JPS59215741A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPS59215741A
JPS59215741A JP9275883A JP9275883A JPS59215741A JP S59215741 A JPS59215741 A JP S59215741A JP 9275883 A JP9275883 A JP 9275883A JP 9275883 A JP9275883 A JP 9275883A JP S59215741 A JPS59215741 A JP S59215741A
Authority
JP
Japan
Prior art keywords
film
oxide film
integrated circuit
circuit device
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9275883A
Other languages
Japanese (ja)
Inventor
Katsuhiro Tsukamoto
塚本 克博
Hideo Kotani
小谷 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9275883A priority Critical patent/JPS59215741A/en
Publication of JPS59215741A publication Critical patent/JPS59215741A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enable to obtain an interelement isolating region having a flat surface and moreover formed fine by a method wherein interelement isolating grooves are formed, and an insulating material is buried in the grooves thereof. CONSTITUTION:An n<+> type buried layer 3 is formed on a p type Si substrate 1, and an n type epitaxial layer 4 is grown thereon. After an Si film 5 is grown on the surface, the parts to act as the active regions of elements are covered with a photo resist 9. Then the film 5, the layer 4 and the layer 3 are etched using the resist 9 as a mask to form interelement isolating grooves 18. Then p<+> type channel cut regions 19 are formed. Then the resist 9 is removed, and after an Si oxide film 5a is formed on the surface, an insulating film 20 is deposited. Then a solution type insulator 21 is applied. The surface is flattened completely in such a way. After then, the film 21 is calcined to be converted into an Si oxide film by performing heat treatment. Then the flattened film 20 and the Si oxide film obtained by calcining the film 21 are etched. Thus the interelement isolating region of structure buried with the Si oxide films in the grooves 18 is completed. Accordingly, a bird beak and a level difference are removed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体集積回路の製造方法に係り、特に半導体
集積回路の素子間分離領域の形成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a semiconductor integrated circuit, and particularly to the formation of isolation regions between elements of a semiconductor integrated circuit.

〔従来技術〕[Prior art]

現在、半導体集積回路の素子間分離法として、素子間を
熱酸化膜で分離した構造の酸化膜分離法が従来から用い
られていた、pn接合分離法にとってかわり、高速高密
度のシリコン集積回路に広く用いられてきている。
Currently, as an element isolation method for semiconductor integrated circuits, the oxide film isolation method, in which elements are separated by a thermal oxide film, has replaced the conventional pn junction isolation method, and is now used in high-speed, high-density silicon integrated circuits. It has been widely used.

