JPS6154256B2 - - Google Patents

Info

Publication number
JPS6154256B2
JPS6154256B2 JP10099279A JP10099279A JPS6154256B2 JP S6154256 B2 JPS6154256 B2 JP S6154256B2 JP 10099279 A JP10099279 A JP 10099279A JP 10099279 A JP10099279 A JP 10099279A JP S6154256 B2 JPS6154256 B2 JP S6154256B2
Authority
JP
Japan
Prior art keywords
region
insulating film
polycrystalline
semiconductor
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10099279A
Other languages
Japanese (ja)
Other versions
JPS5624949A (en
Inventor
Hiromi Sakurai
Natsuo Tsubochi
Toshihiko Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10099279A priority Critical patent/JPS5624949A/en
Publication of JPS5624949A publication Critical patent/JPS5624949A/en
Publication of JPS6154256B2 publication Critical patent/JPS6154256B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 この発明は半導体装置の製造方法、とくに超高
速論理集積回路装置の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing an ultrahigh-speed logic integrated circuit device.

この種装置の従来の製造方法としては第1図に
示すような方法があつた。第1図a〜gは従来の
製造方法を工程順に示す断面図である。第1図a
に示すように、比較的低不純物濃度(1014cm-3
のp形シリコンからなる半導体基板1の表面に、
選択された表面領域が露出するように開孔部2a
を有する酸化膜(SiO2)のような絶縁膜2を形成
し、次いで同図bに示すように、開孔部2aよ
り、たとえばヒ素のようなn形不純物を拡散して
n+埋込み領域3を形成する。なお、同図bにお
ける領域4はp形半導体基板1の表面領域におけ
るn+埋込み領域以外の領域に設けられたp+チヤ
ネルカツト領域であり、たとえばイオン注入技術
により形成される。次いで、同図cに示すよう
に、上記選択された表面領域および絶縁膜2を含
む半導体基板1の全面にシリコンをエピタキシヤ
ル成長させると、上記選択された表面領域には単
結晶半導体領域5aが、また、絶縁膜2上には多
結晶半導体領域5bが形成される。次いで、同図
dに示すように、単結晶半導体領域5aと多結晶
半導体領域5bの表面にレジスト6を塗付したの
ち上記多結晶半導体領域5bを部分的に除去す
る。次いで、同図eに示すように、酸化膜8aを
マスクにして一方の多結晶半導体領域5bと単結
晶半導体領域5aにボロンのようなp形不純物を
拡散して、それぞれ外部ベース領域7bおよび内
部ベース領域7aを形成する。この場合、多結晶
半導体領域における不純物の拡散速度は単結晶半
導体領域における拡散速度より速いので、第1図
eに示すように一方の多結晶領域5bは全領域に
わたつてp形ベース領域7bに変換され、単結晶
半導体領域5aは部分的にp形ベース領域7aに
変換される。次いで、第1図fに示すように酸化
膜8bをマスクにして他方の多結晶半導体領域5
bと内部ベース領域7aに同時にヒ素(As)を
拡散してそれぞれn+形多結晶コレクタ領域9b
およびn+形エミツタ領域10を形成する。な
お、9aは単結晶半導体領域5aへ拡散された
n+コレクタ領域である。次いで、同図gに示す
ように、n+エミツタ領域10にエミツタ電極1
1bを、p形外部ベース領域7bにベース電極1
1cを、またn+コレクタ領域9bにコレクタ電
極11aをそれぞれ形成する。
A conventional method for manufacturing this type of device is as shown in FIG. FIGS. 1a to 1g are cross-sectional views showing a conventional manufacturing method in the order of steps. Figure 1a
Relatively low impurity concentration (10 14 cm -3 ) as shown in
On the surface of the semiconductor substrate 1 made of p-type silicon,
The opening 2a is opened so that the selected surface area is exposed.
An insulating film 2, such as an oxide film (SiO 2 ) having a
An n + buried region 3 is formed. Note that region 4 in FIG. 4B is a p + channel cut region provided in a region other than the n + buried region in the surface region of p type semiconductor substrate 1, and is formed by, for example, ion implantation technology . Next, as shown in FIG. 3c, silicon is epitaxially grown on the entire surface of the semiconductor substrate 1 including the selected surface region and the insulating film 2, and a single crystal semiconductor region 5a is formed in the selected surface region. Further, a polycrystalline semiconductor region 5b is formed on the insulating film 2. Next, as shown in FIG. 4D, a resist 6 is applied to the surfaces of the single crystal semiconductor region 5a and the polycrystalline semiconductor region 5b, and then the polycrystalline semiconductor region 5b is partially removed. Next, as shown in FIG. 5e, p-type impurities such as boron are diffused into one of the polycrystalline semiconductor regions 5b and the single-crystalline semiconductor region 5a using the oxide film 8a as a mask to form external base regions 7b and internal regions, respectively. A base region 7a is formed. In this case, since the diffusion rate of impurities in the polycrystalline semiconductor region is faster than that in the single-crystalline semiconductor region, one polycrystalline region 5b is entirely converted into the p-type base region 7b, as shown in FIG. 1e. The single crystal semiconductor region 5a is partially converted into a p-type base region 7a. Next, as shown in FIG. 1f, the other polycrystalline semiconductor region 5 is formed using the oxide film 8b as a mask.
arsenic (As) is simultaneously diffused into the internal base region 7a and the n + type polycrystalline collector region 9b.
and an n + type emitter region 10. Note that 9a is diffused into the single crystal semiconductor region 5a.
n + collector area. Next, as shown in FIG .
1b to the p-type external base region 7b.
1c, and a collector electrode 11a is formed in the n + collector region 9b, respectively.

