JPH0462847A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0462847A
JPH0462847A JP16597790A JP16597790A JPH0462847A JP H0462847 A JPH0462847 A JP H0462847A JP 16597790 A JP16597790 A JP 16597790A JP 16597790 A JP16597790 A JP 16597790A JP H0462847 A JPH0462847 A JP H0462847A
Authority
JP
Japan
Prior art keywords
substrate
collector
insulating region
region
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16597790A
Other languages
Japanese (ja)
Inventor
Matsuo Takaoka
高岡 松雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16597790A priority Critical patent/JPH0462847A/en
Publication of JPH0462847A publication Critical patent/JPH0462847A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a collector capacitance and make a transistor operable at a high speed, by forming, the parts corresponding to at least the part to come into an active region of a semiconductor device, into non-insulating regions, and forming the other parts into insulating regions, on the non-insulating region of a substrate, and by sticking on the surface thereof a different substrate from the foregoing substrate to form the complete semiconductor device. CONSTITUTION:On a P<->-type single crystal silicon substrate 11, a silicon oxide film 12, an N<+>-type polycrystalline silicon film 13, and a silicon oxide film 14 are formed in succession. On the predetermined part thereof, a window 14a is formed, and an N<+>-type polycrystalline silicon film 15 is so formed as to be buried therein. Then, while the foregoing is referred to as a substrate 16, the N<+>-type polycrystalline silicon film 15 is left only in the window 14a. On the other hand, an N<->-type single crystal silicon substrate 17 is prepared, and is stuck on the substrate 16. Caused by annealing when sticking, an N<+>-type collector diffusion layer 18 is formed in the part of the single crystal silicon substrate 17, which exists just over the N<+>-type polycrystalline silicon film 15. Thereby, a buried collector is formed with the N<+>-type polycrystalline silicon films 13, 15 and N<+>-type collector diffusion layer 18. Then, an N<->-type epitaxial layer 19 is grown on the surface of the substrate 17.

Description

【発明の詳細な説明】 〔概要〕 S OI (Silicon on 1nsulato
r)構造をもつ半導体装置及びその製造方法に関し、 コレクタ容量を減少させて高速化を図ることを目的と頃
、 素子活性領域下に第1の非絶縁領域を形成し、かつ、こ
れとコレクタ電極とを電気的に接続する第2の非絶縁領
域を形成し、第1及び第2の非絶縁領域にて埋込みコレ
クタを構成し、第2の非絶縁領域のうち第1の非絶縁領
域に接しない部分と素子活性領域を構成する非絶縁領域
との間に絶縁領域を形成した構成とする。又、その製造
に際し、基板上に絶縁領域を介して非絶縁領域を形成す
る工程と、この非絶縁領域」二に、少なくとも素子活性
領域となる部分に対応した部分を非絶縁領域、その他の
部分は絶縁領域を形成する工程と、表面に別の半導体基
板を貼合わせる工程とを含む。
[Detailed Description of the Invention] [Summary] S OI (Silicon on Insulato)
r) Regarding a semiconductor device having a structure and its manufacturing method, for the purpose of reducing the collector capacitance and increasing the speed, a first non-insulating region is formed under the element active region, and a first non-insulating region is formed under the element active region, and a collector electrode is connected to the first non-insulating region. a second non-insulating region electrically connected to the second non-insulating region, the first and second non-insulating regions constitute a buried collector, and the second non-insulating region is in contact with the first non-insulating region; An insulating region is formed between the non-insulating region and the non-insulating region constituting the element active region. In addition, during manufacturing, there is a step of forming a non-insulating region on the substrate via an insulating region, and a second step is to form a non-insulating region on the substrate via an insulating region. The method includes the steps of forming an insulating region and bonding another semiconductor substrate to the surface.

〔産業上の利用分野〕[Industrial application field]

本発明は、SOI構造をもつ半導体装置及びその製造方
法に関する。
The present invention relates to a semiconductor device having an SOI structure and a method for manufacturing the same.