この酸化膜分離法により形成される高速、高密度バイポ
ーラLSI用酸化膜分離形トランジスタの製造工程をg
1図(A)〜(r、>に従って具体的に説明する0 まず、第1図(4)に示すように比較的不純物濃度の低
い(〜10 am )のp形シリコン基板fi+の一方
の主面上に酸化膜(2)を形成し、次に第1図CB)に
示ずようにその酸化膜(2)の一部を写真製版およびエ
ツチングで除去して開孔し、しかる後この開口部からn
形埋込み層(3)となるべきアンチモン(sb)または
ヒ素(As)をイオン注入し、イオン注入層(3)を形
成する。次に第1図(0)に示すように酸化および上記
注入イオンのドライブ拡散を行い酸化膜(2a)および
n+形埋込み層(3a)を形成する。しかる後、第1図
(D)に示すように酸化膜(2a)を除去し、比較的不
純物濃度の低い(〜10 cxn  )のn形エヒタキ
シャル層(4)を成長させる。このとき縦方向オートド
ーピングが起り、n+形埋込み層は(3b)に示すよう
にな9、その上部に位置するn−形層(4)は他の領域
のそれよりもやや実効厚さが薄くなる。次に、第1図(
E)に示すように下敷酸化膜(5)および耐酸化性絶縁
膜(6)を形成し、トランジスタ等の素子、配線となる
べき半導体領域、すなわち第1図ではn+形埋込み層(
3b)の上部以外の部分の下敷酸化膜(5)および耐酸
化性絶縁膜、膜(6)を除去する。しかる後、第1図C
F)に示ずiうに下敷酸化膜(5)および耐酸化性絶縁
膜(6)をマスクとしてn形エヒタキシャル層(4)を
エツチングし、さらにボロン(B)をイオン注入してp
+形チャネルカット領域(7)を形成する。次いで、第
1図(())に示すように選択酸化を行い絶縁性酸化膜
(8)を形成し、耐酸化性絶縁膜(6)および下敷酸化
膜(5)を除去する。次に第1図(功に示すようにベー
ス領域以外はレジスト(9)で覆い、ボロン(B)をイ
オン注入し、p+形活性ベース領域(lO)を形成する
。同様に第1図(1)に示すレジスト膜(9a)のよう
に延長して、p++形非活性ベース領域(11)をp+
形活性領域+101よシ高濃度で形成することも可能で
ある。しかる後、第1図(、r)に示すようにレジス)
 (9a)を除去し、OVD法により半導体表面を酸化
膜(8a)で憶い、その状態でこれらp+形活性ベース
領域[101およびp++形非活性ベース領域(1すの
ドライブ拡散を行う。次いで、第1図(埒に示すように
、ベース、エミッタ、コレクタの各コンタクトを取る部
分の酸化膜を除去し、ベースコンタクトとなる領域のみ
レジスト(12+で覆い、他の酸化膜除去領域からAs
をイオン注入してn+形エミッタ領域(131およびn
+形コレクタ領域θ蜀を同時に形成する。次に、上記レ
ジストθ粉を除去して、イオン注入後のAsのアニール
を行い、しかる後。
The manufacturing process of oxide film isolated transistors for high-speed, high-density bipolar LSIs formed using this oxide film separation method is explained below.
1(A) to (r,>) First, as shown in FIG. 1(4), one main layer of a p-type silicon substrate fi An oxide film (2) is formed on the surface, and then a part of the oxide film (2) is removed by photolithography and etching to form a hole, as shown in FIG. 1CB). part to n
Antimony (SB) or arsenic (As), which is to become a shaped buried layer (3), is ion-implanted to form an ion-implanted layer (3). Next, as shown in FIG. 1(0), oxidation and drive diffusion of the implanted ions are performed to form an oxide film (2a) and an n+ type buried layer (3a). Thereafter, as shown in FIG. 1(D), the oxide film (2a) is removed and an n-type epitaxial layer (4) having a relatively low impurity concentration (~10 cxn) is grown. At this time, vertical autodoping occurs, and the n+ type buried layer becomes 9 as shown in (3b), and the n- type layer (4) located above it has a slightly thinner effective thickness than that in other regions. Become. Next, Figure 1 (
As shown in FIG. 1, an underlying oxide film (5) and an oxidation-resistant insulating film (6) are formed, and a semiconductor region that is to become an element such as a transistor or wiring, that is, an n+ type buried layer (in FIG. 1) is formed.
3b) The underlying oxide film (5) and the oxidation-resistant insulating film and film (6) are removed from the parts other than the upper part. After that, Figure 1C
As shown in F), the n-type epitaxial layer (4) is etched using the underlying oxide film (5) and the oxidation-resistant insulating film (6) as a mask, and boron (B) is ion-implanted to form a p-type layer.
Form a +-shaped channel cut region (7). Next, as shown in FIG. 1(), selective oxidation is performed to form an insulating oxide film (8), and the oxidation-resistant insulating film (6) and underlying oxide film (5) are removed. Next, as shown in FIG. 1 (I), the area other than the base region is covered with a resist (9), and boron (B) ions are implanted to form a p+ type active base region (lO).Similarly, as shown in FIG. ) to extend the p++ type inactive base region (11) to a p+ type resist film (9a).
It is also possible to form the active region with a higher concentration than +101. After that, as shown in Figure 1 (, r),
(9a) is removed, the semiconductor surface is covered with an oxide film (8a) by OVD method, and in this state, drive diffusion is performed on these p+ type active base regions [101] and p++ type inactive base regions (101).Next, , as shown in Figure 1 (2), remove the oxide film at the base, emitter, and collector contact areas, cover only the area that will become the base contact with resist (12+), and remove As from the other oxide film removed areas.
was ion-implanted to form n+ type emitter regions (131 and n
A +-shaped collector region θ Shu is formed at the same time. Next, the resist θ powder is removed, and after ion implantation, As is annealed.