このようにして製造された半導体装置は、気相
成長によりp形基板1上に同時に単結晶領域5a
と多結晶領域5bを設け、この両領域5a,5b
における拡散速度のちがいを利用することによつ
て単結晶半導体領域にコレクタ領域5a、ベース
領域7aおよびエミツタ領域10を設けるため、
選択された表面領域、すなわちn+埋込み領域3
の面積を既存の装置にくらべて小さくすることに
よつてコレクタベース接合の面積を小さくできる
ため、ベースコレクタ容量を小さくできるが、コ
レクタ電極11aならびにベース電極11cは引
出し電極として、絶縁膜に延在させるため、多結
晶半導体領域9b,7bの厚さが大きいので、第
1図gに示す符号12a,12cの部分で、段差
による配線不良が生じやすい欠点がある。
The semiconductor device manufactured in this way has a single crystal region 5a simultaneously formed on the p-type substrate 1 by vapor phase growth.
and a polycrystalline region 5b, both regions 5a and 5b are provided.
In order to provide a collector region 5a, a base region 7a, and an emitter region 10 in a single crystal semiconductor region by utilizing the difference in diffusion speed in
Selected surface area i.e. n + buried area 3
By making the area of the collector base junction smaller than that of existing devices, the area of the collector base junction can be made smaller, so the base collector capacitance can be made smaller. Therefore, since the thickness of the polycrystalline semiconductor regions 9b and 7b is large, there is a drawback that wiring defects due to steps are likely to occur in the portions 12a and 12c shown in FIG. 1g.

この発明は、この種超高速論理集積回路装置に
おける配線の段差を少なくするための製造方法を
提供するものである。第2図はこの発明の一実施
例を示す製造方法を工程順に示す要部断面図であ
る。第2図aに示すように、比較的低不純物濃度
(1014cm-3)のp形シリコンからなる半導体基板1
の表面に選択された表面領域1aが露出するよう
に開孔部2aを有する酸化膜(SiO2)のような絶
縁膜2を形成し、次いで、第2図bに示すよう
に、開孔部2aより、たとえばヒ素(As)のよ
うなn形不純物を拡散してn+埋込み領域3を形
成する。なお、第2図bにおけるp+領域4はp
形半導体基板1の表面領域におけるn+埋込み領
域3以外の領域に設けられたp+チヤネルカツト
領域である。次いで、第2図cに示すように、上
記選択された表面領域1aおよび絶縁膜2を含む
半導体基板1の全面にn形シリコンをエピタキシ
ヤル成長させると、上記選択された表面領域1a
には単結晶n形半導体領域5aが、また、絶縁膜
2上には多結晶半導体領域5bが形成される。こ
のように単結晶半導体領域5aと多結晶半導体領
域5bが形成された第2図cに示すような半導体
基板1の全面にボロンのような不純物を拡散する
と、単結晶半導体領域5aの拡散係数より多結晶
半導体領域5bの拡散係数の方が大きいので、第
2図dに示すように、単結晶半導体領域5aには
表面から比較的浅い不純物導入領域51aが、ま
た多結晶半導体領域5bには上記不純物導入領域
51aの厚さより厚い不純物導入領域51bが形
成される。
The present invention provides a manufacturing method for reducing the level difference in wiring in this type of ultra-high-speed logic integrated circuit device. FIG. 2 is a sectional view of a main part showing a manufacturing method according to an embodiment of the present invention in order of steps. As shown in FIG. 2a, a semiconductor substrate 1 made of p-type silicon with a relatively low impurity concentration (10 14 cm -3 )
An insulating film 2 such as an oxide film (SiO 2 ) having an opening 2a is formed on the surface of the substrate so that a selected surface region 1a is exposed, and then, as shown in FIG. 2a, an n-type impurity such as arsenic (As) is diffused to form an n + buried region 3. In addition, p + region 4 in Fig. 2b is p
This is a p + channel cut region provided in a region other than the n + buried region 3 in the surface region of the shaped semiconductor substrate 1 . Next, as shown in FIG. 2c, when n-type silicon is epitaxially grown on the entire surface of the semiconductor substrate 1 including the selected surface region 1a and the insulating film 2, the selected surface region 1a
A single crystal n-type semiconductor region 5a is formed on the insulating film 2, and a polycrystalline semiconductor region 5b is formed on the insulating film 2. When an impurity such as boron is diffused over the entire surface of the semiconductor substrate 1 as shown in FIG. 2c in which the single crystal semiconductor region 5a and the polycrystalline semiconductor region 5b are formed, Since the diffusion coefficient of the polycrystalline semiconductor region 5b is larger, as shown in FIG. An impurity introduced region 51b is formed which is thicker than the impurity introduced region 51a.

