JPS59186366A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS59186366A
JPS59186366A JP6014383A JP6014383A JPS59186366A JP S59186366 A JPS59186366 A JP S59186366A JP 6014383 A JP6014383 A JP 6014383A JP 6014383 A JP6014383 A JP 6014383A JP S59186366 A JPS59186366 A JP S59186366A
Authority
JP
Japan
Prior art keywords
base
film
region
type
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6014383A
Other languages
Japanese (ja)
Inventor
Noboru Nomura
登 野村
Kazuhiko Tsuji
和彦 辻
Masanori Fukumoto
正紀 福本
Juro Yasui
安井 十郎
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6014383A priority Critical patent/JPS59186366A/en
Publication of JPS59186366A publication Critical patent/JPS59186366A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enable to obtain the high-speed semiconductor device of excellent stability by a method wherein a semiconductor region of the type same as that of a base is provided adjoining to the lead-out electrode part of the base. CONSTITUTION:Epitaxial layers 13 and 15 having the same impurities as a substrate 11, which will be turned to an n type single crystal collector region, are formed on an n type Si substrate 11. Also, an epitaxial film 18 having heterogenous p type impurities, whereon a single crystal base region will be formed, and an epitaxial film 20 having n type high density impurities, whereon a single crystal emitter region will be formed, are formed in succession. Besides, two polycrystalline Si films, one is a polycrystalline Si film 17 which is formed together with the film 15 and the other is a polycrystalline Si film 19 which is formed together with the film 18 are formed into a base lead-out electrode. Said base electrode is constructed in such a manner that the base is connected to the external circuit using the polycrystalline Si film 22 which is formed together with an epitaxial film 20 whereon an emitter will be formed. By constituting the diode as above-mentioned, the impurities in the base can be maintained in the state of the doped impurity distribution when an epitaxial film was formed, thereby enabling to obtain high-speed and excellently stabilized characteristics.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体集積回路(以下LSIという)特に高
速度はLSIとその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to semiconductor integrated circuits (hereinafter referred to as LSIs), particularly high-speed LSIs, and methods of manufacturing the same.

従来例の構成とその問題点 半導体装置は最近ますます高速化され、従来からの拡散
によって形成されるベーヌ厚与は03ミクロンを切ろう
としている。しかし、より高速に動作させるためには、
(1)ベース層の厚みを0.1ミクロノ以−1置でする
。(2)ベース層の引き高し電極ノM−(抗7>: 低
い。(3)エミッタ、ベース、コレクタ各層の不純物か
で^度よく制御できる。の三条性を満ノ」杏する必要が
ある。
Conventional Structures and Problems Semiconductor devices have recently become faster and faster, and the Beine thickness formed by conventional diffusion is about to fall below 0.3 microns. However, to make it work faster,
(1) The thickness of the base layer is 0.1 micron or less. (2) The height of the base layer electrode M- (resistance 7>) is low. (3) It can be well controlled by impurities in the emitter, base, and collector layers. be.