第1図(L)に示すようにベース、エミッタ、コレクタ
の開孔部にそれぞれベース電極05ノ、エミッタ電極(
IQ)、コレクタ!t!iθ乃を形成してバイポーラト
ランジスタを形成する。
As shown in FIG. 1 (L), the base electrode 05 and the emitter electrode (
IQ), Collector! T! A bipolar transistor is formed by forming iθno.

上記のような従来の絶縁膜分離構造のバイポーラトラン
ジスタはn+形埋込み層(3b)、 p+形チャネルカ
ット領域(7)および絶縁膜分離(8b)によってトラ
ンジスタ間または他の素子間が分離されるから、p−n
分離にくらべると、ベース・コ゛レクタ接合容量(cT
C)およびコレクタ・基、板接合容量(0、s) Mツ
レツレl/2以下、5/6以下程度に44号奉低減する
ことができる。
In a bipolar transistor with a conventional insulation film isolation structure as described above, transistors or other elements are isolated by an n+ type buried layer (3b), a p+ type channel cut region (7), and an insulation film isolation (8b). , p-n
Compared to isolation, base-collector junction capacitance (cT
C) and collector/substrate, plate junction capacitance (0, s) M distortion can be reduced to 1/2 or less, 5/6 or less.

Ja 上(7) ヨうに、酸化膜分離構造のトランジス
タでは、トランジスタ自体の面積が小さくできる。
Ja Upper (7) As mentioned above, in a transistor with an oxide film isolation structure, the area of the transistor itself can be reduced.

しかし素子間分離酸化膜(8b)が第2図に示すように
、トランジスタ領域に幅Wにわたって侵入し、いわゆる
バードビークを生じ、がっ酸化膜の端の部分でバードヘ
ッドと呼ばれる筒さH(7) W差を生じ、電極配線、
特に多N電極配線の際5断線等の故障を銹発じゃすい。
However, as shown in FIG. 2, the element isolation oxide film (8b) invades the transistor region over the width W, creating a so-called bird's beak, and the edge of the oxide film has a cylindrical shape H (7b) called a bird's head. ) W difference occurs, electrode wiring,
Particularly when wiring multiple N electrodes, failures such as 5-wire disconnections are avoided.

更に、分離酸化膜の形成には高温で長時間の熱酸化を必
要とするので、半導体の結晶欠陥の発生や、埋込みコレ
クタの不純物分布が再分布し、ベース・コレクタ接合容
it (0,。
Furthermore, since the formation of the isolation oxide film requires thermal oxidation at high temperatures and for a long time, crystal defects in the semiconductor occur and the impurity distribution in the buried collector is redistributed, resulting in the base-collector junction capacitance it (0,.

)の増大をもたらすなどの欠点があった。), which had drawbacks such as an increase in

〔発明の概要〕[Summary of the invention]

本発明は以上のような点に鑑みてなされたもので、素子
間分離酸化膜を選択酸化で形成するのに代シ、素子間分
離溝を形成して、このflitに絶縁材を埋め込むこと
によって内部応力が小さく、表面が平坦で、微細な分離
領域を形成可能な半導体集積回路装置の製造方法を提供
するものである。
The present invention has been made in view of the above points, and instead of forming an inter-element isolation oxide film by selective oxidation, it is possible to form an inter-element isolation groove and fill this flit with an insulating material. The present invention provides a method for manufacturing a semiconductor integrated circuit device that has low internal stress, has a flat surface, and can form fine isolation regions.

