JPH02232929A - Semiconductor device with buried layer - Google Patents

Semiconductor device with buried layer

Info

Publication number
JPH02232929A
JPH02232929A JP5327989A JP5327989A JPH02232929A JP H02232929 A JPH02232929 A JP H02232929A JP 5327989 A JP5327989 A JP 5327989A JP 5327989 A JP5327989 A JP 5327989A JP H02232929 A JPH02232929 A JP H02232929A
Authority
JP
Japan
Prior art keywords
buried layer
type
central region
layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5327989A
Other languages
Japanese (ja)
Inventor
Naoto Fujishima
直人 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5327989A priority Critical patent/JPH02232929A/en
Publication of JPH02232929A publication Critical patent/JPH02232929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To relieve the end part electric field concentration in a buried layer for augmenting the breakdown strength of the buried layer by a method wherein the impurity concentration in the end part regions of the buried layer is made lower than that in the central region of the same. CONSTITUTION:The title semiconductor device is provided with an n type buried layer 10 formed on a p type semiconductor substrate 1, isolation to p<+> type buried layers 3, n type epitaxial layers 4 deposited on the substrate 1 and p+ isolation layers 5 in contact with the buried layers 3 sectioning the said layers 4. The buried layer 10 immidiately below the sectioned regions is composed of a central region 12 and end part regions 14 overlapped with the central region 12 at the respective peripheral parts thereof and the central region 12 is to be an n<+> type region in high impurity concentration while the end part regions 14 are to be n<->type regions in lower impurity concentration than that of the central region 12. Through these procedures, the concentration work of electric line of force due to the curvature of the end part regions 14 can be cancelled or relieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、埋込層を備えた半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor device including a buried layer.

〔従来の技術〕[Conventional technology]

従来一般に、埋込層を備えた半導体装置は、第4図に示
すように、p型半導体基板1上に拡散形成された高不純
物濃度の n“型埋込層2及びアイソレイション・アッ
プの゛p+型埋込層3と、基板1上に成長された画成領
域のn型エピタキシャル層4と、p+型埋込層3に接す
るp+型アイソレイション層5を有しており、n型エピ
タキシャル層4内に所定の高耐圧素子が作り込まれてい
る。高不純物濃度の n+型埋込層2を形成する意義は
、素子とp型半導体基板1との間の寄生pnp}ランジ
スタ効果を低減させる絶縁容量として機能したり、縦型
npn}ランジスタの場合はコレクタとして、また縦型
MOSFETの場合はドレインとして機能し、直列抵抗
を低減させるものである。
Conventionally, a semiconductor device with a buried layer generally includes an n" type buried layer 2 with a high impurity concentration diffused on a p type semiconductor substrate 1 and an isolation up layer, as shown in FIG. It has a p+ type buried layer 3, an n type epitaxial layer 4 in a defined region grown on the substrate 1, and a p+ type isolation layer 5 in contact with the p+ type buried layer 3, and the n type epitaxial layer A predetermined high-voltage element is built into the semiconductor substrate 4.The significance of forming the n+ type buried layer 2 with a high impurity concentration is to reduce the parasitic pnp} transistor effect between the element and the p-type semiconductor substrate 1. It functions as an insulating capacitor, as a collector in the case of a vertical npn} transistor, and as a drain in the case of a vertical MOSFET, and reduces series resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、高耐圧集積回路装置に要求される高耐圧
素子の分離という点においては、n型エビタキシャル層
4及びn+型埋込層2とp型半導体基板1との耐圧は 
n+型埋込層2の周囲境界のpn接合面の曲率で律速し
ており、例えば曲率半径9μm程度では耐圧300vが
限界である。
However, in terms of separating high voltage elements required for high voltage integrated circuit devices, the voltage resistance between the n-type epitaxial layer 4, the n+ type buried layer 2, and the p-type semiconductor substrate 1 is
The rate is determined by the curvature of the pn junction surface at the peripheral boundary of the n+ type buried layer 2, and for example, when the radius of curvature is about 9 μm, the breakdown voltage is 300 V as the limit.