SOTは、基板、特にシリコン基板上の絶縁膜」二にシ
リコン膜を設けた基板構造を指し、下層のシリコン基板
にもトランジスタの形成か可能であり、多層のトランジ
スタ層を集積できる可能性を有していることから、近年
、精力的に研究されている。ここで、埋込みコレクタを
形成されたSOI l−ランジスタにおいては、後述の
ようにコレクタ容量の増大が問題となり、これをいかに
小さくして高速化を図るかが要求されている。
SOT refers to a substrate structure in which a silicon film is provided as an insulating film on a substrate, especially a silicon substrate. It is also possible to form transistors on the underlying silicon substrate, and it has the potential to integrate multiple transistor layers. Because of this, it has been actively researched in recent years. Here, in the SOI l-transistor in which an embedded collector is formed, an increase in the collector capacitance becomes a problem as will be described later, and there is a demand for how to reduce this and increase the speed.

〔従来の技術〕[Conventional technology]

第2図は従来の一例の構造図を示す。同図中、lはP形
シリコン基板、2は酸化シリコンの絶縁膜、3はシリコ
ン層であり、シリコン層3には高濃度(N+)の埋込み
コレクタ4.低濃度(N−)のコレクタ5.ベース(P
)6.エミッタ(N+)7が形成されている。なお、8
はコレクタ電極、9はエミッタ電極、10はベース電極
である。周知の如く、埋込みコレクタ4.コレクタ5.
ベース6、エミッタ7にてチャネル領域が形成され、例
えば矢印方向に電流が流れる。
FIG. 2 shows a structural diagram of a conventional example. In the figure, l is a P-type silicon substrate, 2 is a silicon oxide insulating film, 3 is a silicon layer, and the silicon layer 3 has a buried collector 4. with a high concentration (N+). Low concentration (N-) collector5. Base (P
)6. An emitter (N+) 7 is formed. In addition, 8
9 is a collector electrode, 9 is an emitter electrode, and 10 is a base electrode. As is well known, the embedded collector 4. Collector 5.
A channel region is formed by the base 6 and emitter 7, and a current flows, for example, in the direction of the arrow.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図に示す従来例はN+埋込みコレクタ4はコレクタ
電極8の下方まて延在されており、N+埋込みコレクタ
4とN−コレクタ5との接触界面が大きく、この部分に
おいて、これらの濃度差によって形成される容量(コレ
クタ容量)が大きく、トランジスタ動作の高速化が妨げ
られる問題点があった。又、埋込みコレクタ4の抵抗の
ためにコレクタ電位分布か不均一になり、この点からも
トランジスタ動作の高速化が妨げられる問題点があった
。この場合、コレクタ抵抗を低下させるために埋込みコ
レクタ4の厚さを厚く形成することが考えられるか、こ
のようにするとコレクタ容量か増大する不都合かある。
In the conventional example shown in FIG. 2, the N+ buried collector 4 extends below the collector electrode 8, and the contact interface between the N+ buried collector 4 and the N- collector 5 is large, and the concentration difference between them is reduced in this part. The capacitance formed by the transistor (collector capacitance) is large, which poses a problem that impedes high-speed transistor operation. Furthermore, the collector potential distribution becomes non-uniform due to the resistance of the buried collector 4, which also poses a problem in that high-speed transistor operation is hindered. In this case, it is conceivable to form the embedded collector 4 thickly in order to reduce the collector resistance, or there is a problem that the collector capacitance increases if this is done.