〔発明の実施例〕[Embodiments of the invention]

第3図(A)〜(1)は本発明の一実施例の王侠工程段
−階における状態を示す断面図である。ます、第3図ω
に示すように比較的低不純物濃度(〜10”cm−3)
のp形シリコン基板+11の全面にsb+またはAs”
をイオン注入してn+形埋込み層となるべき拡散層(3
)を形成する。つぎに第3図(B)に示すように、比較
的低不純物濃度(〜10151015aのn形エヒタキ
シャル層(4)を成長させる。つづいて、第3図(C)
に示すように表面に薄い酸化シリコン膜(5)を成長さ
せた後、写真製版技術によりホトレジスト(9)で、素
子の能動領域となる部分を慎う。
FIGS. 3(A) to 3(1) are cross-sectional views showing the state of one embodiment of the present invention at the royal process stage. Figure 3 ω
Relatively low impurity concentration (~10”cm-3) as shown in
sb+ or As'' on the entire surface of the p-type silicon substrate +11
ion implantation to form a diffusion layer (3
) to form. Next, as shown in FIG. 3(B), an n-type epitaxial layer (4) with a relatively low impurity concentration (~10151015a) is grown.
After growing a thin silicon oxide film (5) on the surface as shown in FIG. 3, a photoresist (9) is applied using photolithography to cover the area that will become the active region of the device.

つぎに、第3図(D)に示すように、当該ホトレジスト
(9)をマスクに酸化シリコン膜fb+、n形エピタキ
シャル層(4)およびn+形埋込み層(3)をエツチン
グして、素子間分離用溝端を形成する。この際、エツチ
ングの横方内拡が9を抑えるため、反応性イオンエツチ
ングを用いて、非等方的に、はぼ垂直な側壁面を有する
溝(18)を形成するのが好ましい。
Next, as shown in FIG. 3(D), the silicon oxide film fb+, the n-type epitaxial layer (4), and the n+-type buried layer (3) are etched using the photoresist (9) as a mask to isolate the elements. Form the end of the groove. At this time, in order to suppress the lateral inward expansion of etching 9, it is preferable to use reactive ion etching to form the groove (18) anisotropically with substantially vertical sidewall surfaces.