第5図は同従来例の埋込層を備えた半導体装置の電荷分
布及び空乏層拡大の状態を示す模式図である。第5図中
の破線1aはp型基板1内の空乏層端で、破線2aはn
3型埋込層2内の空乏層端を示して右り、 n4型埋込
層2は高不純物濃度であるため、空乏層端2aの拡大幅
が狭い。キャリアが掃き出されたp型基板1の空乏層に
はアセプタイオンlbが残り、またn+型埋込層2の空
乏層にはドナーイオン2bが残る。 n+型埋込層2の
端部領域の曲率が大きくなるほど(曲率半径が小さくな
るほど)、電機力線Dが中央領域に比べて集中するから
、曲率半径が小さくなるほど(鋭くなるほど)、耐圧が
低下する。
FIG. 5 is a schematic diagram showing the state of charge distribution and expansion of the depletion layer of the conventional semiconductor device equipped with a buried layer. The broken line 1a in FIG. 5 is the edge of the depletion layer in the p-type substrate 1, and the broken line 2a is the n
The right side shows the depletion layer end in the 3-type buried layer 2. Since the n4-type buried layer 2 has a high impurity concentration, the expansion width of the depletion layer end 2a is narrow. Acceptor ions lb remain in the depletion layer of the p-type substrate 1 from which carriers have been swept out, and donor ions 2b remain in the depletion layer of the n+ type buried layer 2. The larger the curvature of the end region of the n+ type buried layer 2 (the smaller the radius of curvature), the more concentrated the electric lines of force D are compared to the central region, so the smaller the radius of curvature (the sharper it is), the lower the withstand voltage. do.

勿論、p型基板1の比抵抗を大きくすれば耐圧は上昇す
るが、それには基板の純度が要求され、量産レベルでは
50Ωcmが限界である。また高比抵抗になればなるほ
ど、抵抗値のバラッキが大きくなり、好ましくない。
Of course, if the specific resistance of the p-type substrate 1 is increased, the withstand voltage will increase, but this requires the purity of the substrate, and 50 Ωcm is the limit at the mass production level. Furthermore, the higher the specific resistance, the greater the variation in resistance value, which is undesirable.

また埋込層2を中央領域とその周囲の端部領域とで形成
し、端部領域の曲率をできるだけ小さくすることにより
、端部での電界集中を極力軽減する方策が提案されてい
るが、端部領域の曲率半径を大きくすれば、端部領域の
厚みが中央領域のそれに比して過度に大きくなり、画成
領域への素子作り込みの障害等が問題化する。
In addition, a method has been proposed in which the buried layer 2 is formed with a central region and an end region around it, and the curvature of the end region is made as small as possible to reduce electric field concentration at the end as much as possible. If the radius of curvature of the end region is increased, the thickness of the end region becomes excessively large compared to that of the central region, which poses problems such as obstacles to building elements into the defined region.

そこで、本発明の課題は、基板の比抵抗を高くせず、ま
た埋込層の幾何形状を変えずに、埋込層の不純物濃度を
局部的に異ならしめることによって、埋込層の端都電界
集中を緩和し、高耐圧の埋込層を備えた半導体装置を提
供することにある。
Therefore, an object of the present invention is to locally vary the impurity concentration of the buried layer without increasing the resistivity of the substrate or changing the geometry of the buried layer. It is an object of the present invention to provide a semiconductor device having a buried layer that alleviates electric field concentration and has a high breakdown voltage.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明の講じた手段は、埋
込層を中央領域とその周囲に接する端部領域とから構成
し、その端部領域の不純物濃度を中央領域のそれに比し
て低くしたものである。
In order to solve the above-mentioned problems, the measures taken by the present invention are such that the buried layer is composed of a central region and an end region in contact with the periphery thereof, and the impurity concentration of the end region is made higher than that of the central region. It is lowered.

〔作用〕[Effect]

かかる手段によれば、埋込層内の空乏層端は接合面から
均一幅で拡大するのではなく、端部領域の空乏層端の拡
大幅が中央領域のそれに比して大きい。端部領域の曲率
は大きいものの、端部領域内の空乏層の拡がりが大きく
、イオン密度が小さいので、端部領域における電気力線
の集中が緩和され、この結果、ブレイクダウン電圧は従
来に比して高くなる。
According to this means, the depletion layer end in the buried layer does not expand with a uniform width from the junction surface, but the expansion width of the depletion layer end in the end region is larger than that in the central region. Although the curvature of the end region is large, the spread of the depletion layer in the end region is large and the ion density is low, so the concentration of electric lines of force in the end region is relaxed, and as a result, the breakdown voltage is lower than before. and become expensive.

