JPS6362377A - Semiconductor integrated circuit device - Google Patents
Semiconductor integrated circuit deviceInfo
- Publication number
- JPS6362377A JPS6362377A JP20821786A JP20821786A JPS6362377A JP S6362377 A JPS6362377 A JP S6362377A JP 20821786 A JP20821786 A JP 20821786A JP 20821786 A JP20821786 A JP 20821786A JP S6362377 A JPS6362377 A JP S6362377A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- collector
- resistance
- region
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 7
- 229910021332 silicide Inorganic materials 0.000 claims description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 19
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 10
- 238000002955 isolation Methods 0.000 abstract description 7
- 239000004642 Polyimide Substances 0.000 abstract description 6
- 230000003071 parasitic effect Effects 0.000 abstract description 6
- 229920001721 polyimide Polymers 0.000 abstract description 6
- 239000012212 insulator Substances 0.000 abstract description 5
- 229910052697 platinum Inorganic materials 0.000 abstract description 5
- ZXEYZECDXFPJRJ-UHFFFAOYSA-N $l^{3}-silane;platinum Chemical compound [SiH3].[Pt] ZXEYZECDXFPJRJ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910021339 platinum silicide Inorganic materials 0.000 abstract description 4
- 239000000470 constituent Substances 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000010453 quartz Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 2
- 238000004381 surface treatment Methods 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
Landscapes
- Bipolar Transistors (AREA)
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体集積回路装置に関し、特にコレクター飽
和抵抗が小さく、かつ寄生効果のないバイポーラLSI
に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device, and in particular to a bipolar LSI with low collector saturation resistance and no parasitic effects.
It is related to.
従来、バイポーラLSIに使用されるトランジスタは、
一般に第2図に示すようにP型半導体基板1の表面のn
型エピタキシャル成長層4に、ベース領域5.エミッタ
領域6を配置して形成されている。なお同図において、
2a、2bはn型の高不純物濃度の埋込層、3はチャネ
ルストッパー用P+拡散層、7は素子分離酸化膜、8は
表面保護酸化膜、9はコレクター抵抗補償用n+拡散層
である。また、10a、10b、10cは、それぞれエ
ミッタ、ベース、コレクタに対する電極配線である。Conventionally, the transistors used in bipolar LSIs are
Generally, as shown in FIG.
In the epitaxially grown layer 4, a base region 5. It is formed by arranging an emitter region 6. In addition, in the same figure,
2a and 2b are n-type buried layers with high impurity concentration, 3 is a P+ diffusion layer for a channel stopper, 7 is an element isolation oxide film, 8 is a surface protection oxide film, and 9 is an n+ diffusion layer for collector resistance compensation. Further, 10a, 10b, and 10c are electrode wirings for the emitter, base, and collector, respectively.
上述した従来のバイポーラLSIの動作速度を決定する
要因の1つとして、n′″埋込層の抵抗言い換え、れば
トランジスタのコレクタ飽和抵抗r3cが挙げられる。One of the factors that determines the operating speed of the conventional bipolar LSI mentioned above is the resistance of the n'' buried layer, in other words, the collector saturation resistance r3c of the transistor.
同時にn+埋込層2a、2bとP−半導体基板1との間
の容量Csubもその1つである。r fie+ Cs
ubを小さくすれば動作速度の改善が計れるわけである
が、通常のイオン注入法あるいは熱拡散法によるn1埋
込層の形成方法では、低抵抗化に限界があるばかりでな
く、不純物ドーピング量の増加に伴ないエピタキシャル
成長層へのn1埋込層のせり上がり及び不純物のオート
ド−ピング量の増加が顕著になり、結果的にベース・コ
レクタ接合容量cabを増加させることとなり動作速度
の遅れ、耐圧の低下等悪影響を及ぼしてしまう。さらに
第2図においてトランジスタTr1とTr2とは分離酸
化膜7とチャネルストッパー層3によって電気的に絶縁
するのであるが、寄生トランジスタによりラッチアップ
動作防止のため、TrlとTr2との相対距離、基板比
抵抗 n +埋込層の不純物濃度等極めて複雑なパラメ
ータ設定をしなければならなかった。At the same time, the capacitance Csub between the n+ buried layers 2a, 2b and the P- semiconductor substrate 1 is also one of them. r fie+ Cs
The operating speed can be improved by reducing ub, but the normal ion implantation method or thermal diffusion method for forming the N1 buried layer not only has a limit to lowering the resistance but also limits the amount of impurity doping. As the growth increases, the rise of the N1 buried layer into the epitaxial growth layer and the increase in the amount of auto-doping of impurities become noticeable, resulting in an increase in the base-collector junction capacitance cab, resulting in a delay in operating speed and a decrease in breakdown voltage. This may have negative effects such as a decrease in Further, in FIG. 2, transistors Tr1 and Tr2 are electrically insulated by an isolation oxide film 7 and a channel stopper layer 3, but in order to prevent latch-up operation due to parasitic transistors, the relative distance between Tr1 and Tr2, the substrate ratio It was necessary to set extremely complicated parameters such as the resistance n and the impurity concentration of the buried layer.