第1図にこうしたことを考慮した従来の縦型バイポーラ
 トランジスクの断面114造を示した。n11J S
i (シリコン)基板1の上に基板と同一型の不純物を
Ji’jつエピタキシャル成長したエビ膜3を形成し、
そのエビ膜3の不用な部分を酸化して酸化膜2を形成す
る。このエビ膜3と酸化膜2の」二にさらに不純物の異
なるエビ膜4を形成する1、エビ膜4は、形成した下地
が単結晶であるときにのみエピタキシャル成長し、下地
がガラス層や多結晶の場合には成畏した膜は多結晶とな
る。ベース層として用いるエビ膜4と同時に形成した多
結晶膜(ポリシリコン)6をベース電極取り出し7部分
を除いて酸化し、酸化膜5を形成する33以上の)II
l′1aの上にさらにエビ膜を形成し、エミッタ了とべ
一ヌ電極取出し部8を形成し、他の部分は酸化膜9とす
る。エミッタγにはn型のイオンが注入され、ベース層
4との間に接合を作る。寸だ、電極取出し部8にはP5
のイオンを注入する。
Figure 1 shows a 114-section cross-section of a conventional vertical bipolar transistor with these considerations in mind. n11JS
Forming a shrimp film 3 on a (silicon) substrate 1 by epitaxially growing impurities of the same type as the substrate,
An oxide film 2 is formed by oxidizing unnecessary parts of the shrimp film 3. A shrimp film 4 with different impurities is formed on top of the shrimp film 3 and the oxide film 2.The shrimp film 4 grows epitaxially only when the base formed is a single crystal, and the base is a glass layer or polycrystalline. In this case, the resulting film becomes polycrystalline. The polycrystalline film (polysilicon) 6 formed at the same time as the shrimp film 4 used as a base layer is oxidized except for the base electrode extraction 7 part to form an oxide film 5 (33 or more) II
A shrimp film is further formed on l'1a, and an electrode extraction portion 8 is formed between the emitter and the base, and an oxide film 9 is formed on the other portions. N-type ions are implanted into the emitter γ to form a junction with the base layer 4. P5 on the electrode extraction part 8.
ions are implanted.

このようにして形成した半導体装置の製造方法は、従来
から用いられているCvD+熱放散、熱酸化等の高温度
による処理を伴っているため、高温(950〜1250
℃)K達するたび毎に、各層の不純物濃度が拡散を起こ
して再分布し、(3)にあげた各層の不純物濃度を精度
よく制御できないため、l−ランシスタ特性が不安定と
なシ、寸た、ベース層の厚みを0.1ミクロン以下にす
ることが困難であった。また、ベース層の引き出し電極
がベース層の厚みと等しい構造であるため、べ一ヌ層の
厚みが薄くなるとべ一ヌの延長部分のポリシリコンロの
抵抗が高くなシ高速動作ができなかった。
The method for manufacturing semiconductor devices formed in this manner involves high-temperature treatments such as conventionally used CvD + heat dissipation and thermal oxidation.
°C) Every time K is reached, the impurity concentration in each layer causes diffusion and redistribution, and as the impurity concentration in each layer mentioned in (3) cannot be precisely controlled, the l-run transistor characteristics become unstable. In addition, it was difficult to reduce the thickness of the base layer to 0.1 micron or less. In addition, since the lead electrode of the base layer has a structure that is equal to the thickness of the base layer, when the thickness of the base layer becomes thinner, the resistance of the polysilicon layer in the extension part of the base increases, making high-speed operation impossible. .

発明の目的 本発明はこのような従来からの問題点に鑑み、ベースの
取9出し電極の構造を改善すること、おEびベース層の
不純分布を改善することによって高速でかつ安定性のよ
い半導体装置を提供することを目的としている。
Purpose of the Invention In view of these conventional problems, the present invention provides a high-speed and stable method by improving the structure of the lead electrode of the base and improving the impurity distribution of the E and base layer. The purpose is to provide semiconductor devices.

発明の構成 本発明はコレクタのエビ層をたとえば2層とし、このう
ちベースに近接したエビ層の一部分をベース引き出し′
上極の補助として利用して引き出し電体部分の抵抗を]
:げるとともに、ベース形成にたとえは低温膜形成法を
応用することによって、不純物か円分布しない工程を採
用し、高速で安定性のよいl′4 K % ti召を提
供するものである。
Structure of the Invention In the present invention, the collector has two shrimp layers, for example, and a part of the shrimp layer near the base is pulled out from the base.
Use it as an auxiliary for the upper electrode to reduce the resistance of the lead-out electrical part]
In addition, by applying a low-temperature film formation method to the base formation, a process that does not have a circular distribution of impurities is adopted, and a high-speed and stable l'4 K% ti conversion is provided.