本発明は、コレクタ容量を減少させて高速化を図ること
のできる半導体装置及びその製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device that can reduce collector capacitance and increase speed, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、素子活性領域下に第1の非絶縁領域を形
成し、かつ、該第1の非絶縁領域とコレクタ電極とを電
気的に接続する第2の非絶縁領域を形成し、該第1及び
第2の非絶縁領域にて埋込みコレクタを構成し、第2の
非絶縁領域のうち第1の非絶縁領域に接しない部分と素
子活性領域を構成する非絶縁領域との間に絶縁領域を形
成してなることを特徴とする半導体装置によって解決さ
れる。又は、基板上に絶縁領域を介して非絶縁領域を形
成する工程と、該非絶縁領域上に、少なくとも素子活性
領域となる部分に対応した部分を非絶縁領域、その他の
部分は絶縁領域を形成する工程と、表面に上記基板とは
別の半導体基板を貼合わせる工程とを含むことを特徴と
する半導体装置の製造方法によって解決される。
The above problem is solved by forming a first non-insulating region under the element active region, forming a second non-insulating region electrically connecting the first non-insulating region and the collector electrode, and The first and second non-insulating regions constitute a buried collector, and there is insulation between the portion of the second non-insulating region that does not contact the first non-insulating region and the non-insulating region forming the element active region. The problem is solved by a semiconductor device characterized by forming regions. Alternatively, a step of forming a non-insulating region on the substrate via an insulating region, and forming a non-insulating region on the non-insulating region at least in a portion corresponding to a portion that will become an element active region, and forming an insulating region in other portions. The problem is solved by a method for manufacturing a semiconductor device, which includes a step of bonding a semiconductor substrate other than the above-described substrate to the surface thereof.

〔作用〕[Effect]

本発明では、第1の非絶縁領域は素子活性領域の下部の
みに形成され、かつ、第2の非絶縁領域のうち第1の非
絶縁領域に接しない部分と低濃度領域との間に絶縁領域
か形成されているため、従来例に比して濃度差のある部
分(第1の非絶縁領域と低濃度領域)の接触界面が小さ
く、これにより、コレクタ容量が小さくなり、トランジ
スタ動作を高速化できる。
In the present invention, the first non-insulating region is formed only under the element active region, and the second non-insulating region is insulated between a portion of the second non-insulating region that is not in contact with the first non-insulating region and the low concentration region. Since the contact area between the areas with a difference in concentration (the first non-insulated area and the low concentration area) is smaller than in the conventional example, the collector capacitance is reduced and the transistor operates at high speed. can be converted into

〔実施例〕 第1図は本発明の一実施例の製造工程図を示す。〔Example〕 FIG. 1 shows a manufacturing process diagram of an embodiment of the present invention.

同図(A)において、P<100>10Ω’ cmのP
−単結晶シリコン基板11上に1100°Cのウェット
酸化処理で、酸化シリコン膜12を1μmの厚さに形成
し、更にその表面に抵抗率ρ5=10Ω10のN+多多
結晶シリコ模膜130.5μmの厚さに形成してここに
アンチモン(Sb)をドーピングする。続いて、CVD
法にて酸化シリコン膜14を1μmの厚さに形成し、こ
の所定部分をパターニング除去して窓14aを形成し、
窓14a内にN+多多結晶シリコ模膜15酸化シリコン
膜14と同し1μmの厚さに埋込み形成してここにアン
チモンをドーピングする。次に、表面をポリシングして
窓14a内にのみ多結晶シリコン膜15を残す。以上の
工程を経て製造されたものを基板16とする。
In the same figure (A), P<100>10Ω' cm
- A silicon oxide film 12 with a thickness of 1 μm is formed on the single crystal silicon substrate 11 by wet oxidation treatment at 1100°C, and a 130.5 μm N+ polycrystalline silicon pattern film with resistivity ρ5=10Ω10 is further formed on the surface. It is formed thick and doped with antimony (Sb). Next, CVD
A silicon oxide film 14 is formed to a thickness of 1 μm using a method, and a predetermined portion of the silicon oxide film 14 is patterned and removed to form a window 14a.
An N+ polycrystalline silicon pattern film 15 is buried in the window 14a to a thickness of 1 μm, the same as the silicon oxide film 14, and antimony is doped therein. Next, the surface is polished to leave the polycrystalline silicon film 15 only within the window 14a. The substrate manufactured through the above steps is referred to as the substrate 16.