本発明の目的は、前記した従来の問題点に鑑みてなされ
たもので、寄生効果がなく、しかもトランジスタのコレ
クタ飽和抵抗rscの極めて小さい半導体集積回路装置
を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor integrated circuit device which is free from parasitic effects and has an extremely small transistor collector saturation resistance rsc.
本発明の半導体集積回路装置は、トランジスタ形成領域
の側壁および下面を完全に絶縁材料によって囲むことに
より寄生効果を無くし、しかもトランジスタ形成領域の
底面を金属シリサイド層に変換することでr8Qを大幅
に低減することを特徴として構成される。The semiconductor integrated circuit device of the present invention eliminates parasitic effects by completely surrounding the side walls and bottom surface of the transistor formation region with an insulating material, and also significantly reduces r8Q by converting the bottom surface of the transistor formation region into a metal silicide layer. It is composed of the following characteristics:
〔実施例〕
次に、本発明の実施例について図面を参照して説明する
。第1図(a)〜(f)は本発明の一実施例およびその
製造方法を説明するために工程順に示したペレットの縦
断面図である。[Example] Next, an example of the present invention will be described with reference to the drawings. FIGS. 1(a) to 1(f) are longitudinal cross-sectional views of pellets shown in order of steps to explain one embodiment of the present invention and its manufacturing method.
まず、第1図(a)に示すように、比抵抗0.05〜0
.1Ωl程度のn型Si基板に素子分離用酸化膜12及
び表面保護酸化膜13を設ける。First, as shown in Figure 1(a), the specific resistance is 0.05 to 0.
.. An oxide film 12 for element isolation and a surface protection oxide film 13 are provided on an n-type Si substrate of about 1 Ωl.
次いで第1図(b)に示すようにコレクター抵抗補償用
n+拡散層14.ベース領域15.エミッタ領域16.
エミッタ、ベース、コレクタに対する電極配線17a、
17b、17c及び素子保護膜18を順次形成する。Next, as shown in FIG. 1(b), an n+ diffusion layer 14 for collector resistance compensation is formed. Base area 15. Emitter region 16.
Electrode wiring 17a for emitter, base, and collector;
17b, 17c and the element protection film 18 are sequentially formed.
次に、第1図(c)に示すように、Si基板20をポリ
イミド1つを接着剤として用い接着する。Next, as shown in FIG. 1(c), the Si substrate 20 is bonded using one polyimide as an adhesive.
このときSi基板11とSi基板20が平行となるよう
に接着する必要がある。At this time, it is necessary to bond the Si substrate 11 and the Si substrate 20 so that they are parallel to each other.
次いで、第1図(d)に示すように、ウェーハ研磨工程
で用いられるラッピングとボリシング技術を用いること
によってSi基板11を素子分離用酸化膜12の底部が
露出するまで除去した後、全面に白金膜21を被着する
。Next, as shown in FIG. 1(d), the Si substrate 11 is removed until the bottom of the element isolation oxide film 12 is exposed by using the lapping and borizing techniques used in the wafer polishing process, and then platinum is coated on the entire surface. A membrane 21 is applied.
次に、この状態で400℃〜450℃程度の熱処理を施
しシリサイド反応を起させたのち未反応白金膜を王水で
除去すると、第1図(e)に示すように、トランジスタ
ー領域下部にのみ白金シリサイド層22が形成される。Next, heat treatment is performed at about 400°C to 450°C in this state to cause a silicide reaction, and when the unreacted platinum film is removed with aqua regia, as shown in Figure 1(e), only the lower part of the transistor region is exposed. A platinum silicide layer 22 is formed.