実施例の説明 第21”’lは、本発明の第1の実施例の半導体装置の
断面図を示し/con型81型板1基板11基板と同一
・の不純物を持つn型単結晶コレクタ領域となるエビ膜
13と16、異種のP型不純物を持ち単結晶べ〜ス領域
を形成するエビ膜18、n型の高イ純物濃度をもち単結
晶エミッタ領域を形成する」エビ膜20を各・ン順4に
形成し、エビ膜15と同時に形成した多結晶Si膜17
とベースのエビ膜18と同[17Jに形成した多結晶S
i膜1902層の多結晶Si膜をベースの取り出し電極
とする。べ−ヌの取り出し電極はさらにエミッタを形成
するエビ膜2oと同時に形成した多結晶Si膜22によ
ってベースを外部回路と接続する構造である。
DESCRIPTION OF THE EMBODIMENTS No. 21'''l shows a cross-sectional view of a semiconductor device according to the first embodiment of the present invention /con type 81 type plate 1 substrate 11 n type single crystal collector region having the same impurity as the substrate shrimp films 13 and 16, which have different types of P-type impurities and form a single-crystal base region, and shrimp film 20, which has a high n-type impurity concentration and forms a single-crystal emitter region. Polycrystalline Si film 17 formed simultaneously with shrimp film 15
and the polycrystalline S formed on the base shrimp membrane 18 [17J]
The polycrystalline Si film of the i-film 1902 layer is used as a base extraction electrode. The extraction electrode of the bene has a structure in which the base is further connected to an external circuit by a polycrystalline Si film 22 formed at the same time as the shrimp film 2o forming the emitter.

第4図に、第1の実施例のトランシヌタを実現するだめ
の製造工程を示した。工程順に説明する。
FIG. 4 shows the manufacturing process for realizing the transinuta of the first embodiment. The steps will be explained in order.

第4図aではSi基板11上にSiO2膜12全12し
、一部分をエツチングした後SiO2膜12の膜厚とほ
ぼ等しい膜厚のエピタキシャル成長したエビ膜13を形
成する。エビ膜13中の不純物は、基板にドープされて
いる不純物と同一型(この例ではn型)のものである。
In FIG. 4a, the entire SiO2 film 12 is deposited on the Si substrate 11, and after a portion is etched, an epitaxially grown shrimp film 13 having a thickness substantially equal to that of the SiO2 film 12 is formed. The impurities in the shrimp film 13 are of the same type as the impurities doped into the substrate (in this example, n-type).

第4図すの工程では、エビ膜13に隣接しだSiO2膜
12全12、P型不純物を而し、不純物拡散源となる酸
化膜14を適当な形状に加工し、つづいてエビ膜15を
形成する。エビ膜15は全面を覆うように形成し、酸化
膜14に隣接した部分とエビ膜13上の単結晶膜部分で
あるエビ膜150部分を除いて酸化し、酸化膜16を形
成する。酸化膜16を形成する際、ウェハは高温に加熱
され、不純物拡散源の酸化膜14から不純物が多結晶S
1膜17に拡散し、 コレクタと異る型のベース電極引
出しの不純層(この場合はP型)が得られる(第4図b
)。
In the step shown in FIG. 4, the whole SiO2 film 12 adjacent to the shrimp film 13 and the oxide film 14 that contains P-type impurities and serves as an impurity diffusion source are processed into an appropriate shape, and then the shrimp film 15 is formed. Form. The shrimp film 15 is formed to cover the entire surface, and is oxidized except for the portion adjacent to the oxide film 14 and the shrimp film 150 portion, which is a single crystal film portion on the shrimp film 13, to form an oxide film 16. When forming the oxide film 16, the wafer is heated to a high temperature, and impurities are removed from the oxide film 14, which is an impurity diffusion source, into polycrystalline S.
1 film 17, and an impurity layer (in this case P type) for leading out the base electrode of a type different from that of the collector is obtained (Fig. 4b).
).

