni, has been attracting attention for this lead frame material because of the demand for further cost reduction. However, this material has a drawback that the plating property is not preferable because a dense oxide film is formed on the surface. Therefore, recently, for example, JP-A-56-4374
7, JP-A-59-200795, 201455, 219195, JP-A-60-196
As in 962, 4259 and JP-A-52-1865, surface treatment techniques have advanced, and many materials have been developed in which the surface of stainless steel is coated with a pure metal or an alloy thereof to improve the plating property.

又例えば特開昭60−91659、130848号のようにリードフ
レームに要求される強度を確保し、曲げ特性も良好なも
のも開発されている。即ち特開昭60−91659のものは冷
延後、実質的フェライト単相組織となる温度で燒鈍し、
次いで50%以下の圧下率での最終仕上圧延を行うもので
あり、又特開昭60−130849のものは最終仕上冷延後400
〜800℃の温度で燒鈍するものである。
In addition, for example, as disclosed in JP-A-60-91659 and 130848, a lead frame having a required strength and a good bending characteristic has been developed. That is, in JP-A-60-91659, after cold rolling, it is annealed at a temperature at which a substantially ferrite single-phase structure is formed.
Then, final finishing rolling is performed at a rolling reduction of 50% or less, and in JP-A-60-130849, the final finishing cold rolling is 400
It is annealed at a temperature of ~ 800 ° C.

(発明が解決しようとする問題点) しかし上記のような従来の技術においては近年における
ICのより高密度実装化に伴う薄肉化と打抜き特性の如き
に適切に即応し難い。即ちICがより高密度、実装化され
るに伴いリードフレーム材料自体も薄肉化が強く望ま
れ、斯うして素材を薄肉化すると高速プレス打抜きライ
ン通板時に素材の波打ち現象が発生し、金型内に引掛る
などしてプレス加工が困難となり、内抜き時のパターン
精度も劣化するなどの難点を生ずる。
(Problems to be Solved by the Invention) However, in the related art as described above,
It is difficult to properly respond to such factors as thinning and punching characteristics associated with higher density mounting of ICs. That is, it is strongly desired that the lead frame material itself is made thinner as the IC becomes more dense and mounted, and thus when the material is made thinner, a corrugation phenomenon of the material occurs at the time of passing through the high-speed press punching line, and the die This makes it difficult to perform the press work because of being caught inside, and the pattern accuracy at the time of internal drawing deteriorates.

このような問題を解決するには素材の剛性を現状より更
に高める必要があり、剛性を高めるには調圧率(最終次
冷延率)を高くする方法が採られるが、この場合は前記
特開昭60−91659号の発明において記載されているよう
に曲げ特性の確保に必要な伸びの低下を伴う。従って従
来の技術では曲げ特性を確保し且つ剛性を備えた現状よ
り薄肉のリードフレーム原板を製造することは極めて困
難である。
In order to solve such a problem, it is necessary to further increase the rigidity of the material from the present condition. To increase the rigidity, a method of increasing the pressure regulation rate (final secondary cold rolling rate) is adopted. As described in the invention of KAISHO No. 60-91659, the elongation required for securing the bending property is lowered. Therefore, it is extremely difficult to manufacture a thin lead frame original plate which has a bending characteristic and rigidity by the conventional technique.

「発明の構成」 (問題点を解決するための手段) 本発明は上記したような従来のものの問題点を解消する
ように検討を重ねて創案されたもので、剛性と繰返し曲
げ特性が共に優れ、スポットメッキ性が良好で、従来よ
りも薄肉化が可能なリードフレーム用フェライト系ステ
ンレス鋼原板を提供することに成功したものであって、 (1) C:0.05wt%以下、Mn:1.0wt%以下、Cr:8〜13wt
%、S:0.003wt%以下、Al:0.01wt%以下、O:0.006wt%
以下、Si:0.1〜0.5wt%、 を含有し、残部が実質的にFeからなるステンレス鋼を仕
上温度800℃以上で熱延し、650℃以上で巻取った鋼帯を
中間燒鈍をはさむ1次、2次の各冷延を行い、2次冷延
後軟化燒鈍してから調質圧延、応力除去燒鈍して原板コ
イルを得るに当り、前記1次冷延率(CR1%)と2次冷
延率(CR2%)が下記するI〜III式の関係を満たすこと
を特徴とするリードフレーム用フェライト系ステンレス
鋼の製造方法である。
"Structure of the Invention" (Means for Solving Problems) The present invention was devised through repeated studies to solve the problems of the conventional ones described above, and has excellent rigidity and repeated bending characteristics. It has succeeded in providing a ferritic stainless steel original plate for lead frames, which has good spot plating properties and can be made thinner than before. (1) C: 0.05 wt% or less, Mn: 1.0 wt % Or less, Cr: 8 to 13 wt
%, S: 0.003 wt% or less, Al: 0.01 wt% or less, O: 0.006 wt%
Below, stainless steel containing Si: 0.1-0.5 wt% and the balance substantially consisting of Fe is hot rolled at a finishing temperature of 800 ° C or higher, and a steel strip wound at 650 ° C or higher is subjected to intermediate annealing. The primary cold rolling rate (CR 1 %) was used for obtaining the original coil by performing primary cold rolling and secondary cold rolling, followed by secondary cold rolling, softening annealing, temper rolling, and stress relief annealing. ) And the secondary cold rolling rate (CR 2 %) satisfy the relations of the following formulas I to III.

40≦CR1≦75% ……I 40≦CR2≦75% ……II CR1+CR2≦130% ……III (作用) wt%(以下単に%という)で、Crを8〜13%含有するフ
ェライト系ステンレスを対象とし、このCr量を8%以上
とすることによりリードフレーム素材に要求される耐食
性を確保する。一方13%を超えて含有すると、表面に形
成される緻密な酸化膜のため、スポットメッキ性、場合
により全面メッキされるときのメッキ性が損われること
から、上記した上限および下限が規定される。
40 ≦ CR 1 ≦ 75% …… I 40 ≦ CR 2 ≦ 75% …… II CR 1 + CR 2 ≦ 130% …… III (Action) wt% (hereinafter simply referred to as%) and contains 8 to 13% Cr For ferritic stainless steels, the Cr content is 8% or more to ensure the corrosion resistance required for lead frame materials. On the other hand, if the content exceeds 13%, the dense oxide film formed on the surface impairs the spot plating property and, in some cases, the plating property when the entire surface is plated, so the above-mentioned upper and lower limits are defined. .