次に、第1図(f>に示すように、たとえば石英基板の
ような絶縁体なる支持基板24をポリイミド23にて接
着したのち、Si基板20を弗酸と硝酸の混合液にて除
去しさらにヒドラジンあるいは02プラズマにてポリイ
ミド19を除去することによって本実施例の構成素子が
すべて絶縁体により絶縁されたバイポーラLSIが完成
する。Next, as shown in FIG. 1 (f>), a support substrate 24 made of an insulator such as a quartz substrate is bonded with polyimide 23, and then the Si substrate 20 is removed using a mixed solution of hydrofluoric acid and nitric acid. Further, by removing the polyimide 19 using hydrazine or 02 plasma, a bipolar LSI in which all the constituent elements of this embodiment are insulated with an insulator is completed.
ここで、前記Si基板20はラッピングとボリシングを
行なう場合の補強材と素子保護材の役割を持つ。また本
実施例では接着剤としてポリイミドを用いたが、450
℃程度の耐熱性を有するとともに、電気的絶縁性に優れ
たものであれば他の材料でも差し支えない。さらに第1
図(a)において0.05〜0.100程度のn型Si
基板を用いたのは、白金シリサイドを形成する際ショッ
トキー接合を形成せずオーミック接触を得るためである
。Here, the Si substrate 20 serves as a reinforcing material and an element protecting material during lapping and borising. Furthermore, in this example, polyimide was used as the adhesive, but 450
Other materials may be used as long as they have heat resistance of about 0.degree. C. and excellent electrical insulation. Furthermore, the first
In figure (a), about 0.05 to 0.100 n-type Si
The substrate was used in order to obtain ohmic contact without forming a Schottky junction when forming platinum silicide.
以上説明したように本発明は、LSIを構成する素子間
をすべて絶縁体によって絶縁することにより、従来問題
点となっていた寄生効果を完全に抑えることが出来る。As explained above, the present invention can completely suppress parasitic effects, which have been a problem in the past, by insulating all elements constituting an LSI with an insulator.
また従来型バイポーラLSIを実現する場合高濃度n+
埋込層、P+チャネルストッパー層、n型エピタキシャ
ル成長層の形成は不可欠であったが本発明によればすべ
て不用となり、バイポーラLSIの製造コスト及び工期
の大幅な削減が計れるばかりでなく、製造歩留りの大幅
な向上も計れる。In addition, when realizing a conventional bipolar LSI, high concentration n+
Although the formation of a buried layer, a P+ channel stopper layer, and an n-type epitaxial growth layer were indispensable, according to the present invention, they are all unnecessary, and not only can the manufacturing cost and construction period of bipolar LSIs be significantly reduced, but also the manufacturing yield can be improved. Significant improvements can also be made.
さらに、従来型バイポーラLSIのコレクター飽和抵抗
r3oはせいぜい数十Ω程度までしか低下させることが
出来なかったが、本発明では白金シリサイド層を形成す
ることにより、従来の1/10以下の数Ω程度のrso
を実現出来る。以上から本発明は、高性能、かつ高歩留
りのバイポーラLSIの実現に対して著しい効果を有す
る。Furthermore, the collector saturation resistance r3o of conventional bipolar LSIs could only be lowered to several tens of ohms at most, but in the present invention, by forming a platinum silicide layer, the collector saturation resistance r3o can be reduced to several ohms, which is less than 1/10 of the conventional value. rso
can be realized. As described above, the present invention has a remarkable effect on realizing a bipolar LSI with high performance and high yield.