次に、エビ膜13.15からなるコレクタの上に不純物
の型の異なるP型のSiエピ膜18を光CVD法や分子
線エビクキシーすなわちMo1ecular Beam
 Epitaxy  (M B E)等の方法音用いて
形成する。このときのエピタキシャル成J是1’rli
’1度は300〜700°C程度の低温であシ、不純物
の分布状、四はエピタキシャルS1膜成長時に変化しな
いのでエビ膜18の膜厚を1000Å以下としてもp 
4(υの膜厚が維持される。このとき、多結晶S1膜1
7.酸化11F16上には多結晶S1膜が形成さi−す
る。このエビ膜18と取出し電(「υ〕となる多結晶5
jllp190部分を残してエツチングし、さらに、仝
而に光CvDやMBE等の低温膜形成、ノJ″法を用い
でSiエピ膜20および多結晶S1膜24を形成する。
Next, a P-type Si epitaxial film 18 with different impurity types is deposited on the collector consisting of the shrimp film 13, 15 using a photo-CVD method or a molecular beam
It is formed using a method such as Epitaxy (MBE). The epitaxial formation J at this time is 1'rli
'1 degree is a low temperature of about 300 to 700 degrees Celsius, and the distribution of impurities does not change during the growth of the epitaxial S1 film, so even if the thickness of the shrimp film 18 is less than 1000 Å, the p
The film thickness of 4(υ is maintained. At this time, the polycrystalline S1 film 1
7. A polycrystalline S1 film is formed on the oxidized 11F16. This shrimp membrane 18 and the polycrystalline 5 which becomes the extraction voltage ("υ")
Then, a Si epitaxial film 20 and a polycrystalline S1 film 24 are formed using low-temperature film formation such as optical CvD or MBE, or a J'' method.

エビ膜20は、コレクタと1711しn型の不純物を高
濃度に含むエミツタとなる膜であり、多結晶Si膜19
上で接合を形成するので、エビ膜25を除いた部分の多
結晶S1膜24上をイオン注入(i/i)によってP型
に変化させる。
The shrimp film 20 is a film that serves as a collector and an emitter containing a high concentration of n-type impurities, and the polycrystalline Si film 19
Since a junction is formed above, the portion of the polycrystalline S1 film 24 excluding the shrimp film 25 is changed to P type by ion implantation (i/i).

25はレシヌトであシ、エビ膜20をイオン注入から保
護している。(第4図C) さらに、レジスI・26を塗布し電極24とエビ膜20
を除いた部分をエツチングして除去する。
Reference numeral 25 is resin, which protects the shrimp membrane 20 from ion implantation. (Fig. 4C) Furthermore, resist I-26 is applied to the electrode 24 and shrimp membrane 20.
Remove the remaining part by etching.

(第4図d) レジスタ25.26を除去L、プラズマcVD。(Figure 4d) Remove resistor 25.26 L, plasma cVD.

光CV D、  Mo1ecular Beam De
position等の低温薄膜形成方法によって810
2膜21を形成し、必要な電極部をエツチング除去して
、第2図に示す半導体装置が形成される。
Optical CV D, Molecular Beam De
810 by a low temperature thin film forming method such as position
A semiconductor device shown in FIG. 2 is formed by forming two films 21 and removing necessary electrode portions by etching.

第3図は、本発明による第2の実施例の半導体装置であ
り、第1の実施例との相異点(・」、第4しく1aの工
程後、第1の実施例では不純物拡散源の酸化膜14を形
成して不純物を多結晶5117に拡11りするのに列し
て、第2の実施例では、不純物拡11々源23を酸化膜
12中にイオン注入又は拡散によって設け、不純物を多
結晶Si 1γ中に拡散する。
FIG. 3 shows a semiconductor device according to a second embodiment of the present invention, which differs from the first embodiment (・). In addition to forming the oxide film 14 and diffusing impurities into the polycrystal 5117, in the second embodiment, an impurity diffusion source 23 is provided in the oxide film 12 by ion implantation or diffusion. Impurities are diffused into polycrystalline Si 1γ.