Cは、強度を高める元素であり、素材の強化には有利で
あるが、0.05%を超えると繰返し曲げ特性の劣化度が大
きくなるので0.05%を上限としてこの繰返し曲げ特性を
得しめる。なお下限については特に定めないが溶製上の
経済性から好ましくは0.006%以上である。
C is an element that enhances the strength and is advantageous for strengthening the material, but if it exceeds 0.05%, the degree of deterioration of the repeated bending property increases, so 0.05% is the upper limit and this repeated bending property can be obtained. Although the lower limit is not particularly defined, it is preferably 0.006% or more from the economical aspect of melting.

Siは、強化に有効な元素であり、又リードフレーム材料
ではアルミナ系介在物を嫌うため脱酸剤としても用いら
れる。即ちこの合金ではAlが用いられないためSiで脱酸
を行うことが基本となるので0.1%以上とし、これ未満
では脱酸が不十分となって介在物が多くなり、しかもメ
ッキ性が劣化するので下限値を0.1%とすべきである。
しかしこのSiが0.5%を超えると燒鈍時にスポットメッ
キ性に有害なSi酸化膜を形成するため好ましくないこと
になり、またSiの酸化物系介在物が多くなって繰り返し
曲げ特性にも悪影響を与えるので、この0.5%を上限と
してこれらの不利を回避する。
Si is an element effective for strengthening, and is also used as a deoxidizing agent in lead frame materials because it dislikes alumina inclusions. That is, since Al is not used in this alloy, it is basically necessary to perform deoxidation with Si, so 0.1% or more, and if it is less than this, deoxidation is insufficient and inclusions increase, and the plating property deteriorates. So the lower limit should be 0.1%.
However, if this Si exceeds 0.5%, it becomes unfavorable because it forms a Si oxide film that is harmful to spot plating property during annealing, and the amount of Si-based inclusions increases, which adversely affects the repeated bending properties. We will avoid these disadvantages by giving this 0.5% as an upper limit.

Mnも強化に有効な元素で、好ましくは0.1%以上として
素材強化を図り、又熱間加工時の庇発性を抑える。しか
し1.0%を超えて含有すると素材中の偏析によって組織
が不均一になり、スポットメッキ性が劣化したり機械的
性質のばらつきが大きくなると共に燒鈍時にスポットメ
ッキ性に有害な酸化膜を形成するので、この1%を上限
としてこれらを避ける。
Mn is also an effective element for strengthening, and is preferably 0.1% or more to strengthen the material and suppress the emissivity during hot working. However, when the content exceeds 1.0%, the structure becomes non-uniform due to segregation in the material, the spot plating property deteriorates and the dispersion of mechanical properties increases, and an oxide film that is harmful to the spot plating property is formed during annealing. Therefore, the upper limit of this 1% is avoided.

S、Al、Oは、鋼中に介在物を生成し、繰返し曲げ特性
をを劣化させるので何れも低減することが必要であり、
またスポットメッキ性を良好とするためにも低減する。
S, Al, and O form inclusions in the steel and deteriorate repeated bending properties, so it is necessary to reduce any of them.
It is also reduced in order to improve the spot plating property.

即ちSは、0.0030%以上になると、鋼中MnSが多くな
り、メッキの密着性が劣化し、ダイボンデング時にフク
レが生じ易くなるため0.003%を上限とする。又Alは0.0
10%を超えると鋼中のAl2O3が多くなり、密着性を劣化
し、フクレの原因となるため0.010%を上限とし、更に
Oは製鋼時にAl、Siと結合して酸化物を生成し、鋼中に
介在物が多くなり、メッキ性を劣化させるので0.0060%
を上限とすることにより、これらの不利のないリードフ
レーム素材を得しめる。
That is, when S is 0.0030% or more, MnS in the steel is increased, the adhesion of the plating is deteriorated, and blisters are likely to occur during die bonding, so the upper limit is 0.003%. Al is 0.0
If it exceeds 10%, the amount of Al 2 O 3 in the steel will increase, which will deteriorate the adhesion and cause blistering, so the upper limit is 0.010%, and O will combine with Al and Si to form oxides during steelmaking. However, since there are many inclusions in the steel and the plating properties deteriorate, 0.0060%
By setting the upper limit to, the lead frame material free from these disadvantages can be obtained.

次に本発明者等は上記したような成分範囲の供試材を用
い、繰返し曲げ特性に及ぼす冷延燒鈍条件を検討し、特
に硬質化のための最終冷延前の冷延を中間燒鈍をはさむ
2回冷延とし、しかもそれら2回の冷延率が特定の条件
を満たすことにより繰返し曲げ特性の向上することを見
出した。
Next, the inventors of the present invention examined the cold-rolled annealing conditions that affect the repeated bending characteristics using the test materials having the above-described compositional ranges, and particularly the intermediate-rolled cold rolling before the final cold rolling for hardening. It has been found that the cold-rolling is performed twice by sandwiching, and when the cold-rolling rate of the two times satisfies a specific condition, the cyclic bending property is improved.