一方、厚さ600μmのN<100>10Ω’ Cmの
N−単結晶シリコン基板17を用意し、基板16と基板
17とを同図(B)に示すように貼合わせ、基板17の
表面をポリシングして0.5μmの厚さにする。この貼
合わせ工程において、貼合わせ強度を増すために行なう
アニールにより、多結晶シリコン膜15の上にある単結
晶シリコン基板17にN+コレクタ拡散層18か形成さ
れる。N+多多結晶シリコ模膜1315.N+コレクタ
拡散層18にて埋込みコレクタか構成される。次に同図
(B)において、基板17の表面にN−エピタキシャル
層(0,5Ω・cm)19を2μmの厚さに成長する。
On the other hand, an N-single-crystal silicon substrate 17 of N<100>10Ω' Cm with a thickness of 600 μm is prepared, the substrate 16 and the substrate 17 are bonded together as shown in the same figure (B), and the surface of the substrate 17 is polished. to a thickness of 0.5 μm. In this bonding step, an N+ collector diffusion layer 18 is formed on the single crystal silicon substrate 17 on the polycrystalline silicon film 15 by annealing performed to increase the bonding strength. N+ polycrystalline silicon pattern film 1315. The N+ collector diffusion layer 18 constitutes a buried collector. Next, in the same figure (B), an N-epitaxial layer (0.5 Ω·cm) 19 is grown on the surface of the substrate 17 to a thickness of 2 μm.

次に同図(C)において、エピタキシャル層19の表面
にフィールド酸化膜20を0.5μmの厚さに形成し、
しかる後、多結晶シリコン膜13まて達するU溝21を
形成して側部に酸化シリコン膜22を形成し、U溝21
内に多結晶シリコン層23を充填してN+ ドーピング
を行なう。続いてペース(P)24.ペースコンタクI
・部(P”)25.エミッタ(N”)26を形成し、コ
レクタ電極27.エミッタ電極28.ベース電極29を
形成する。
Next, in the same figure (C), a field oxide film 20 with a thickness of 0.5 μm is formed on the surface of the epitaxial layer 19,
Thereafter, a U-groove 21 reaching the polycrystalline silicon film 13 is formed, a silicon oxide film 22 is formed on the side, and the U-groove 21 is formed.
A polycrystalline silicon layer 23 is filled inside and N+ doping is performed. Next, Pace (P) 24. pace contact I
・Part (P") 25. Emitter (N") 26 is formed, collector electrode 27. Emitter electrode 28. A base electrode 29 is formed.

同図(C)より明らかな如く、N+コレクタ拡散層18
は素子活性領域30の下部のみに形成され、かつ、N+
多多結晶シリコ模膜1513は酸化シリコン膜14と接
触した構成とされているため、第2図に示すようにN+
埋込みコレクタ4がコレクタ電極8の下方まて延在され
、かつ、N+埋込みコレクタ4がN−コレクタ5と接触
した構造の従来例に比し、濃度差のある部分(N+とN
−)の接触界面が小さく、これにより、コレクタ容量が
小さくなり、1〜ランジスタ動作を高速化できる。又、
N+多多結晶シリコ模膜13用いているため、単結晶シ
リコンのN+埋込みコレクタ4を用いている従来例に比
して低抵抗化でき、これにより、コレクタ電位分布を均
一にでき、この点からも)・ランジスタ動作を高速化で
きる。
As is clear from the same figure (C), the N+ collector diffusion layer 18
is formed only under the element active region 30, and N+
Since the polycrystalline silicon pattern film 1513 is in contact with the silicon oxide film 14, as shown in FIG.
Compared to the conventional structure in which the buried collector 4 extends below the collector electrode 8 and the N+ buried collector 4 is in contact with the N- collector 5, there is a difference in concentration (N+ and N
-) The contact interface is small, thereby reducing the collector capacitance and increasing the speed of the transistor operation. or,
Since the N+ polycrystalline silicon pattern film 13 is used, the resistance can be lowered compared to the conventional example using the N+ buried collector 4 of single crystal silicon.This makes the collector potential distribution uniform, and from this point of view as well. )・Can speed up transistor operation.