次いで、水素を含む酸化性雰囲気中で熱処理を
行なうと、不純物導入領域51a,51bと、そ
の上に約4:6の割合の厚みで第2図eに示す酸
化領域52が形成される。次いで、弗酸の雰囲気
で、酸化領域52が形成された半導体基板1の表
面をエツチングすると、酸化領域52と多結晶半
導体領域5bにおけるエツチング速度の差が大き
いので、領域5a,5b表面の間に段差が出来る
のが防止され、かつ、上記多結晶半導体領域5b
のに表面と絶縁膜2との段差が少ない第2図fに
示すような半導体基板が得られる。
Then, when heat treatment is performed in an oxidizing atmosphere containing hydrogen, impurity introduced regions 51a and 51b and an oxidized region 52 shown in FIG. 2e are formed thereon with a thickness of about 4:6. Next, when the surface of the semiconductor substrate 1 on which the oxidized region 52 is formed is etched in a hydrofluoric acid atmosphere, there is a large difference in etching rate between the oxidized region 52 and the polycrystalline semiconductor region 5b, so that there is a gap between the surfaces of the regions 5a and 5b. The formation of steps is prevented, and the polycrystalline semiconductor region 5b is
However, a semiconductor substrate as shown in FIG. 2f, in which the difference in level between the surface and the insulating film 2 is small, can be obtained.

次に、第2図gに示すように多結晶半導体領域
5bの不要部を除去したのち、上記単結晶n形エ
ピタキシヤル領域5aの表面の一部を残して一方
の多結晶半導体領域と連続してp形不純物を拡散
すると、両領域5a,5bの拡散速度が異なるの
で、単結晶n形エピタキシヤル領域5aにはp形
領域7aが、また一方の多結晶半導体領域には全
面的にp形多結晶領域7bが形成される。なお、
第2図gにおける符号8はこれらp形領域7a,
7bを形成するときのマスク酸化膜および熱処理
中に形成される酸化膜である。次いで第2図hに
示すように上記酸化膜8をマスクとして単結晶領
域内のp形領域7aにn+形単結晶領域10を、
また他方の多結晶領域にn+多結晶領域9bを拡
散形成する。次いで、第2図iに示すように、上
記n+形単結晶領域10,n+形多結晶領域9bな
らびにp形多結晶領域7bにそれぞれ電極11
a,11b,11cを設ける。
Next, as shown in FIG. 2g, after removing unnecessary parts of the polycrystalline semiconductor region 5b, a part of the surface of the single crystal n-type epitaxial region 5a is left and is continuous with one polycrystalline semiconductor region. When the p-type impurity is diffused in the single crystal n-type epitaxial region 5a, the single crystal n-type epitaxial region 5a has the p-type region 7a, and one polycrystalline semiconductor region has the entire p-type impurity. Polycrystalline region 7b is formed. In addition,
Reference numeral 8 in FIG. 2g indicates these p-type regions 7a,
These are a mask oxide film when forming 7b and an oxide film formed during heat treatment. Next, as shown in FIG. 2h, using the oxide film 8 as a mask, an n + type single crystal region 10 is formed in the p type region 7a within the single crystal region.
Further, an n + polycrystalline region 9b is diffused and formed in the other polycrystalline region. Next , as shown in FIG .
a, 11b, and 11c are provided.