即ち、第1図は熱延仕上げ温度を870℃、巻取り温度を7
00℃とした後述第1表のC鋼による各供試材を、1回冷
延法(冷延率88%)および2回冷延法(1次冷延率70
%、2次冷延率60%、中間燒鈍750℃)で夫々0.23mmの
板厚とし、750℃の軟化燒鈍を行い、その後36%の冷延
をなして最終板厚(0.15mm)となし、次いで450℃で応
力除去燒鈍を経しめた供試材について圧延方向に対し0
゜、45゜および90゜の各角度を採って第2図に示したよ
うに基部1の幅が1.5mmで先端部2の幅を0.5mmとしたピ
ン形状のサンプルを打抜き、MIL STANDARDに従って繰
返し曲げ試験を実施した結果を示すもので、各サンプル
引張強度の面内異方性をも併せて示した。
That is, in Fig. 1, the hot rolling finishing temperature is 870 ° C and the winding temperature is 7
Each of the test materials made of C steel in Table 1 described below, which was set to 00 ° C, was cold-rolled once (cold rolling 88%) and cold-rolled twice (primary cold rolling 70
%, Secondary cold rolling rate 60%, intermediate annealing 750 ° C) to 0.23 mm sheet thickness, 750 ° C softening annealing, then 36% cold rolling to final sheet thickness (0.15 mm) And then 0 for the rolling direction of the test material that was subjected to stress relief annealing at 450 ° C.
Taking the angles of °, 45 ° and 90 °, as shown in Fig. 2, punch out a pin-shaped sample with the width of the base 1 being 1.5 mm and the width of the tip 2 being 0.5 mm, and repeating according to MIL STANDARD. The results of the bending test are shown, and the in-plane anisotropy of the tensile strength of each sample is also shown.

即ちリートブレームピンの打抜き方向に対応するL、C
方向で見ると、2回冷延材の曲げ特性は、従来材に相当
する1回冷延材に比較して著しく優れていることが明ら
かで、特にL方向では繰返し曲げ17回以上であり、42ア
ロイの同一強度材がこの繰返し曲げで10回であるのと比
較しても優れていることが明白である。強度面でも2回
冷延材の面内異方性が1回冷延材と比較してかなり小さ
く、強度レベルにおいても70kg f/mm2以上と高強度を示
している。
That is, L and C corresponding to the punching direction of the REIT BRAME pin
When viewed in the direction, it is clear that the bending characteristics of the double cold-rolled material are significantly superior to those of the single cold-rolled material equivalent to the conventional material, and in particular, the repeated bending is 17 times or more in the L direction, It is clear that the same strength material of 42 alloy is superior even when compared with 10 times in this repeated bending. In terms of strength, the in-plane anisotropy of the double cold rolled material is considerably smaller than that of the single cold rolled material, and the strength level is as high as 70 kg f / mm 2 or more.

なお曲げ特性の面内異方性をみると、1回冷延材ではD
方向(45゜方向)が最も高い逆V字型を示すのに対し、
2回冷延材はL方向が最も高いV字型を示し、圧延方向
と平行にリードフレームを得る常法に従うことにより好
ましい製品の得られることは明らかである。
Looking at the in-plane anisotropy of bending properties, D
Whereas the direction (45 ° direction) shows the highest inverted V shape,
It is clear that the double cold rolled material shows a V shape having the highest L direction, and that a preferable product can be obtained by following a conventional method of obtaining a lead frame parallel to the rolling direction.

然して本発明者等は上記のように冷延条件によって繰返
し曲げ特性の面内異方性が隔段に異る原因について検討
を重ねた。即ち前記したC鋼の1回冷延材と2回冷延材
の各サンプルに関する(100)極点図は第3図の(A)
(B)に示す如くであって、何れの場合も{111}<11
>、{112}<10>がみられるが、大きく異る点
は1回冷延材で{100}<011>が強くなっている点であ
って、両材の曲げ特性差はその集合組織の差に大きく支
配されていると考えられる。又本発明成分範囲の第1表
A、B鋼についてもこの第3図のものと同様の集合組織
的な傾向が認められた。即ち本発明者等はこのような検
討の結果としてL、C方向での曲げ特性を向上させるた
めには集合組織の制御、つまり{100}<011>成分を弱
くすることが必要であることを確認した。
However, the inventors of the present invention have repeatedly investigated the cause of the in-plane anisotropy of the repeated bending characteristics being different depending on the cold rolling conditions as described above. That is, the (100) pole figure of each sample of the above-mentioned C steel 1 time cold rolled material and 2 time cold rolled material is shown in FIG.
As shown in (B), in any case, {111} <11
>, {112} <10>, but the major difference is that {100} <011> is stronger in the single cold-rolled material, and the bending property difference between the two materials is the texture. It is thought that the difference between is largely controlled. Further, regarding the steels A and B in Table 1 in the composition range of the present invention, the similar texture tendency as in FIG. 3 was recognized. That is, as a result of such studies, the present inventors have found that it is necessary to control the texture, that is, to weaken the {100} <011> component in order to improve the bending characteristics in the L and C directions. confirmed.

茲で、さらに2回冷延法で曲げ特性が向上する冷延条件
を、本発明成分範囲の鋼(前記第1表のB鋼)による熱
延板を用い、1次冷延率、2次冷延率を夫々変化し検討
した。なお1次冷延後、2次冷延後の燒鈍は何れも750
℃とし、2次冷延−燒鈍後に36%の冷延を行い、続いて
450℃の応力除去燒鈍を行った供試材のL方向より第2
図に示したようなピン状のサンプルを打抜き、繰返し曲
げ試験を行った結果は第4図に示す如くである。即ちこ
の第4図の結果によるときは1次冷延率(CR1)、2次
冷延率(CR2)が共に40〜75%であり、しかもCR1とCR2
の和が130%以下(下限は80%)のときに繰返し曲げ特
性において何れにしても15回以上の優れた特性を得しめ
ることを知った。1次冷延率(CR1)、2次冷延率(C
R2)が共に40%未満であると燒鈍組織の粗大化、混粒化
を招き、集合組織的にもL方向の曲げ特性が劣ることと
なるものと認められ、繰返し曲げ特性は何れにしても低
下する。
The cold rolling conditions for further improving the bending characteristics by the double cold rolling method using a hot rolled sheet made of steel (B steel in Table 1) in the composition range of the present invention The cold rolling rate was changed and examined. After the first cold rolling, the annealing after the second cold rolling was 750 in each case.
℃ and secondary cold rolling-36% cold rolling after annealing,
Second from the L direction of the test material subjected to stress relief annealing at 450 ° C
The pin-shaped sample as shown in the figure is punched out and the repeated bending test is conducted. The result is shown in FIG. That is, according to the results of Fig. 4, both the primary cold rolling rate (CR 1 ) and the secondary cold rolling rate (CR 2 ) are 40 to 75%, and CR 1 and CR 2
It has been found that when the sum of the above is less than 130% (the lower limit is 80%), excellent characteristics of 15 times or more can be obtained in the repeated bending property. Primary cold rolling rate (CR 1 ) Secondary cold rolling rate (C
If both R 2 ) are less than 40%, it is recognized that the annealed structure becomes coarse and the grains are mixed, and the bending property in the L direction is inferior also in terms of the texture. Even lower.