第1図(a)〜(f)は本発明の一実施例並びにその製
造方法を説明するために工程順に示したベレットの縦断
面図、第2図は従来の半導体集積回路装置の一例の縦断
面図である。
1.11.2O−−−8i基板、2a、2b・−n”埋
込層、3・・・チャネルストッパー層、4・・・エピタ
キシャル層、5.15・・・ベース領域、6,16・・
・エミッタ領域、7,12・・・素子分離用酸化膜、8
゜13・・・表面保護酸化膜、9.14・・・n+拡散
層、10a、10b、10c、17a、17b、17C
・・・電極配線、18・・・素子保護膜、19.23・
・・ポリイミド、21・・・白金膜、22・・・白金シ
リサイ13麺像4閏【頂
((+
童 1 切
牛l 目
第2 図FIGS. 1(a) to (f) are vertical cross-sectional views of a pellet shown in order of steps to explain an embodiment of the present invention and its manufacturing method, and FIG. 2 is a vertical cross-sectional view of an example of a conventional semiconductor integrated circuit device. It is a front view. 1.11.2O---8i substrate, 2a, 2b・-n'' buried layer, 3... Channel stopper layer, 4... Epitaxial layer, 5.15... Base region, 6, 16...・
・Emitter region, 7, 12... Oxide film for element isolation, 8
゜13...Surface protection oxide film, 9.14...N+ diffusion layer, 10a, 10b, 10c, 17a, 17b, 17C
... Electrode wiring, 18... Element protective film, 19.23.
...Polyimide, 21...Platinum film, 22...Platinum Shirisai 13 Noodle statue 4 [top ((+ Child 1 Cut beef l Eye 2nd figure)
Claims (1)
て囲まれており、かつ該島状素子領域の底面に金属珪化
物層を有することを特徴とする半導体集積回路装置。1. A semiconductor integrated circuit device, wherein side walls and a bottom surface of an island-shaped element region are all surrounded by an insulating material, and a metal silicide layer is provided on the bottom surface of the island-shaped element region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20821786A JPS6362377A (en) | 1986-09-03 | 1986-09-03 | Semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20821786A JPS6362377A (en) | 1986-09-03 | 1986-09-03 | Semiconductor integrated circuit device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6362377A true JPS6362377A (en) | 1988-03-18 |
Family
ID=16552613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20821786A Pending JPS6362377A (en) | 1986-09-03 | 1986-09-03 | Semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6362377A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6021558A (en) * | 1983-07-15 | 1985-02-02 | Mitsubishi Electric Corp | Bi-polar type semiconductor integrated circuit device |
JPS60187055A (en) * | 1984-03-07 | 1985-09-24 | Hitachi Ltd | Semiconductor integrated circuit device |
-
1986
- 1986-09-03 JP JP20821786A patent/JPS6362377A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6021558A (en) * | 1983-07-15 | 1985-02-02 | Mitsubishi Electric Corp | Bi-polar type semiconductor integrated circuit device |
JPS60187055A (en) * | 1984-03-07 | 1985-09-24 | Hitachi Ltd | Semiconductor integrated circuit device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05145076A (en) | Vertical type current semiconductor device utilizing wafer-bonding and manufacture thereof | |
US3611067A (en) | Complementary npn/pnp structure for monolithic integrated circuits | |
US4641172A (en) | Buried PN junction isolation regions for high power semiconductor devices | |
JPH0553299B2 (en) | ||
JPS6362377A (en) | Semiconductor integrated circuit device | |
JPS6095969A (en) | Manufacture of semiconductor integrated circuit | |
JPH0547913A (en) | Manufacture of semiconductor device | |
JPH0462847A (en) | Semiconductor device and manufacture thereof | |
JP2760401B2 (en) | Dielectric separation substrate and semiconductor device | |
JPH08288503A (en) | Semiconductor device having planar high withstand voltage element and manufacturing method thereof | |
JP3465765B2 (en) | Method for manufacturing semiconductor substrate for IGBT | |
JP2518929B2 (en) | Bipolar semiconductor integrated circuit | |
JP2613029B2 (en) | Manufacturing method of super self-aligned vertical structure bipolar transistor | |
US6335256B1 (en) | Method of manufacturing a bipolar transistor | |
JP2857206B2 (en) | Manufacturing method of vertical thyristor | |
JPS639667B2 (en) | ||
JPS59186366A (en) | Semiconductor device and manufacture thereof | |
JPH0666275B2 (en) | Method for manufacturing semiconductor device | |
JPH02232929A (en) | Semiconductor device with buried layer | |
JPS6337509B2 (en) | ||
JPH0621077A (en) | Semiconductor device and manufacture thereof | |
JPS6159746A (en) | Semiconductor device | |
JPS58210659A (en) | Semiconductor device and manufacture thereof | |
JPH02125657A (en) | Semiconductor device | |
JPH06188307A (en) | Semiconductor device |