このようにして、n形エピタキシヤル領域5a
を内部コレクタ領域、このn形エピタキシヤル領
域5aに連続したn+多結晶半導体領域9bを外
部コレクタ領域、p形単結晶領域7aを内部ベー
ス領域、このp形単結晶領域7aに連続したp形
多結晶領域7bを外部ベース領域およびn+形単
結晶領域10をエミツタ領域とするnpn形トラン
ジスタが形成され、ベース電極11cとコレクタ
電極11aは絶縁膜2上に延在し、他の素子また
は領域(いずれも図示していない)と接続され
る。この場合、多結晶領域7b,9bの表面と絶
縁膜2の表面の段差は従来装置に比して、第2図
d.e,fに示すように不純物導入領域を形成し酸
化してこれを除去した分だけ小さくなるので、上
記コレクタ電極11aならびにベース電極11c
を絶縁膜2上に延在させても、段部における断線
を防止することができる。なお、このようなコレ
クタ電極11a、エミツタ電極11bおよびベー
ス電極11c上に絶縁被膜を設けて、さらにその
上に他の電極を設けるような多層配線を行なう際
には、とくに上記段差の影響は大きくなるので、
この方法は有効である。
In this way, the n-type epitaxial region 5a
is an internal collector region, the n + polycrystalline semiconductor region 9b continuous to this n-type epitaxial region 5a is an external collector region, the p-type single crystal region 7a is an internal base region, and the p-type semiconductor region continuous to this p-type single crystal region 7a is An npn transistor is formed in which the polycrystalline region 7b is used as an external base region and the n + type single crystal region 10 is used as an emitter region, and the base electrode 11c and collector electrode 11a extend on the insulating film 2 and are connected to other elements or regions. (none of which are shown). In this case, the difference in level between the surfaces of the polycrystalline regions 7b and 9b and the surface of the insulating film 2 is as shown in FIG.
As shown in de and f, the size of the collector electrode 11a and the base electrode 11c is reduced by the amount that an impurity introduced region is formed and removed by oxidation.
Even if it extends over the insulating film 2, disconnection at the stepped portion can be prevented. Note that when performing multilayer wiring in which an insulating film is provided on the collector electrode 11a, emitter electrode 11b, and base electrode 11c, and other electrodes are further provided on top of the insulating film, the effect of the above-mentioned level difference is particularly large. So,
This method is effective.

以上この発明は不純物導入領域及び酸化領域を
単結晶半導体領域および多結晶半導体領域のいず
れにも設ける例について説明したが、本質的には
外部領域が形成される多結晶半導体領域だけに不
純物導入領域及び酸化領域を設けて、この酸化領
域を除去することによつて目的は達せられるもの
である。
Although this invention has described an example in which the impurity-introduced region and the oxidized region are provided in both the single-crystal semiconductor region and the polycrystalline semiconductor region, essentially the impurity-introduced region is provided only in the polycrystalline semiconductor region in which the external region is formed. The object is achieved by providing an oxidized region and removing this oxidized region.