また上記したような本発明成分範囲の鋼では冷延率が高
くなると、冷延集合組織として{100}<011>が強くな
り、それが再結晶後でも引き継がれると考えられる。こ
のためCR1とCR2の影響は加算的に効き、CR1とCR2のうち
少くとも一方が75%を超えるとき、あるいはCR1とCR2
和が130%を超えるならば{100}<100>が強くなり、
L方向の曲げ特性が劣化し、繰返し曲げ特性が12〜13回
以下の如くとなることは第4図に示す通りである。
Further, in the steel having the above-described composition range of the present invention, when the cold rolling rate becomes higher, {100} <011> becomes stronger as the cold rolling texture, and it is considered that it is succeeded even after recrystallization. Therefore, the effects of CR 1 and CR 2 are additive, and if at least one of CR 1 and CR 2 exceeds 75%, or if the sum of CR 1 and CR 2 exceeds 130%, {100} <100> becomes stronger,
As shown in FIG. 4, the bending property in the L direction is deteriorated and the repeated bending property becomes 12 to 13 times or less.

さらに本発明者等は繰返し曲げ特性の向上する製造因子
について研究した結果、熱延の仕上げ温度も重要な制御
因子であることを見出した。即ち第5図はこの熱延仕上
げ温度と最終冷延、燒鈍後におけるL方向の繰返し曲げ
特性の関係を示すもので、供試鋼は前記した第1のB鋼
およびC鋼の熱延板であって、1次冷延(70%)−燒鈍
(750℃)−2次冷延(60%)−燒鈍(750℃)−36%冷
延−応力除去燒鈍(450℃)の工程を経たものである。
何れの鋼においても繰返し曲げ特性は、仕上げ温度が85
0℃以上で優れているが、それ以下の温度では低下傾向
が認められる。つまり本発明においてはこのような結果
から仕上げ温度の下限を850℃と定めた。前記B鋼は熱
延中には基本的にγ相であるが熱延仕上げ後のアーステ
ナイトが再結晶した状態でフェライト変態すると熱延板
の集合組織もランダムとなるため、それ以後の冷延条件
を本発明範囲とすれば{100}<011>成分を弱くするこ
とができると考えられ、850℃はオーステナイトが仕上
げ圧延後に充分再結晶する臨界温度であると推定され
る。一方C鋼も熱延中では大部分がオーステナイトであ
り、このオーステナイトが熱延仕上げ後に十分再結晶す
る臨界温度が850℃であると考えられる。なお仕上げ温
度の上限は特に規定しなかったが、熱延加熱温度を必要
以上高めることは熱損失につながり不経済である。又熱
延仕上げ後の再結晶オーステナイトの粒度が大きくな
り、変態後のフェライト組織も粗粒となるため、冷延燒
鈍後の機械的性質に影響を及ぼすので好ましくは1000℃
以下である。また巻取温度は650℃以上ならば巻取後に
オーステナイトがフェライト+炭化物に分解するが、65
0℃未満ではマルテンサイトの生成により熱延コイルが
硬質化し、以降の冷延時におけるミル負荷が大きくなり
好ましくない。又この場合、熱延板燒鈍を行えば軟質化
は達成されるが製造工程が多くなり、熱コストが掛るな
どの理由によって不経済であり、これらの理由から巻取
温度の下限を650℃と定めた。
Furthermore, as a result of research on manufacturing factors that improve the cyclic bending property, the present inventors have found that the finishing temperature of hot rolling is also an important control factor. That is, FIG. 5 shows the relationship between the hot rolling finishing temperature and the repeated bending properties in the L direction after final cold rolling and annealing. The test steel is the hot rolled sheet of the above-mentioned first B steel and C steel. Of primary cold rolling (70%)-annealing (750 ° C) -secondary cold rolling (60%)-annealing (750 ° C) -36% cold rolling-stress relief annealing (450 ° C) It has gone through the process.
The repetitive bending properties of all steels have a finishing temperature of 85.
It is excellent at 0 ° C or higher, but it tends to decrease at temperatures below that. In other words, in the present invention, the lower limit of the finishing temperature is set to 850 ° C. based on these results. The B steel is basically in the γ phase during hot rolling, but when the ferrite transformation occurs in the state where the austenite after hot rolling is recrystallized, the texture of the hot rolled sheet also becomes random. It is considered that the {100} <011> component can be weakened by setting the conditions within the range of the present invention, and 850 ° C. is estimated to be a critical temperature at which austenite is sufficiently recrystallized after finish rolling. On the other hand, most of C steel is austenite during hot rolling, and it is considered that the critical temperature at which this austenite is sufficiently recrystallized after hot rolling is 850 ° C. The upper limit of the finishing temperature was not specified, but raising the hot rolling heating temperature more than necessary leads to heat loss and is uneconomical. Further, the grain size of the recrystallized austenite after hot rolling finish becomes large, and the ferrite structure after transformation becomes coarse grain, which affects the mechanical properties after cold rolling annealing, and is therefore preferably 1000 ° C.
It is the following. If the coiling temperature is 650 ℃ or higher, austenite decomposes into ferrite + carbide after coiling.
If the temperature is lower than 0 ° C, the hot rolled coil is hardened due to the formation of martensite, and the mill load during the subsequent cold rolling becomes large, which is not preferable. In this case, softening can be achieved by annealing the hot-rolled sheet, but it is uneconomical due to the increase in the number of manufacturing processes and the cost of heat, and for these reasons, the lower limit of the coiling temperature is 650 ° C. I decided.