〔実施例〕〔Example〕

次に、本発明の実施例を添付図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the accompanying drawings.

第1図は、本発明に係る埋込層を備えた半導体装置の一
実施例を示す断面構造図である。
FIG. 1 is a cross-sectional structural diagram showing an embodiment of a semiconductor device including a buried layer according to the present invention.

この埋込層を備えた半導体装置は、p型半導体基板l上
に形成されたn型埋込層10及びアイソレイション・ア
ップのp”型埋込層3と、更に基板1上に成長されたn
型エピタキシャル層4と、p+型埋込層3に接し n型
エピタキシャル層4を分離画成する p1型アイソレイ
ション層5とを有している。
This semiconductor device with a buried layer includes an n-type buried layer 10 formed on a p-type semiconductor substrate l, an isolation-up p'' type buried layer 3, and further grown on a substrate 1. n
type epitaxial layer 4, and a p1 type isolation layer 5 which is in contact with the p+ type buried layer 3 and separates and defines the n type epitaxial layer 4.

画成領域の直下のn型埋込層10は中央領域12とこの
周囲で重なる端部領域14とから構成されている。中央
領域12には高不純物濃度のn+型領域で、端部領域1
4の不純物濃度は中央領域12のそれに比して低く、n
″型領域である。本実施例における端部領域l4の表面
濃度はl XIOIScrn−2程度で、その曲率半径
は9μmである。また本実施例における中央領域12と
端部領域14の厚さはほぼ等しい。
The n-type buried layer 10 immediately below the defined region is composed of a central region 12 and an end region 14 that overlaps around the central region 12. The central region 12 is an n+ type region with high impurity concentration, and the end region 1
The impurity concentration of n 4 is lower than that of central region 12, and n
The surface concentration of the end region 14 in this embodiment is about l Almost equal.

第2図は上記実施例の電荷分布及び空乏層拡大の状態を
示す模式図である。第2図中の破線1aはp型基板1内
の空乏層端で、破線10aはn型埋込層10内の空乏層
端を示す。中央領域12内の空乏層端10aの拡大幅は
p型基板1内のそれに比して狭い。中央領域12の不純
物濃度が高いためである。
FIG. 2 is a schematic diagram showing the charge distribution and the expansion state of the depletion layer in the above embodiment. A broken line 1a in FIG. 2 shows the end of the depletion layer in the p-type substrate 1, and a broken line 10a shows the end of the depletion layer in the n-type buried layer 10. The expanded width of the depletion layer end 10a in the central region 12 is narrower than that in the p-type substrate 1. This is because the impurity concentration in the central region 12 is high.

一方、端部領域14内の空乏層端10aの拡大幅は中央
領域12のそれに比して狭い。端部領域14の不純物濃
度が中央領域12のそれに比して低いためである。即ち
、端部領域14内の空乏層の拡がりは従来に比べて大き
い。このため、p型基板1の空乏層に残るアセプタイオ
ン1bの密度は従来と同じであるが、端部領域14の空
乏層に残るドナーイオンlObの密度は従来に比して小
さい。端部領域l4の曲率が中央領域l2の平坦部のそ
れに比して小さく、尖端効果で端部領域l4に電気力線
D′が集中する傾向にあるものの、ドナーイオン10b
の密度が小さいから、端部領域14の電気力線がD′の
本数が少ないので、結果的に電気力線D′の集中が相殺
又は緩和される。従来の如く、端部領域l4の曲率半径
を大としただけでは、端部領域140曲率が小さくなる
ものの、中央領域12の平坦部の曲率(無限大)には及
ばず、電気力線の集中を単に軽減できるだけであるが、
端部領域14の不純物濃度を低くすることは、理論的に
は電気力線の集中が解消できる。
On the other hand, the expansion width of the depletion layer end 10a in the end region 14 is narrower than that in the central region 12. This is because the impurity concentration in the end regions 14 is lower than that in the central region 12. That is, the spread of the depletion layer within the end region 14 is larger than in the conventional case. Therefore, the density of acceptor ions 1b remaining in the depletion layer of p-type substrate 1 is the same as in the conventional case, but the density of donor ions lOb remaining in the depletion layer of end region 14 is smaller than in the conventional case. Although the curvature of the end region l4 is smaller than that of the flat part of the central region l2, and the lines of electric force D' tend to concentrate in the end region l4 due to the tip effect, the donor ions 10b
Since the density of D' is small, the number of lines of electric force D' in the end region 14 is small, and as a result, the concentration of lines of electric force D' is canceled out or relaxed. If the radius of curvature of the end region l4 is simply increased as in the past, the curvature of the end region 140 will become smaller, but it will not reach the curvature (infinity) of the flat part of the central region 12, and the lines of electric force will be concentrated. However, it is possible to simply reduce
Reducing the impurity concentration in the end region 14 can theoretically eliminate the concentration of electric lines of force.