〔発明の効果〕〔Effect of the invention〕

以」−説明した如く、本発明によれば、従来例に比して
濃度差のある部分の接触界面か小さく、これにより、コ
レクタ容量か小さくなり、トランジスタ動作を高速化で
きる。
As described above, according to the present invention, the contact interface at the portion with a concentration difference is smaller than that of the conventional example, thereby reducing the collector capacitance and increasing the speed of transistor operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の製造工程図、第2図は従来
の一例の構造図である。 図において、 11はP−単結晶シリコン基板(−導電形半導体基板)
、 12.14は酸化シリコン膜(絶縁領域)、13はN+
+結晶シリコン膜(第2の非絶縁領域)、 15はN++結晶シリコン膜(第1の非絶縁領域)、 17はN−単結晶シリコン基板(低濃度領域)、18は
N+コレクタ拡散層(第1の非絶縁領域)、 19はN−エピタキシャル層(低濃度領域)、23は多
結晶シリコン層 24はベース、 26はエミッタ、 27はコレクタ電極、 30は素子活性領域 を示す。 (第2の非絶縁領域)
FIG. 1 is a manufacturing process diagram of an embodiment of the present invention, and FIG. 2 is a structural diagram of a conventional example. In the figure, 11 is a P-single crystal silicon substrate (-conductive type semiconductor substrate)
, 12.14 is a silicon oxide film (insulating region), 13 is N+
+ crystalline silicon film (second non-insulating region), 15 is N++ crystal silicon film (first non-insulating region), 17 is N- single crystal silicon substrate (low concentration region), 18 is N+ collector diffusion layer (first non-insulating region). 1 (non-insulating region), 19 is an N-epitaxial layer (low concentration region), 23 is a polycrystalline silicon layer 24 is a base, 26 is an emitter, 27 is a collector electrode, and 30 is a device active region. (Second non-insulated area)

Claims (1)

【特許請求の範囲】 (1)埋込みコレクタ(13、15)を形成されたSO
I基板をもつ半導体装置において、 素子活性領域(30)下に第1の非絶縁領域(15)を
形成し、かつ、該第1の非絶縁領域(15)とコレクタ
電極(27)とを電気的に接続する第2の非絶縁領域(
13、23)を形成し、該第1及び第2の非絶縁領域に
て前記埋込みコレクタ(13、15)を構成し、 上記第2の非絶縁領域(13)のうち上記第1の非絶縁
領域(15)に接しない部分と上記素子活性領域(30
)を構成する非絶縁領域(17、19)との間に絶縁領
域(14)を形成してなることを特徴とする半導体装置
。 (2)埋込みコレクタ(13、15)を形成されたSO
I基板をもつ半導体装置の製造方法において、 基板(11)上に絶縁領域(12)を介して非絶縁領域
(13)を形成する工程と、 該非絶縁領域(13)上に、少なくとも素子活性領域(
30)となる部分に対応した部分を非絶縁領域(15)
、その他の部分は絶縁領域 (14)を形成する工程と、 表面に、上記基板(11)とは別の半導体基板(17)
を貼合わせる工程とを含むことを特徴とする半導体装置
の製造方法。
[Claims] (1) SO formed with embedded collectors (13, 15)
In a semiconductor device having an I substrate, a first non-insulating region (15) is formed under the element active region (30), and the first non-insulating region (15) and the collector electrode (27) are electrically connected. a second non-insulated region (
13, 23), the first and second non-insulating regions constitute the buried collector (13, 15), and the second non-insulating region (13) includes the first non-insulating region (13); A portion not in contact with the region (15) and the element active region (30)
) and non-insulating regions (17, 19) forming an insulating region (14). (2) SO formed with embedded collectors (13, 15)
A method of manufacturing a semiconductor device having an I-substrate includes the steps of: forming a non-insulating region (13) on a substrate (11) via an insulating region (12); and forming at least an element active region on the non-insulating region (13). (
30) is the non-insulated area (15).
, and the other parts include a step of forming an insulating region (14), and a semiconductor substrate (17) different from the substrate (11) on the surface.
A method for manufacturing a semiconductor device, comprising the step of bonding.
JP16597790A 1990-06-25 1990-06-25 Semiconductor device and manufacture thereof Pending JPH0462847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16597790A JPH0462847A (en) 1990-06-25 1990-06-25 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16597790A JPH0462847A (en) 1990-06-25 1990-06-25 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0462847A true JPH0462847A (en) 1992-02-27