なお本発明の実施に当っては、1次、2次冷延後の燒鈍
は再結晶軟化を目的としたものであり、その燒鈍温度を
Fe−Cr−C系状態図におけるフェライト+オーステナイ
ト域まで高めるならば、冷却条件によってはマルテンサ
イトの生成により以降の冷延におけるミル負荷が高くな
り、必要以上の燒鈍温度とすることにより熱経済性も悪
くなるという問題が生ずるため製造コストの面から燒鈍
をフェライト単相の温度域で行うことは自明である。
In the practice of the present invention, the annealing after primary and secondary cold rolling is intended for recrystallization softening, and the annealing temperature is
If it is increased to the ferrite + austenite region in the Fe-Cr-C phase diagram, depending on the cooling conditions, the load of the mill in the subsequent cold rolling will become high due to the formation of martensite, and the annealing temperature will be higher than necessary and the thermal economy will be increased. It is obvious that the annealing is performed in the temperature range of the ferrite single phase from the viewpoint of the manufacturing cost because the problem that the property deteriorates occurs.

本発明の意図するところは集合組織制御による繰返し曲
げ特性の向上であるから燒鈍温度自体はそれが再結晶す
るに十分な温度であればよく、このような燒鈍条件は本
発明の効果を何ら阻害するものでない。同様に2次冷延
燒鈍後に行われる調質圧延(最終圧延)も、フェライト
系ステンレスを硬質化するためには、その材料のもって
いる加工硬化特性に応じた圧延を行うという意味からは
通常採られている方法である。
Since the intention of the present invention is to improve the cyclic bending property by texture control, the annealing temperature itself may be a temperature sufficient for recrystallization, and such an annealing condition has the effect of the present invention. It does not hinder anything. Similarly, the temper rolling (final rolling) performed after the secondary cold-rolling annealing is usually adopted in order to harden the ferritic stainless steel in the sense that the rolling is performed according to the work hardening characteristics of the material. This is the method used.

本発明で意図する集合組織制御という点からは、この最
終次冷延率が50%未満なら本発明の効果を何等阻害され
ることなく発揮される。
From the viewpoint of texture control intended in the present invention, if the final cold rolling rate is less than 50%, the effect of the present invention is exhibited without any hindrance.

本発明で対象としている冷延素材は熱延材であるが、本
発明において目的とする繰返し曲げ特性の向上は集合組
織制御により達成されるので、冷延素材は熱延材に限定
されるものでなく、溶鋼から直後に冷延素材を鋳造する
ストリップキャスティングまたはストリップキャスティ
ングにより鋳造された鋼帯を熱延軽圧下することにより
冷延素材を製造する工程を経たものでも本発明の効果は
十分に発揮される。なおこの場合、その冷素材はその製
造工程で、十分再結晶しオーステナイトからフェライト
変態した、集合組織的にランダムなものであることが前
提となることは言うまでもない。
Although the cold-rolled material targeted in the present invention is a hot-rolled material, the improvement of the cyclic bending property intended in the present invention is achieved by texture control, so the cold-rolled material is limited to the hot-rolled material. Not only, the effect of the present invention is sufficient even through a step of producing a cold-rolled material by hot-rolling a steel strip cast by strip casting or a strip casting in which a cold-rolled material is immediately cast from molten steel. To be demonstrated. In this case, it goes without saying that the cold material is assumed to be a textured random material which is sufficiently recrystallized and transformed from austenite to ferrite in the manufacturing process.

実施例 (実施例1) 次の第2表に示すような本発明合金および比較例たる合
金を真空炉において溶製した。
Example (Example 1) Alloys of the present invention and alloys as comparative examples as shown in Table 2 below were melted in a vacuum furnace.

これらの合金は分塊−熱延(仕上げ温度880℃、巻取り
温度720℃)を経たものを表面研削して素材とし、この
ようにして得られた素材を2回冷延法(1次冷延率70
%、中間燒鈍750℃、2次冷延率60%)で板厚0.23mmと
し、750℃で軟化燒鈍してから36%の最終冷延をなし、
0.15mmの最終板厚となしたものを450℃で応力除去燒鈍
を行い、得られた供試材について繰返し曲げ特性、引張
強度および銀メッキ性を調査した結果は次の第3表の如
くである。
These alloys were subjected to slab-hot rolling (finishing temperature 880 ° C, coiling temperature 720 ° C) and surface-ground them into raw materials. The raw materials thus obtained were subjected to the double cold rolling method (primary cold rolling). Delay rate 70
%, Intermediate annealing 750 ° C, secondary cold rolling rate 60%) to a plate thickness of 0.23 mm, and after softening and annealing at 750 ° C, a final cold rolling of 36% is performed.
The final strip thickness of 0.15 mm was subjected to stress relief annealing at 450 ° C., and the repeated bending properties, tensile strength and silver plating properties of the obtained test material were investigated and the results are shown in Table 3 below. Is.

繰返し曲げ試験は供試材の圧延方向(L方向)および幅
方向(C方向)より前記した第2図に示すピン形状に打
抜き、MIL STANDARDに従って行い、引張り強度はL方
向で測定し、銀メッキ性はサンプルを脱酸洗浄後酸洗を
行い、下地ストライクメッキを施し、その上に厚さ3μ
mの銀のスポットメッキを行い、後に450×5分の加熱
処理を行って表面性状の観察により調査した。
Repeated bending test is performed according to MIL STANDARD by punching out the pin shape shown in Fig. 2 from the rolling direction (L direction) and width direction (C direction) of the test material, and measuring the tensile strength in the L direction and silver plating. As for the property, the sample is deoxidized and washed, then pickled, strike-plated on the base, and a thickness of 3μ
m of silver was spot-plated, followed by heat treatment for 450 × 5 minutes and observation by observing the surface properties.