つぎに第3図(層に示すように、ホトレジスト(9)を
マスクに、反転防止用の不純物、たとえばボロン(B)
をイオン注入してp+形チャネルカット領域(19)を
形成する。このイオンでは、従来の酸化膜分離の場合と
異なり、厚い酸化シリコン膜形成に伴う不純物の吸い出
し効果がほとんど無視しうるので、イオン注入撞は従来
法に比べてかなり小さくすることができる。つぎに、第
31伊)に示すように、ホトレジスト(9)を除去し、
表面に薄い酸化シリコン膜(5a)を成長させたのち、
酸化シリコン膜のような絶縁膜−をデポジットする。絶
縁膜(ホ)の厚さは、素子間分離用溝端の深さとはぼ同
程腿の厚さにするのが好ましい。絶縁HA(go)のデ
ポジットには、段差被覆性に優れたcvD法で、酸化シ
リコン膜や、リンガラス膜をデポジットする方法を用い
ることができる。または段差部の形状をテーパー状にす
ることができる基板バイアスをかけたRFスパッタリン
グ法を用いて、酸化シリコン膜をデポジットすることも
可能である。つづいて、第3図(())に示すように、
篩液状?絶縁物(2ρ、たとえば有機溶剤に溶解させた
オルガノ・シラノールなどを回転塗布する。こうして、
素子間分離用溝(+樽に沿ってできていた絶縁膜−の段
差部は、オルガノ・シラノール(2+)によって埋まシ
、表面は完全に平坦になる。このあと熱処理を行って、
有機溶剤を蒸発させ、オルガノ・シラノールを焼成して
、酸化シリコン膜に変換する。つぎに、第3図(I()
に示すように、平坦化された酸化シリコン膜−とオルガ
ノ・シラノール(21)を焼成して得た酸化シリコン膜
とをエツチングする。このエツチングに際して、プラズ
マ・エツチングまたは反応性イオン・エツチングを用い
ることにより、酸化シリコンM(20)とオルガノ・7
ラノールシリから形u4シた酸化シリコン膜とのエツチ
ング速度を等しくすることが可能であり、平坦化された
表面形状を保ちながら、能動オ≦子領域上の酸化シリコ
ン膜がなくなるまで、エツチングすることが可能である
。こうして、最終的に、素子間分離用溝(18)の中に
酸化シリコン股が埋め込まれた構造の素子同分離領域か
完成する。
Next, as shown in FIG.
A p+ type channel cut region (19) is formed by ion implantation. With these ions, unlike in the case of conventional oxide film separation, the effect of sucking out impurities accompanying the formation of a thick silicon oxide film is almost negligible, so the ion implantation force can be made considerably smaller than in the conventional method. Next, as shown in No. 31), the photoresist (9) is removed,
After growing a thin silicon oxide film (5a) on the surface,
Deposit an insulating film, such as a silicon oxide film. It is preferable that the thickness of the insulating film (e) is approximately the same as the depth of the end of the trench for isolation between elements. For depositing the insulating HA (go), a method of depositing a silicon oxide film or a phosphorus glass film using the CVD method, which has excellent step coverage, can be used. Alternatively, it is also possible to deposit the silicon oxide film using an RF sputtering method with a substrate bias applied, which can make the shape of the stepped portion tapered. Next, as shown in Figure 3 (()),
Sieve liquid? An insulating material (2ρ, such as organo-silanol dissolved in an organic solvent, etc., is spin-coated. In this way,
The step part of the isolation groove between elements (+insulating film formed along the barrel) is filled with organo-silanol (2+), and the surface becomes completely flat.After this, heat treatment is performed,
The organic solvent is evaporated and the organo-silanol is baked to convert it into a silicon oxide film. Next, Figure 3 (I()
As shown in FIG. 3, the planarized silicon oxide film and the silicon oxide film obtained by firing the organo-silanol (21) are etched. During this etching, by using plasma etching or reactive ion etching, silicon oxide M (20) and organo-7
It is possible to make the etching speed equal to that of the silicon oxide film formed from ranol silicate and the U4-shaped silicon oxide film, and it is possible to etch until the silicon oxide film on the active region is completely removed while maintaining a flat surface shape. It is possible. In this way, an element isolation region having a structure in which a silicon oxide groove is buried in the element isolation groove (18) is finally completed.

素子同分離領域が形成されたわとは、絶縁膜し4を形成
後、従来例の第1図の(工()〜(L)に示したと同様
の工程を経てベース(ILII 、エミッタ(13)、
コレクタコンタクト(+4)を形成し、ベース電極α5
)、エミッタ電極OLコレクタ′i!81!(lηを形
成して、素子間分離用向で分離されたトランジスタの形
成を完了する。
After forming the insulating film 4, the base (ILII) and emitter (13 ),
Form collector contact (+4) and base electrode α5
), emitter electrode OL collector 'i! 81! (By forming lη, the formation of isolated transistors for element isolation is completed.