この例では、第2図と第3図との比較より明らかなよう
に、酸化膜14が取り除け、断差がなくなるため、ベー
ス層18とベースからの引き出し電]゛1vとなるS1
膜19との間に断線による不良かなくなることである。
In this example, as is clear from the comparison between FIG. 2 and FIG.
This means that there will be no defects due to disconnection between the film 19 and the film 19.

発明の効果 以」二のように、本発明はベースの引き出し電極111
(分に接してベースと同じ型の半導体領域を設け、カッ
、ベース、エミツタおよび酸化膜の形成を光CVDやM
BHなどの低湿膜形成法により行なうので、ベース中の
不純物分布は、エビ膜形成時にドープさ)1だ不純物分
布を保ち、極めて薄いべ一ヌを持ちかつベース引き出し
抵抗の小さい、高速19動作の+−,iJ’能な1−ラ
ンシヌタを実現し、かつ、たとえは酸化膜の一部分に不
純物拡散源を設けることにより、平坦な構造の1−ラン
ジスタが実現でき、歩留りの高い素子を提供できる。
Effects of the Invention As described in ``2'', the present invention provides the extraction electrode 111 of the base.
(A semiconductor region of the same type as the base is provided in contact with the base, and the formation of the base, emitter, and oxide film is performed using photo-CVD or M
Since this is done using a low-humidity film formation method such as BH, the impurity distribution in the base is maintained at the same level as the impurity distribution (doped during the formation of the shrimp film), and has an extremely thin base and low base extraction resistance. +-, iJ', and by providing an impurity diffusion source in a portion of the oxide film, it is possible to realize a 1-ran transistor with a flat structure and provide a device with a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の1−ランシスタの描造断面Iン1、第
2図、第3図は本発明の第1.第2の実施例の1−ラン
シスクの断面図、第4図(a)〜に)は第1の実施例の
トランジスタの製造工程断面図である。 11・・・・・81基板、13.i5  ・ コレクタ
領域となるエビ膜、18・・・ベース領域、14不純物
拡散源酸化膜、17.19   ベース引き出し電極多
結晶膜、23・・・・・不純物拡散源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 1 第3図
FIG. 1 shows a drawn cross-section of a conventional 1-run transistor, and FIGS. The 1-Ransis sectional view of the second embodiment (FIGS. 4(a) to 4) is a sectional view of the manufacturing process of the transistor of the first embodiment. 11...81 board, 13. i5 - shrimp film serving as collector region, 18... base region, 14 impurity diffusion source oxide film, 17.19 base extraction electrode polycrystalline film, 23... impurity diffusion source. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 1 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)  コレクタ、べ〜ス、エミノグを積層するとと
もに、前記ベースから引き出しだ前記ベースと同一・導
′1シ型の第1の半導体領域と、この第1の半導体領域
の少くとも一方の主面上に前記ベースと同一導電型の第
2の半導体領域とを有し、n11記第1および第2の半
導体領域を前記ベースの′1(ヱ(が引出し領域として
なる半導体装;査。
(1) A collector, a base, and an eminog are stacked, and a first semiconductor region of the same conductive type as the base is drawn out from the base, and at least one main semiconductor region of the first semiconductor region is formed. A semiconductor device having a second semiconductor region of the same conductivity type as the base on a surface, and the first and second semiconductor regions n11 being the lead-out regions of the base.
(2)弔結晶一方導′屯型コレクタ領域と他方導電型の
第1の非単結晶半導体領域を形成し、前記コレクタ領域
上に他方の導電型の単結晶ベース領域を、前記第1の非
単結晶半導体領域上に前記ベース領域に接して他力の導
電型の第2の非単結晶半導体領域を形成する工程と、前
記ベース領域」二に一方導電型のエミノグ領域を形成す
る工程とをイ〕し、前記第1.第2の非単結晶半導体領
域をベース電極引出し領域とすることを特徴とする半導
体装置の製造方法。
(2) forming a collector region of one conductivity type and a first non-single-crystal semiconductor region of the other conductivity type, and forming a single-crystal base region of the other conductivity type on the collector region; forming a second non-single-crystalline semiconductor region of a different conductivity type on the single-crystal semiconductor region in contact with the base region; and forming an eminog region of one conductivity type in the base region. B] and the above-mentioned 1. A method for manufacturing a semiconductor device, characterized in that a second non-single crystal semiconductor region is used as a base electrode lead-out region.
(3)第1の非単結晶半導体領域を、他方導電型の不純
物源上に形成することを特徴とする特許請求の範囲第1
項に記載の半導体装置の製造方法。
(3) The first non-single crystal semiconductor region is formed on an impurity source of the other conductivity type.
A method for manufacturing a semiconductor device according to paragraph 1.
(4)ベース領域の形成を700′C以下の低温薄膜形
成方法にて行うことを特徴とする特許請求の範囲第3項
に記載の半導体温度の別命方法、っ(5)低温薄膜形成
方法が、光GVD法又は分子線エピタキシー法よりなる
ことを特徴とする特許請求の範囲第4項に記載の半導体
装置の製造方法。
(4) A method for forming a semiconductor temperature according to claim 3, characterized in that the base region is formed by a low-temperature thin film forming method at 700'C or less; (5) a low-temperature thin film forming method; 5. The method of manufacturing a semiconductor device according to claim 4, wherein the method is a photoGVD method or a molecular beam epitaxy method.
JP6014383A 1983-04-06 1983-04-06 Semiconductor device and manufacture thereof Pending JPS59186366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6014383A JPS59186366A (en) 1983-04-06 1983-04-06 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6014383A JPS59186366A (en) 1983-04-06 1983-04-06 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59186366A true JPS59186366A (en) 1984-10-23