合金No.1〜No.8の各材は、C、Si、Mn、S、Al、Oの各
量とも本発明範囲にある合金で、熱延条件、冷延・燒鈍
条件とも本発明範囲であり、引張強さ70kg f/mm2以上と
高強度で、繰返し曲げ特性もL方向で17回以上、C方向
で15回以上と比較例と比べて優れている。また、銀メッ
キ後加熱しても変色、フクレとも見られず、メッキ性は
良好であった。
Alloys No. 1 to No. 8 are alloys in which the amounts of C, Si, Mn, S, Al, and O are within the scope of the present invention, and both hot rolling conditions, cold rolling and annealing conditions are within the scope of the present invention. The tensile strength is 70 kg f / mm 2 or more, which is high strength, and the repeated bending property is 17 times or more in the L direction and 15 times or more in the C direction, which are excellent as compared with the comparative example. Further, even after heating after silver plating, no discoloration or blistering was observed, and the plateability was good.

合金No.9及びNo.10材はSi、Mn、S、Al、Oの各量とも
本発明範囲で、Cが本発明範囲を超えるもので、本発明
範囲内の熱延条件、冷延・燒鈍条件を採っており、引張
強さ70kg f/mm2以上と高強度であり、メッキ性も良好で
あるが、繰返し曲げ特性は発明例に比べてL、C方向と
も劣っている。
Alloys No. 9 and No. 10 have Si, Mn, S, Al, and O in the respective ranges of the present invention, and C exceeds the present invention range. The annealing conditions are adopted, the tensile strength is high at 70 kg f / mm 2 or more, and the plating property is good, but the cyclic bending property is inferior in the L and C directions as compared with the invention examples.

合金No.11、No.12及びNo.13の各材は、それぞれ、O、
S、Al量が本発明の規定を超えるものであり、その他の
成分は本発明範囲内の合金で、熱延条件、冷延・燒鈍条
件とも本発明範囲にあり、引張強さ70kg f/mm2と高強度
であるが、繰返し曲げ特性は本発明例に比べてL方向、
C方向とも劣っており、銀メッキ後の加熱でもフクレが
発生し、銀メッキ性が劣化している。
Alloy No.11, No.12 and No.13 are O,
The amount of S and Al exceeds the requirements of the present invention, and the other components are alloys within the scope of the present invention. Both hot rolling conditions, cold rolling and annealing conditions are within the present invention range, and tensile strength is 70 kg f / Although the strength is as high as mm 2 , the cyclic bending property is in the L direction as compared with the examples of the present invention,
It is also inferior to the C direction, and blisters are generated even after heating after silver plating, and the silver plating property is deteriorated.

合金No.14はC、Mn、S、Alの各量が本発明範囲にある
が、Si量が本発明で規定した下限値未満のもので、O量
も本発明の規定を超える合金であり、熱延条件、冷延・
燒鈍条件とも本発明範囲内にあり、引張強さは69kg f/m
m2と他の合金に比べて強度はわずかに低く、繰返し曲げ
特性は本発明例に比べてL方向、C方向とも劣ってお
り、銀メッキ後の加熱でもフクレが発生していて、銀メ
ッキ性に劣っている。
Alloy No. 14 is an alloy in which the amounts of C, Mn, S, and Al are within the range of the present invention, but the amount of Si is less than the lower limit specified in the present invention, and the amount of O also exceeds the amount of the present invention. , Hot rolling conditions, cold rolling
Both the annealing conditions are within the scope of the present invention, and the tensile strength is 69 kg f / m.
The strength is slightly lower than m 2 and other alloys, and the cyclic bending property is inferior in both the L direction and the C direction as compared with the examples of the present invention, and blistering occurs even after heating after silver plating, and silver plating Inferior in sex.

合金No.15はC、Si、S、Al、Oの各量が本発明範囲に
あるが、Mnが本発明で規定した上限値を超える合金であ
り、熱延条件、冷延・燒鈍条件とも本発明範囲にあり、
引張強さは70kg f/mm2以上と高強度であるが、繰返し曲
げ特性は本発明例と較べて、L方向で同レベルにある
が、C方向で劣っている。また銀メッキ後の加熱でもフ
クレが多く発生しており、銀メッキ性に劣っている。
Alloy No. 15 is an alloy in which the respective amounts of C, Si, S, Al, and O are within the range of the present invention, but Mn exceeds the upper limit value specified in the present invention, and hot rolling conditions, cold rolling and annealing conditions are used. Both are within the scope of the present invention,
The tensile strength is as high as 70 kgf / mm 2 or more, but the cyclic bending property is at the same level in the L direction but inferior in the C direction as compared with the examples of the present invention. Moreover, a lot of blisters are generated even after heating after silver plating, and the silver plating property is poor.

合金No.16はC、Mn、S、Al、Oの各量が本発明範囲に
あるが、Siが本発明で規定した上限値を超える合金であ
って、熱延条件、冷延・燒鈍条件とも本発明範囲にあり
引張強さは70kg f/mm2以上と高強度であるが、繰返し曲
げ特性は本発明例と比べて、L方向、C方向とも劣って
おり、銀メッキ後の加熱でもフクレが多く発生してお
り、銀メッキ性に劣っていることは明かである。
Alloy No. 16 is an alloy in which the amounts of C, Mn, S, Al, and O are in the range of the present invention, but Si exceeds the upper limit specified in the present invention, and the hot rolling conditions, cold rolling and annealing are performed. Although the conditions are within the scope of the present invention and the tensile strength is as high as 70 kg f / mm 2 or more, the repeated bending properties are inferior in the L direction and the C direction as compared with the examples of the present invention, and heating after silver plating is performed. However, it is clear that blistering occurs a lot and the silver plating property is inferior.

以上の如く、高強度かつ繰返し曲げ特性に優れ、メッキ
性が良好なフェライト軽ステンレスは、熱延条件、冷延
燒鈍条件を本発明範囲とし、かつC、Si、Mn、S、Al、
Oの各量を本発明成分範囲内に制御した時のみ達成され
ることが理解される。
As described above, ferritic light stainless steel having high strength, excellent repeated bending characteristics, and good plating property has hot rolling conditions and cold rolling annealing conditions within the scope of the present invention, and C, Si, Mn, S, Al,
It is understood that this is achieved only when the respective amounts of O are controlled within the range of the components of the present invention.