第4図はこのようにして得られた半導体集積回路装置に
おける素子間分離領域と竿の近傍とを拡大して示す断面
図で、図示のように、散化シリコン膜(5a) 、 (
20)で埋め込まれた素子間分離用溝(+19が形成さ
れているので、従来の酸化膜分離法の欠点であった、素
子間分離用酸化シリコン膜の喰い込み、いわゆるバード
ビークがなくなシ、能動領域の幅が狭くなることもなく
、また、バード・ヘッドと呼ばれる酸化膜の段差もなく
、表面は完全に平坦になり、素子の微細化にとって、非
常に大きな利点となる。また、熱酸化による厚い酸化膜
がないので、内部応力が小さく、リーク電流も小さく抑
えることができる。さらに、埋込みコレクタ層となるn
+形層(3)が、反転防止層(I9)と接しない程度に
まで、素子間分離用溝019の深さを深くすることがで
きるので、コレクター・基板間の接合容量C28を小さ
くすることが可能であり素子の高性能化に大きく寄与す
る。
FIG. 4 is an enlarged cross-sectional view showing the inter-element isolation region and the vicinity of the rod in the semiconductor integrated circuit device obtained in this manner.
Since the element isolation groove (+19) filled with 20) is formed, the so-called bird's beak, which is the digging in of the silicon oxide film for element isolation, which was a drawback of the conventional oxide film isolation method, is eliminated. There is no narrowing of the width of the active region, and there is no step in the oxide film called bird's head, resulting in a completely flat surface, which is a huge advantage for miniaturization of devices. Since there is no thick oxide film, internal stress is small and leakage current can be kept low.In addition, the n
Since the depth of the inter-element isolation groove 019 can be increased to such an extent that the +-type layer (3) does not come into contact with the anti-inversion layer (I9), the junction capacitance C28 between the collector and the substrate can be reduced. This makes it possible to significantly improve the performance of devices.

なお、上記実施例では、バイポーラ形集槓回路を例にと
って説明したが、MO8形集積回路の場合でも、従来の
酸化膜分離法に代って、本発明による素子間分離法を採
用することができることは、いうまでもない。
In the above embodiments, a bipolar type integrated circuit was explained as an example, but even in the case of an MO8 type integrated circuit, the element isolation method according to the present invention can be adopted instead of the conventional oxide film isolation method. It goes without saying that you can do it.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、素子間分離用渦を形成
し、これに絶縁膜をデホジットし、さらに、浴液状の絶
&膜を塗布して、表面を平坦化してから、絶縁膜をエツ
チングすることによシ、絶に膜を埋め込んだ素子間分離
用溝を形成するので、表面が平坦で、かつ微細な素子間
分離領域が得られ、素子の島@琥化・高速化に大きな効
果がある。
As described above, according to the present invention, a vortex for separating elements is formed, an insulating film is deposited on the vortex, an insulating film is applied in the form of a bath liquid, the surface is flattened, and then the insulating film is deposited. By etching, it is possible to form grooves for isolation between elements filled with a film, so that a flat surface and a fine isolation region between elements can be obtained. It has a big effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の酸化膜分離法によるバイ不−ラ集積回路
装置の製造方法を説明するため番こ゛ぞの主要工程段階
における状態を不ず断面図、ムシ2図はこの従来例にお
ける酸化膜分離法造を拡大して示す断面図、第3図は本
発明の一実施例の主要工程段階における状態を示す断面
図、第4図は上記実施例によって得られた牛導体集狽回
路敷負における素子間分離構造を拡大して示すシT面図
である。 図において、(1)はp形シリコン基板(第l導電形の
半導体基板) 、(31は8勺し埋込み贈(第2導電形
の半導体層)、(18]は素子間分離用溝、(19)は
p+(第1導電)形チャネルカット領域、(社)は絶縁
膜、(21)は溶液状の絶縁物である。 なお、図中同一符号は同一または和尚部分を示す。 代理人 大岩増雄 第1図 第1r4 第1図 第2図 J4 7        l  34 第314 第3図 2θ ty 手続補正書(自発) 1.事件の表示   特願昭 58−92758号3、
補正をする者 事件との関係 特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社代表者片山仁八部 4、代理人 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 明細書をつぎのとおり訂正する。
Figure 1 is a cross-sectional view showing the state at each main process step to explain the manufacturing method of a bilayer integrated circuit device using the conventional oxide film separation method, and Figure 2 shows the oxide film in this conventional example. FIG. 3 is a cross-sectional view showing an enlarged separation method structure, FIG. 3 is a cross-sectional view showing the main process stages of an embodiment of the present invention, and FIG. FIG. 3 is an enlarged T-plane view showing the inter-element isolation structure in FIG. In the figure, (1) is a p-type silicon substrate (semiconductor substrate of l conductivity type), (31 is an 8-hole embedded semiconductor layer (semiconductor layer of second conductivity type), (18) is a groove for isolation between elements, ( 19) is a p+ (first conductivity) type channel cut region, (21) is an insulating film, and (21) is a solution-like insulator. In addition, the same reference numerals in the figure indicate the same or Buddhist parts. Agent: Oiwa Masuo Figure 1 Figure 1r4 Figure 1 Figure 2 J4 7 l 34 314 Figure 3 2θ ty Procedural amendment (voluntary) 1. Indication of the case Patent application No. 58-92758 3,
Relationship with the case of the person making the amendment Patent Applicant Address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Representative Hitoshi Katayama 4, Agent 5 Specification subject to amendment Column 6 of the Detailed Description of the Invention, Description of Contents of the Amendment, is amended as follows.