従来.例のように埋込層の濃度が均一で端部領域の曲率
半径が9μm程度の場合、端部領域の耐圧は中央領域の
173〜1/4に低下するが、本実施例の場合には端部
領域l4の耐圧は中央領域の172程度に止まり、端部
領域14の耐圧向上が確認された。つまり、端部領域1
4の不純物濃度を低くすることは、恰も端部領域14の
曲率半径の無限大化を図ることと等価の効果がある。な
お、上記の濃度制御に加えて端部領域14の曲率半径を
大とすれば、一層の耐圧向上が発揮される。
Conventional. If the concentration of the buried layer is uniform and the radius of curvature of the end region is about 9 μm as in the example, the breakdown voltage of the end region will be reduced to 173 to 1/4 of that of the central region. The breakdown voltage of the end region l4 remained at about 172 that of the center region, and an improvement in the breakdown voltage of the end region 14 was confirmed. That is, end area 1
Lowering the impurity concentration of 4 has the same effect as increasing the radius of curvature of the end region 14 to infinity. In addition to the concentration control described above, if the radius of curvature of the end region 14 is increased, a further improvement in breakdown voltage can be achieved.

次に、上記実施例の製造方法を、第3図を参照しつつ説
明する。
Next, the manufacturing method of the above embodiment will be explained with reference to FIG.

まず、第3図(a)に示す如く、酸化膜20で覆われた
p型シリコン基板の上に、中央部に開口部21aを有す
る第1のレジストマスク21を形成した後、第1のヒ素
イオン22の注入によりヒ素原子23を開口部直下に導
入する。次に、第3図ら)に示す如く、レジストマスク
21の開口部21aの中央部に端部開口部24aを有す
る第2のレジストマスク24を形成した後、第2のヒ素
イオン25の注入によりヒ素原子26を導入する。次に
、第3図(C)に示す如く、分離層を形成すべき領域上
に開口部27aを有する第3のレジストマスク27を形
成した後、ほう素イオン2Bの注入によりホウ素原子2
9を導入する。次に、第3図(社)に示す如く、アニー
ルの後、エビタキシャル成長によりp型基板l上にn型
エピタキシャル層4を形成する。この結果、p型基板1
とn型エビタキシャル層の界面の中央部には、第1のヒ
素のドープされた n+埋込層たる中央領域12と、こ
の周囲で重なる第2のヒ素のドープされたn埋込層たる
端部領域14と、分離領域にホウ素のドーブされた p
+型埋込層3が形成される。次に、第3図(e)に示す
如く、n型エピタキシャル層4の表面から p+埋込層
3に接続する p+型アイソレイションを拡散形成する
First, as shown in FIG. 3(a), a first resist mask 21 having an opening 21a in the center is formed on a p-type silicon substrate covered with an oxide film 20, and then a first arsenic film is formed. By implanting ions 22, arsenic atoms 23 are introduced directly below the opening. Next, as shown in FIG. 3 et al., after forming a second resist mask 24 having an end opening 24a at the center of the opening 21a of the resist mask 21, arsenic ions 25 are implanted to remove arsenic. Introduce atom 26. Next, as shown in FIG. 3(C), after forming a third resist mask 27 having an opening 27a over the region where the separation layer is to be formed, boron atoms 2 are implanted by implanting boron ions 2B.
Introducing 9. Next, as shown in FIG. 3, after annealing, an n-type epitaxial layer 4 is formed on the p-type substrate l by epitaxial growth. As a result, p-type substrate 1
At the center of the interface between the N-type epitaxial layer and the n-type epitaxial layer, there is a central region 12 which is a first arsenic-doped n+ buried layer, and an edge which is a second arsenic-doped n-buried layer that overlaps around this central region 12. The partial region 14 and the isolation region are doped with boron.
A + type buried layer 3 is formed. Next, as shown in FIG. 3(e), a p+ type isolation layer connected to the p+ buried layer 3 is formed by diffusion from the surface of the n type epitaxial layer 4.