(実施例2) 前記した第2表に示されたNo.1〜3の本発明合金による
分塊スラブを、次の第4表に示すような熱延仕上げ温度
で仕上げ、730℃で巻取ったものを表面研削して素材と
なし、これらの素材を第4表に示した冷延、燒鈍条件で
最終板厚0.18mmとしたものの繰返し特性および引張強度
を実施例1と同じに調査した結果は第4表の右側に示す
通りであった。
(Example 2) The lump slabs of the alloys of the present invention of Nos. 1 to 3 shown in Table 2 above were finished at the hot rolling finishing temperature shown in Table 4 below and wound at 730 ° C. The materials were subjected to surface grinding to form materials, and these materials were subjected to the same cold rolling and annealing conditions as shown in Table 4 and having a final plate thickness of 0.18 mm. The results are shown on the right side of Table 4.

即ち符号1〜6の各材は熱延仕上げ温度が本発明範囲内
であり、1次および2次の冷延率の単独および和とも本
発明範囲内の場合であって、繰返し曲げ特性はL方向で
16回以上、C方向で14回以上と比較例より優れたもので
あり、引張強さも70kg f/mm2以上と高強度を示してい
る。
That is, each of the reference numerals 1 to 6 has a hot rolling finish temperature within the range of the present invention, and the primary and secondary cold rolling ratios are within the range of the present invention both independently and in total, and the cyclic bending property is L. In the direction
16 times or more, 14 times or more in the C direction, which is superior to the comparative example, and tensile strength is 70 kg f / mm 2 or more, which is high strength.

これに対し、符号7、16の各材は熱延仕上げ温度が本発
明範囲外であり、その他は本発明範囲内にあって、引張
強度は70kg f/mm2以上と高強度を示すものの、繰返し曲
げ特性はL方向、C方向とも発明例に達していない、又
符号11、12の各材は熱延仕上げ温度が本発明範囲内であ
るが、1回冷延のみによる場合で、その1次冷延率は本
発明上限75%より遥かに高く、引張強さは70kg f/mm2
上と高強度であっても繰返し曲げ特性は10回以下で極め
て劣っている。
On the other hand, each of the reference numerals 7 and 16 has a hot rolling finish temperature outside the scope of the present invention, and the others are within the scope of the present invention, and has a high tensile strength of 70 kg f / mm 2 or more, The cyclic bending characteristics have not reached the invention examples in both the L direction and the C direction, and the materials 11 and 12 have hot rolling finish temperatures within the scope of the present invention, but only in the case of single cold rolling. The secondary cold rolling rate is far higher than the upper limit of 75% of the present invention, and the tensile strength is as high as 70 kg f / mm 2 or more, and the cyclic bending property is extremely poor at 10 times or less.

符号9、15の各材は熱延仕上げ温度および1次と2次の
冷延率単独は本発明範囲内であるが、この1次と2次の
冷延率の和が本発明範囲外の場合であって、引張強さは
高いが、繰返し曲げ特性はやはり劣っている。符号8、
13のものは1次冷延率および2次冷延率の単独が本発明
範囲を超えた場合で、繰返し曲げ特性の劣っていること
は上記同様である。更に符号10、14の各材は本発明製造
条件における1次冷延率および2次冷延率の単独が本発
明範囲に達しない場合であって、このときも引張強度は
70kg f/mm2以上であるが、繰返し曲げ特性は劣ったもの
となっている。
Each of the reference numerals 9 and 15 is within the scope of the present invention for the hot rolling finishing temperature and the primary and secondary cold rolling rates alone, but the sum of the primary and secondary cold rolling rates is outside the scope of the present invention. In some cases, the tensile strength is high, but the cyclic bending properties are still poor. Reference numeral 8,
As for No. 13, when the primary cold rolling rate and the secondary cold rolling rate alone exceed the range of the present invention, the repeated bending properties are inferior, as described above. Further, each of the materials 10 and 14 is a case where the primary cold rolling rate and the secondary cold rolling rate alone under the manufacturing conditions of the present invention do not reach the scope of the present invention, and the tensile strength is still
It is over 70 kg f / mm 2 , but the cyclic bending property is inferior.

即ち1次および2次冷延率の各個および和の何れもが本
発明の条件を満足することが繰返し曲げ特性に大きな影
響を及ぼすことが確認された。
That is, it was confirmed that satisfying the conditions of the present invention for all of the individual and secondary cold rolling ratios and the sum thereof had a great influence on the cyclic bending property.

「発明の効果」 以上説明したような本発明によるときは剛性と繰返し曲
げ特性がともに優れ、メッキ性も良好なリードフレーム
用フェライト系ステンレス原板を適切に提供し得るもの
であり、リードフレーム材料の薄肉化に充分に対応せし
め、例えばフラッドパッケージなどの多ピン高密度用リ
ードフレーム材料やデュアルインラインパッケージなど
の一般的ICパッケージ、更にはダイオード、トランジス
ターなどの一般素子用の如きに関してもリードフレーム
を一層薄肉化し材料コストの低減を図り得るものであっ
て、工業的にその効果の大きい発明である。
"Effects of the Invention" According to the present invention as described above, it is possible to appropriately provide a ferritic stainless steel base plate for a lead frame, which is excellent in both rigidity and cyclic bending characteristics, and has good plating properties. Fully compatible with thinning, for example, lead frame materials for high density multi-pin high density packages such as flood packages, general IC packages such as dual in-line packages, and even lead frames for general devices such as diodes and transistors. This is an invention that can be thinned to reduce the material cost and has a great effect industrially.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の技術的内容を示すものであって、第1図
は繰返し曲げ特性、引張り強さの面内異方性に及ぼす冷
延条件の影響を示した図表、第2図は繰返し曲げ試験片
の構成についての説明図、第3図は1回冷延材と2回冷
延材の(100)極点図、第4図は本発明における1次冷
延率と2次冷延率の範囲を要約して示した図表、第5図
は繰返し曲げ特性と仕上げ温度の関係を要約して示した
図表である。 なお、前記第2図において、1は基部、2は先端部を示
すものである。
The drawings show the technical contents of the present invention. FIG. 1 is a diagram showing the effect of cold rolling conditions on cyclic bending properties and in-plane anisotropy of tensile strength, and FIG. 2 is cyclic bending. FIG. 3 is an explanatory view of the structure of the test piece, FIG. 3 is a (100) pole figure of the first cold rolled material and the second cold rolled material, and FIG. 4 is the primary cold rolling rate and the secondary cold rolling rate in the present invention. FIG. 5 is a chart summarizing the range, and FIG. 5 is a chart summarizing the relationship between cyclic bending characteristics and finishing temperature. In FIG. 2, 1 is a base portion and 2 is a tip portion.