Claims (1)

【特許請求の範囲】 (ll  第1導電形の半導体基板とその一方の主面上
に形成され上記半導体基板との間にpn接合を構成する
M2導電形の半導体層とを有する半導体基体の能動素子
形成領域以外の素子間分離領域となるべき部分に上記半
導体層側の表面からエツチングを施し、上記pn接合を
越えて上記半導体基板に達する素子間分離用溝を形成す
る第1の工程、上記素子間分離用溝の内部を含めて上記
半導体基体の上記表面上に上記素子間分離用溝の深さに
相当する厚さの絶縁膜を形成する第2の工程、上記絶縁
膜上にその凹部を埋めるように溶液状の絶縁物質を塗布
し焼成を行う第3の工程、及びこの第3の工程を経た上
記絶縁膜をその平坦部の厚さに相当する深さまでエツチ
ングする第4の工程を備えたことを特徴とする半導体集
積回路装置の製造方法。 (2)  第2の工程における絶縁膜として酸化シリコ
ン族をCVD法で形成することを特徴とする特許請求の
範囲第1項記載の半導体集積回路装置の製造方法。 (3)  第2の工程における絶縁膜としてリンガラス
膜をCVD法で形成することを特徴とする特許請求の範
囲第1項記載の半導体集積回路装置の製造方法。 C4)第2の工程における絶縁膜として酸化シリコン膜
をスパッタリング法によって形成することを特徴とする
特許請求の範囲第1項記載の半導体集積回路装置の製造
方法。 (5)第3の工程における溶液状の絶縁物質として有機
溶剤に溶解させたオルガノ・シラノールを用いることを
q!f徴とする特許請求の範囲第1項ないし第4項のい
ずれかに記載の半導体集積回路装置の製造方法。 (6)素子間分離用溝の底の半導体基板にはチャネルカ
ット領域として第1導電形の不純物イオンを注入するこ
とを特徴とする特許in求の範囲第1項ないし第5項の
いずれかに記載の半導体集積回路装置の製造方法。
[Scope of Claims] a first step of etching a portion to be an element isolation region other than the element formation region from the surface on the semiconductor layer side to form an element isolation groove reaching the semiconductor substrate beyond the pn junction; a second step of forming an insulating film with a thickness corresponding to the depth of the element isolation groove on the surface of the semiconductor substrate including the inside of the element isolation groove; a third step of applying a solution-like insulating material to fill the area and firing it; and a fourth step of etching the insulating film after the third step to a depth corresponding to the thickness of the flat part. (2) The semiconductor according to claim 1, characterized in that a silicon oxide group is formed by a CVD method as an insulating film in the second step. A method for manufacturing an integrated circuit device. (3) A method for manufacturing a semiconductor integrated circuit device according to claim 1, characterized in that a phosphorus glass film is formed by a CVD method as an insulating film in the second step.C4 2. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein a silicon oxide film is formed as the insulating film in the second step by a sputtering method. (5) Use organo-silanol dissolved in an organic solvent as a solution-like insulating material in the third step! A method for manufacturing a semiconductor integrated circuit device according to any one of claims 1 to 4, wherein the semiconductor integrated circuit device has a f-characteristic. (6) Any one of items 1 to 5 of the scope of the patent request, characterized in that impurity ions of the first conductivity type are implanted into the semiconductor substrate at the bottom of the element isolation groove as a channel cut region. A method of manufacturing the semiconductor integrated circuit device described above.
JP9275883A 1983-05-24 1983-05-24 Manufacture of semiconductor integrated circuit device Pending JPS59215741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9275883A JPS59215741A (en) 1983-05-24 1983-05-24 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9275883A JPS59215741A (en) 1983-05-24 1983-05-24 Manufacture of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS59215741A true JPS59215741A (en) 1984-12-05