上記の製造プロセスにおいては、中央領域12.端部領
域14及びp”型埋込層3のアニール, 拡散を同一工
程で行っているが、工程を前後させ各層を独立に形成し
ても良い。この場合、中央領域12の拡散は端部領域1
4の拡散に先じて行う。なお、拡散速度の小さい元素と
してヒ素の代わりにアンチモンを用いても良い。また埋
込層10がp型のときは拡散速度の小さいガリウムを用
いれば良い。
In the above manufacturing process, the central region 12. Although the end region 14 and the p''-type buried layer 3 are annealed and diffused in the same process, each layer may be formed independently by performing the steps one after the other. In this case, the diffusion in the central region 12 is performed in the end Area 1
This is done prior to the diffusion in step 4. Note that antimony may be used instead of arsenic as an element with a low diffusion rate. Further, when the buried layer 10 is p-type, gallium having a low diffusion rate may be used.

〔発明の効果〕〔Effect of the invention〕

以上説哄したように、本発明に係る埋込層を備えた半導
体装置は、埋込層を中央領域とこの周囲で重なる端部領
域とで構成し、端部領域の不純物濃度を中央領域のそれ
に比して低く抑えたものであるから、次の効果を奏する
As explained above, a semiconductor device with a buried layer according to the present invention has a buried layer composed of a central region and an end region that overlaps around the central region, and the impurity concentration of the end region is set to be lower than that of the central region. Since it is kept low compared to that, the following effects are achieved.

■端部領域の曲率による電気力線の集中作用にもかかわ
らず、端部領域の空乏層電荷密度が中央領域のそれに比
して小さいので、電気力線の集中を相殺又は緩和できる
。したがって、耐圧向上が達成される。
(2) Despite the concentration of electric lines of force due to the curvature of the end regions, the depletion layer charge density in the end regions is smaller than that in the central region, so the concentration of the lines of electric force can be canceled out or alleviated. Therefore, an improvement in breakdown voltage is achieved.

■端部領域の曲率を緩和すると同等以上の効果があるの
で、端部領域の厚さを大きくする必要がない。
(2) Relaxing the curvature of the end region has the same or better effect, so there is no need to increase the thickness of the end region.

■基板の比抵抗を制御する場合に比し、バラッキ等がな
く歩留りが良い。
■Compared to controlling the specific resistance of the substrate, there is no variation and the yield is good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る埋込層を備えた半導体装置の一
実施例を示す断面構造図である。 第2図は、同実施例の電荷分布及び空乏層拡大の状態を
示す模式図である。 第3図(a)〜(e)は、同実施例の製造工程を順次示
す断面構造図である。 第4図は、従来の埋込層を備えた半導体装置の一例を示
す断面構造図である。 第5図は、同従来例の電荷分布及び空乏層拡大の状態を
示す模式図である。 1−p型半導体基板、3p+型埋込層、 4n型エピタ
キシャル層、5.p+型アイソレイション層、10− 
n型埋込層、12n+型の中央領域、14− n一型の
端部領域、 la,10a  空乏層端、1b アセブ
タイオン、10b・ ドナーイオン、D′第 図 P 第 図 /A−P1 第 図
FIG. 1 is a cross-sectional structural diagram showing an embodiment of a semiconductor device including a buried layer according to the present invention. FIG. 2 is a schematic diagram showing the charge distribution and the state of expansion of the depletion layer in the same example. FIGS. 3(a) to 3(e) are cross-sectional structural diagrams sequentially showing the manufacturing process of the same embodiment. FIG. 4 is a cross-sectional structural diagram showing an example of a conventional semiconductor device including a buried layer. FIG. 5 is a schematic diagram showing the charge distribution and the expansion state of the depletion layer in the conventional example. 1-p type semiconductor substrate, 3p+ type buried layer, 4n type epitaxial layer, 5. p+ type isolation layer, 10-
n-type buried layer, 12n+ type central region, 14- n-type end region, la, 10a depletion layer edge, 1b acetate ion, 10b donor ion, D' Fig. P Fig./A-P1 Fig.