フロントページの続き (56)参考文献 特開 昭59−9149(JP,A) 特開 昭60−103158(JP,A) 特開 昭62−287045(JP,A) 特開 昭62−287048(JP,A) 特公 昭61−54863(JP,B2)Continuation of the front page (56) References JP 59-9149 (JP, A) JP 60-103158 (JP, A) JP 62-287045 (JP, A) JP 62-287048 (JP , A) Japanese Patent Publication Sho 61-54863 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】C:0.05wt%以下、Mn:1.0wt%以下、Cr:8〜
13wt%、S:0.003wt%以下、Al:0.01wt%以下、O:0.006w
t%以下、Si:0.1〜0.5wt%、 を含有し、残部が実質的にFeからなるステンレス鋼を仕
上温度800℃以上で熱延し、650℃以上で巻取った鋼帯を
中間燒鈍をはさむ1次、2次の各冷延を行い、2次冷延
後軟化燒鈍してから調質圧延、応力除去燒鈍して原板コ
イルを得るに当り、前記1次冷延率(CR1%)と2次冷
延率(CR2%)が下記するI〜III式の関係を満たすこと
を特徴とするリードフレーム用フェライト系ステンレス
鋼の製造方法。 40≦CR1≦75% ……I 40≦CR2≦75% ……II CR1+CR2≦130% ……III
1. C: 0.05 wt% or less, Mn: 1.0 wt% or less, Cr: 8 to
13wt%, S: 0.003wt% or less, Al: 0.01wt% or less, O: 0.006w
Stainless steel containing t% or less and Si: 0.1 to 0.5 wt% and the balance being substantially Fe is hot-rolled at a finishing temperature of 800 ° C or more, and a steel strip wound at 650 ° C or more is annealed intermediately. The first cold rolling rate (CR) is used to obtain the original coil by first and second cold rolling, followed by secondary cold rolling, softening and annealing, temper rolling, and stress relief annealing. 1 %) and secondary cold rolling rate (CR 2 %) satisfy the relations of the following formulas I to III. 40 ≦ CR 1 ≦ 75% …… I 40 ≦ CR 2 ≦ 75% …… II CR 1 + CR 2 ≦ 130% …… III
JP62020407A 1987-02-02 1987-02-02 Manufacturing method of ferritic stainless steel for lead frame Expired - Lifetime JPH0788529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62020407A JPH0788529B2 (en) 1987-02-02 1987-02-02 Manufacturing method of ferritic stainless steel for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62020407A JPH0788529B2 (en) 1987-02-02 1987-02-02 Manufacturing method of ferritic stainless steel for lead frame

Publications (2)

Publication Number Publication Date
JPS63190122A JPS63190122A (en) 1988-08-05
JPH0788529B2 true JPH0788529B2 (en) 1995-09-27

Family

ID=12026175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62020407A Expired - Lifetime JPH0788529B2 (en) 1987-02-02 1987-02-02 Manufacturing method of ferritic stainless steel for lead frame

Country Status (1)

Country Link
JP (1) JPH0788529B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205460A (en) * 2019-06-19 2019-09-06 山东泰山钢铁集团有限公司 A kind of production method preventing the flat volume of low carbon high alloy hot rolled strip

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911669B2 (en) * 2005-12-13 2012-04-04 富士フイルム株式会社 Piezoelectric actuator, liquid discharge head manufacturing method, liquid discharge head, and image forming apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599149A (en) * 1982-07-07 1984-01-18 Daido Steel Co Ltd Material for lead frame
JPS6154863A (en) * 1984-08-24 1986-03-19 Matsushita Electric Works Ltd Movable coil type motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205460A (en) * 2019-06-19 2019-09-06 山东泰山钢铁集团有限公司 A kind of production method preventing the flat volume of low carbon high alloy hot rolled strip

Also Published As

Publication number Publication date
JPS63190122A (en) 1988-08-05

Similar Documents

Publication Publication Date Title
KR20080038142A (en) Soft blackplates with hardness hr 30t of 51± 3 for tinning and production method for the same
JPH0215609B2 (en)
EP0659890A2 (en) Method of manufacturing small planar anisotropic high-strength thin can steel plate
JP3449003B2 (en) Steel plate for cans and manufacturing method thereof
JP2503224B2 (en) Method for manufacturing thick cold-rolled steel sheet with excellent deep drawability
JP3593235B2 (en) Method of manufacturing high strength ultra-thin welded steel sheet with excellent formability
JPH0788529B2 (en) Manufacturing method of ferritic stainless steel for lead frame
JPH07126758A (en) Manufacture of ferritic stainless steel sheet excellent in bendability
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPS6115929B2 (en)
JP2808452B2 (en) Manufacturing method of cold rolled steel sheet with excellent brazing crack resistance
JPH09256065A (en) Production of ferritic stainless steel thin sheet excellent in surface property
JPH07216510A (en) High strength lead frame material and its production
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JP3294367B2 (en) Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same
JP2971192B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JPS6330969B2 (en)
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same
JPH08155565A (en) Production of light weight can excellent in bottom pressure withstanding strength
JPH09310155A (en) Austenitic stainless steel excellent in surface characteristic after working
JPH1017994A (en) High strength alloyed galvanized steel sheet for deep drawing excellent in secondary working embrittlement resistance
JP3598550B2 (en) Method of manufacturing thin steel sheet for high-strength can with small anisotropy
JP3471407B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
JP3466300B2 (en) Manufacturing method of hot rolled steel sheet with remarkably excellent fatigue properties, shape freezing property and workability
JP3473039B2 (en) Manufacturing method of low strength deep drawn cold rolled steel sheet with excellent corrosion resistance