この発明は以上説明したように、絶縁膜上に形
成された多結晶半導体領域に不純物導入領域を設
け、その表面を酸化して酸化領域を形成し、酸化
領域を除去して、残された多結晶半導体領域にベ
ース領域およびコレクタ領域を形成し、これら多
結晶ベース領域およびコレクタ領域の表面に接続
して絶縁膜上に延在する電極を設けるので、電極
の段差による断線などがきわめて少ない信頼性の
高い半導体装置を製造することができる。
As explained above, this invention provides an impurity-introduced region in a polycrystalline semiconductor region formed on an insulating film, oxidizes the surface of the region to form an oxidized region, removes the oxidized region, and removes the remaining polycrystalline semiconductor region. The base region and collector region are formed in the crystalline semiconductor region, and electrodes are provided that connect to the surfaces of the polycrystalline base region and collector region and extend on the insulating film, resulting in reliability with extremely little disconnection due to electrode steps. It is possible to manufacture semiconductor devices with high performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の製造方法を工程順
に示す断面図、第2図はこの発明の一実施施例を
示す製造方法を工程順に示す断面図である。 図中、1は半導体基板、1aは表面領域、2は
絶縁膜、2aは開孔部、5aは単結晶半導体領
域、5bは多結晶半導体領域、51a,51bは
不純物導入領域、52は酸化領域、11a,11
b,11cは電極である。なお、図中同一符号は
同一または相当部分を示す。
FIG. 1 is a sectional view showing a conventional method for manufacturing a semiconductor device in order of steps, and FIG. 2 is a sectional view showing a method of manufacturing a conventional semiconductor device in order of steps. In the figure, 1 is a semiconductor substrate, 1a is a surface region, 2 is an insulating film, 2a is an opening, 5a is a single crystal semiconductor region, 5b is a polycrystalline semiconductor region, 51a and 51b are impurity introduced regions, and 52 is an oxidized region , 11a, 11
b and 11c are electrodes. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 半導体基板の選択された表面領域が露出する
ように半導体基板の表面の開孔部を有する絶縁膜
を形成する工程、上記表面領域および絶縁膜上に
上記半導体基板と同一材料を成長させることによ
り上記表面領域に単結晶半導体領域を、上記絶縁
膜上に多結晶半導体領域をそれぞれ形成する工
程、少なくとも上記多結晶半導体領域の表面から
不純物を導入して上記多結晶半導体領域の厚さよ
り薄い不純物導入領域を形成する工程、少なくと
も上記不純物導入領域を酸化して酸化領域を形成
する工程、上記酸化領域を除去する工程、この工
程後多結晶半導体領域および上記絶縁膜上に延在
する電極を形成する工程を含む半導体装置の製造
方法。 2 単結晶半導体領域および多結晶半導体領域の
各表面から不純物を導入して単結晶半導体領域お
よび多結晶半導体領域の各表面層に不純物導入領
域を形成することを特徴とする特許請求の範囲第
1項記載の半導体装置の製造方法。
[Claims] 1. A step of forming an insulating film having an opening on the surface of the semiconductor substrate so that a selected surface region of the semiconductor substrate is exposed, a step of forming an insulating film having an opening on the surface region and the insulating film, which is the same as that of the semiconductor substrate. A step of forming a single crystal semiconductor region in the surface region and a polycrystalline semiconductor region on the insulating film by growing a material, and introducing impurities from at least the surface of the polycrystalline semiconductor region to form the polycrystalline semiconductor region. a step of forming an impurity-introduced region thinner than the thickness of the impurity-introduced region, a step of oxidizing at least the impurity-introduced region to form an oxidized region, a step of removing the oxidized region, and after this step, a step of forming an impurity-introduced region on the polycrystalline semiconductor region and the insulating film. A method of manufacturing a semiconductor device, including a step of forming an existing electrode. 2. Claim 1, characterized in that impurities are introduced from each surface of the single crystal semiconductor region and the polycrystalline semiconductor region to form impurity introduced regions in each surface layer of the single crystal semiconductor region and the polycrystalline semiconductor region. A method for manufacturing a semiconductor device according to section 1.
JP10099279A 1979-08-07 1979-08-07 Manufacture of semiconductor device Granted JPS5624949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10099279A JPS5624949A (en) 1979-08-07 1979-08-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10099279A JPS5624949A (en) 1979-08-07 1979-08-07 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5624949A JPS5624949A (en) 1981-03-10
JPS6154256B2 true JPS6154256B2 (en) 1986-11-21

Family

ID=14288794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10099279A Granted JPS5624949A (en) 1979-08-07 1979-08-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5624949A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593995A (en) * 1984-06-11 1986-06-10 Eastman Kodak Company Method and apparatus for producing multiple sets of copies of a document

Also Published As

Publication number Publication date
JPS5624949A (en) 1981-03-10

Similar Documents

Publication Publication Date Title
KR0180325B1 (en) Current across thin base region and process of fabrication thereof
JPS63314844A (en) Manufacture of semiconductor device
JPH088270A (en) Semiconductor device and its manufacturing method
JPH09115921A (en) Semiconductor device and its manufacture
JP2629644B2 (en) Method for manufacturing semiconductor device
JPS6252963A (en) Manufacture of bipolar transistor
JPH06232247A (en) Manufacturing of semiconductor layer isolated on insulation layer
JP2565162B2 (en) Bipolar transistor and manufacturing method thereof
JPS59108325A (en) Manufacture of semiconductor device
JPH0482180B2 (en)
JPS6154256B2 (en)
JPS6095969A (en) Manufacture of semiconductor integrated circuit
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JPS6154255B2 (en)
JP2828126B2 (en) Semiconductor device and manufacturing method thereof
JPS6237541B2 (en)
JPS59215741A (en) Manufacture of semiconductor integrated circuit device
JPH01214166A (en) Semiconductor integrated circuit device with bipolar transistor
JPH0810696B2 (en) Method for manufacturing semiconductor device
JPH0240921A (en) Manufacture of bipolar transistor
JPH05343416A (en) Manufacture of semiconductor device
JPS60249364A (en) Manufacture of semiconductor device
JPS6095968A (en) Manufacture of semiconductor integrated circuit
JPS5833702B2 (en) Manufacturing method of semiconductor substrate
JPS639150A (en) Manufacture of semiconductor device