Claims (1)

【特許請求の範囲】[Claims] 1)第1導電型の半導体基板とその上に成長された第2
導電型層との界面に埋込み形成された第2導電型の埋込
層を備えた半導体装置において、該埋込層が中央領域と
その周囲で重なる端部領域とからなり、該端部領域の不
純物濃度が該中央領域のそれに比して低いことを特徴と
する埋込層を備えた半導体装置。
1) A first conductivity type semiconductor substrate and a second semiconductor substrate grown on it.
In a semiconductor device including a buried layer of a second conductivity type embedded in an interface with a conductivity type layer, the buried layer is composed of a central region and an end region overlapping around the central region, and A semiconductor device comprising a buried layer characterized in that the impurity concentration is lower than that in the central region.
JP5327989A 1989-03-06 1989-03-06 Semiconductor device with buried layer Pending JPH02232929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5327989A JPH02232929A (en) 1989-03-06 1989-03-06 Semiconductor device with buried layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5327989A JPH02232929A (en) 1989-03-06 1989-03-06 Semiconductor device with buried layer

Publications (1)

Publication Number Publication Date
JPH02232929A true JPH02232929A (en) 1990-09-14

Family

ID=12938299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5327989A Pending JPH02232929A (en) 1989-03-06 1989-03-06 Semiconductor device with buried layer

Country Status (1)

Country Link
JP (1) JPH02232929A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216802A (en) * 2005-02-04 2006-08-17 Hitachi Ulsi Systems Co Ltd Semiconductor device
US8018006B2 (en) 2005-02-04 2011-09-13 Hitachi Ulsi Systems Co., Ltd. Semiconductor device having an enlarged space area surrounding an isolation trench for reducing thermal resistance and improving heat dissipation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147546A (en) * 1984-12-20 1986-07-05 Sanyo Electric Co Ltd Bipolar type semiconductor device
JPS63202965A (en) * 1987-02-19 1988-08-22 Sanyo Electric Co Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147546A (en) * 1984-12-20 1986-07-05 Sanyo Electric Co Ltd Bipolar type semiconductor device
JPS63202965A (en) * 1987-02-19 1988-08-22 Sanyo Electric Co Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216802A (en) * 2005-02-04 2006-08-17 Hitachi Ulsi Systems Co Ltd Semiconductor device
US8018006B2 (en) 2005-02-04 2011-09-13 Hitachi Ulsi Systems Co., Ltd. Semiconductor device having an enlarged space area surrounding an isolation trench for reducing thermal resistance and improving heat dissipation

Similar Documents

Publication Publication Date Title
JPH04266047A (en) Soi type semiconductor device and preparation thereof equivalent to production of a buried layer
US5677209A (en) Method for fabricating a vertical bipolar transistor
EP0051534B1 (en) A method of fabricating a self-aligned integrated circuit structure using differential oxide growth
US5218227A (en) Semiconductor device and method of manufacturing same
JPH02232929A (en) Semiconductor device with buried layer
US6806159B2 (en) Method for manufacturing a semiconductor device with sinker contact region
JPS6273667A (en) Manufacturing semiconductor element
JP2812052B2 (en) Semiconductor device
JPH01149464A (en) Semiconductor device
JPH01246874A (en) Bipolar transistor and manufacture thereof
JP2842042B2 (en) Semiconductor device
US20050037588A1 (en) Method for manufacturing and structure of semiconductor device with sinker contact region
JPH01187868A (en) Semiconductor device
JPS6140140B2 (en)
JP2729870B2 (en) Variable capacitance diode and manufacturing method thereof
JP4681090B2 (en) Manufacturing method of semiconductor device
JP2512084B2 (en) Method for manufacturing semiconductor device
JPS62216356A (en) Manufacture of semiconductor integrated circuit
JPH03222357A (en) Semiconductor device and manufacture thereof
JP2656125B2 (en) Method for manufacturing semiconductor integrated circuit
JPH02216873A (en) Semiconductor device
JPH0488637A (en) Semiconductor integrated circuit device having vertical bipolar transistor
JPH0621077A (en) Semiconductor device and manufacture thereof
JPS63245957A (en) Lateral pnp transistor and manufacture thereof
JPH05335329A (en) Semiconductor device and its manufacture