Family

ID=15822596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16597790A Pending JPH0462847A (en) 1990-06-25 1990-06-25 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0462847A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297377A (en) * 1994-04-21 1995-11-10 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH08139180A (en) * 1994-11-14 1996-05-31 Nec Corp Soi substrate, semiconductor device using the same and manufacture thereof
US6028344A (en) * 1997-02-28 2000-02-22 Nec Corporation Bipolar transistor on a semiconductor-on-insulator substrate
US7829971B2 (en) 2007-12-14 2010-11-09 Denso Corporation Semiconductor apparatus
US8148809B2 (en) 2009-01-15 2012-04-03 Denso Corporation Semiconductor device, method for manufacturing the same, and multilayer substrate having the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297377A (en) * 1994-04-21 1995-11-10 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH08139180A (en) * 1994-11-14 1996-05-31 Nec Corp Soi substrate, semiconductor device using the same and manufacture thereof
US6028344A (en) * 1997-02-28 2000-02-22 Nec Corporation Bipolar transistor on a semiconductor-on-insulator substrate
KR100292905B1 (en) * 1997-02-28 2002-01-16 가네꼬 히사시 Bipolar transistor on a semiconductor-on-insulator substrate and method for manufacturing thereof
US7829971B2 (en) 2007-12-14 2010-11-09 Denso Corporation Semiconductor apparatus
US8148809B2 (en) 2009-01-15 2012-04-03 Denso Corporation Semiconductor device, method for manufacturing the same, and multilayer substrate having the same

Similar Documents

Publication Publication Date Title
JPH04106932A (en) Manufacture of bipolar transistor
JPH04266047A (en) Soi type semiconductor device and preparation thereof equivalent to production of a buried layer
JPS6322070B2 (en)
JPH08236541A (en) High-speed bipolar transistor
JPH04283914A (en) Cladded semiconductor substrate and production method thereof
JP2528592B2 (en) Method of manufacturing bipolar transistor
JPH0462847A (en) Semiconductor device and manufacture thereof
JPS6095969A (en) Manufacture of semiconductor integrated circuit
JP2853761B2 (en) Semiconductor device and manufacturing method thereof
JPS63199454A (en) Semiconductor device
JP2969669B2 (en) Method for manufacturing semiconductor device
JPH0653310A (en) Semiconductor device and its manufacture method
JP2606414B2 (en) Method for manufacturing semiconductor device
JPS594073A (en) Manufacture of semiconductor device
JPH03203333A (en) Semiconductor device and manufacture thereof
JPH02125657A (en) Semiconductor device
JP3194313B2 (en) Thin-film semiconductor device with improved withstand voltage
JPH04137733A (en) Bipolar transistor and manufacture thereof
JPH02232929A (en) Semiconductor device with buried layer
JP2002222938A (en) Semiconductor device
JPH0715941B2 (en) Method for manufacturing semiconductor device
JPH11330083A (en) Lateral bipolar transistor
JPH053200A (en) Manufacture of semiconductor device
JPS63102364A (en) Semiconductor device
JP2000077420A (en) Bipolar transistor and manufacture thereof