Family

ID=14063325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9275883A Pending JPS59215741A (en) 1983-05-24 1983-05-24 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS59215741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455863A (en) * 1987-08-27 1989-03-02 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH04217343A (en) * 1990-12-19 1992-08-07 Matsushita Electron Corp Semiconductor device and fabrication thereof
US6329699B2 (en) 1996-10-21 2001-12-11 Nec Corporation Bipolar transistor with trenched-groove isolation regions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763843A (en) * 1980-08-22 1982-04-17 Ibm Method of forming recess dielectric region on silicon substrate
JPS57102045A (en) * 1980-12-18 1982-06-24 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763843A (en) * 1980-08-22 1982-04-17 Ibm Method of forming recess dielectric region on silicon substrate
JPS57102045A (en) * 1980-12-18 1982-06-24 Fujitsu Ltd Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455863A (en) * 1987-08-27 1989-03-02 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH04217343A (en) * 1990-12-19 1992-08-07 Matsushita Electron Corp Semiconductor device and fabrication thereof
US6329699B2 (en) 1996-10-21 2001-12-11 Nec Corporation Bipolar transistor with trenched-groove isolation regions

Similar Documents

Publication Publication Date Title
JPH0834261B2 (en) SOI structure for BICMOS integrated circuit and method of manufacturing the same
JPH04106932A (en) Manufacture of bipolar transistor
JP2629644B2 (en) Method for manufacturing semiconductor device
KR900003835B1 (en) Semiconductor device
JPS6252963A (en) Manufacture of bipolar transistor
JPS59215741A (en) Manufacture of semiconductor integrated circuit device
JPH0897225A (en) Semiconductor device and its manufacture
US3975818A (en) Method of forming closely spaced electrodes onto semiconductor device
JPH0513535B2 (en)
JPH0482180B2 (en)
JPH0536712A (en) Semiconductor integrated circuit device and manufacture thereof
JP2615958B2 (en) Manufacturing method of bipolar semiconductor device
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JPH01214064A (en) Insulated gate field effect transistor and its manufacture
JPS60244036A (en) Semiconductor device and manufacture thereof
JPH05121535A (en) Diffusion method for impurity and dielectric isolation method of wafer
JPS62120040A (en) Manufacture of semiconductor device
JPH03163832A (en) Semiconductor device
JPH034539A (en) Semiconductor device and its manufacture
JPS59217363A (en) Manufacture of bi-polar type semiconductor device
JPH1050820A (en) Semiconductor device and its manufacture
JPS6154256B2 (en)
JPS62172757A (en) Bipolar transistor
JPH0488637A (en) Semiconductor integrated circuit device having vertical bipolar transistor
JPH0294633A (en) Manufacture of bipolar transistor