Family

ID=13133623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6014383A Pending JPS59186366A (en) 1983-04-06 1983-04-06 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59186366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208272A (en) * 1987-02-24 1988-08-29 Nec Corp Manufacture of semiconductor element
JPS63239982A (en) * 1987-03-27 1988-10-05 Fujitsu Ltd Manufacture of bipolar semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208272A (en) * 1987-02-24 1988-08-29 Nec Corp Manufacture of semiconductor element
JPS63239982A (en) * 1987-03-27 1988-10-05 Fujitsu Ltd Manufacture of bipolar semiconductor device

Similar Documents

Publication Publication Date Title
JP3058954B2 (en) Method of manufacturing semiconductor device having growth layer on insulating layer
JPH07142502A (en) Manufacturing for bonded semiconductor substrate and dielectric separation bipolar transistor
US4408386A (en) Method of manufacturing semiconductor integrated circuit devices
JP2629644B2 (en) Method for manufacturing semiconductor device
JP2989051B2 (en) Silicon carbide bipolar semiconductor device and method of manufacturing the same
KR100321889B1 (en) A semiconductor device and a method of manufacturing the same
US3825451A (en) Method for fabricating polycrystalline structures for integrated circuits
JPS59186366A (en) Semiconductor device and manufacture thereof
JPS63174366A (en) Manufacture of semiconductor device
JPH0465528B2 (en)
JPS6095969A (en) Manufacture of semiconductor integrated circuit
JPH0547913A (en) Manufacture of semiconductor device
JPS5984435A (en) Semiconductor integrated circuit and manufacture thereof
JPS5828731B2 (en) All silicon materials available.
JPH0113210B2 (en)
JP3043370B2 (en) Manufacturing method of dielectric isolation substrate
JPS5851417B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS61224431A (en) Manufacture of semiconductor device
JPS5833702B2 (en) Manufacturing method of semiconductor substrate
JPS6095968A (en) Manufacture of semiconductor integrated circuit
JPS6154256B2 (en)
JPS58204553A (en) Manufacture of complementary dielectric isolating substrate
JPH04251935A (en) Semiconductor device and manufacture thereof
JPS5911642A (en) Semiconductor integrated circuit device and manufacture thereof
JPS61150212A (en) Manufacture of semiconductor device