JPS6359548A - Manufacture of thermal head - Google Patents

Manufacture of thermal head

Info

Publication number
JPS6359548A
JPS6359548A JP20400186A JP20400186A JPS6359548A JP S6359548 A JPS6359548 A JP S6359548A JP 20400186 A JP20400186 A JP 20400186A JP 20400186 A JP20400186 A JP 20400186A JP S6359548 A JPS6359548 A JP S6359548A
Authority
JP
Japan
Prior art keywords
resistance
voltage
value
applied voltage
thermal head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20400186A
Other languages
Japanese (ja)
Other versions
JPH06413B2 (en
Inventor
Hirohisa Sugihara
杉原 広久
Hiromi Yamashita
山下 博實
Takafumi Endo
孝文 遠藤
Yutaka Ozaki
裕 尾崎
Yahei Takase
高瀬 弥平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61204001A priority Critical patent/JPH06413B2/en
Publication of JPS6359548A publication Critical patent/JPS6359548A/en
Publication of JPH06413B2 publication Critical patent/JPH06413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To shorten the period of time required to form a table, by fixingly providing a value of an applied voltage at which a change in resistance appears, in determining a voltage of a voltage pulse to be applied by using a resistance vs. applied voltage table. CONSTITUTION:The resistance change ratio of a resistor capable of being approximated by the equation based on measurements for selected samples of dots in a thermal head varies substantially along a fixed curve, irrespective of the initial resistance of the resistor. In the equation, R0 is the initial resistance of a heat generating resistor, V0 is a boundary value of applied voltage at which a change in resistance appears, DELTAV is the change in resistance, and alphaand beta are constants. The boundary values V0 of applied voltage are centralized at about 25V. The resistance change ratio DELTAR=(R-R0)/R0 is put into the equation, with the boundary voltage V0 given as a fixed value of 25V, whereby a solution can be speedily obtained. Specific values DELTARn of the resistance change ratio are sequentially put into the equation to calculate the values of the applied voltage at a given moment, thereby forming a resistance vs. applied voltage table. A voltage Vn to be applied is determined based on the table.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は厚膜形サーマルヘッドの製造方法、特にその
発熱抵抗体の抵抗値の均一化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a thick film thermal head, and particularly to making the resistance value of a heating resistor thereof uniform.

〔従来の技術〕[Conventional technology]

厚膜形のサーマルヘッドは、ペースト状の抵抗材料をス
クリーン印刷法等によって所定のパターンに印刷し、そ
の後焼成することで発熱抵抗体を形成している。そのた
め厚膜形のサーマルヘッドは比較的短い製造工程によっ
て安価に製造できる反面、発熱抵抗体の抵抗値のばらつ
きが大きくなる欠点を持ち合せている。この発熱抵抗体
の抵抗値のばらつきは印字等の質に直接影響を及ぼすも
のであるため、厚膜形のサーマルヘッドの製造において
は発熱抵抗体の抵抗値の均一化は極めて重要なファクタ
である。この発熱抵抗体の抵抗値の均一化としては、発
熱抵抗体形成後、各発熱抵抗体に個別に比較的高圧の電
圧パルスを印加するとその抵抗値が低下するという現象
を利用したトリミング処理がある。
In the thick film type thermal head, a heat generating resistor is formed by printing a paste-like resistive material into a predetermined pattern by screen printing or the like, and then firing it. Therefore, although the thick film type thermal head can be manufactured at low cost through a relatively short manufacturing process, it has the disadvantage that the resistance value of the heating resistor varies widely. Variations in the resistance value of the heating resistor directly affect the quality of printing, so uniformity of the resistance value of the heating resistor is an extremely important factor in the manufacture of thick-film thermal heads. . To make the resistance values of the heating resistors uniform, there is a trimming process that utilizes the phenomenon that after the heating resistors are formed, when a relatively high voltage pulse is applied to each heating resistor individually, the resistance value decreases. .

第5図は例えば特開昭61−83053号公報に示され
た従来のサーマルヘッドの製造方法を示すフローチャー
トである0図において、STIは初期設定のステップ、
Sr1は前記ステップST1に続くプローバ及びスイッ
チングのステップ、Sr1は前記スタップST2に続く
電圧パルス印加のステップ、Sr1は前記ステップST
3に続く抵抗値測定のステップ、Sr1は前記ステップ
ST4に続く前回データとの比較のステップ、Sr6は
前記ステップST5に続く抵抗値減少検出のステップ、
Sr1は前記ステップST6に続くトリミングの全ドツ
ト終了検出のステップ、Sr8は前記ステップST5よ
り分岐したりプローブのステップ、Sr1は前記ステッ
プST6より分岐した電圧パルスの電圧調整のステップ
であり、前記ステップST7の分岐からはステップST
2へ、ステップST8からはステップST4へ、ステッ
プST9からはステップST3へ、それぞれ処理が戻さ
れる。
FIG. 5 is a flowchart showing a conventional thermal head manufacturing method disclosed in, for example, Japanese Unexamined Patent Publication No. 61-83053. In FIG.
Sr1 is a prober and switching step following step ST1, Sr1 is a voltage pulse application step following step ST2, and Sr1 is step ST
Sr1 is a step of comparing with the previous data following step ST4, Sr6 is a step of detecting a decrease in resistance value following step ST5,
Sr1 is a step for detecting the end of all trimming dots following step ST6, Sr8 is a step branching from step ST5 or a probe step, Sr1 is a step for voltage adjustment of voltage pulses branching from step ST6, and step ST7 is From the branch of step ST
2, from step ST8 to step ST4, and from step ST9 to step ST3.

次に動作について説明する。まず、ステップST1にお
いて、トリミングする発熱抵抗体に加える電圧パルスの
初期値、トリミングの目標値等の初期条件が設定される
0次に、ステップST2において、サーマルヘッドにプ
ロービングし、トリミングするドツトを選択してその発
熱抵抗体を電圧パルス発生手段に接続し、ステップST
3で前記ステップ1で設定された初期値の電圧パルスを
印加する0次にステップST4でその発熱抵抗体の抵抗
値を測定し、ステップST5において抵抗値が減少した
か否かを識別し、していなければプローブの接触不良と
みなしてステップST8にてプロービングをやり直し、
ステップST4に戻って再度抵抗値の測定を行なう、抵
抗値が減少していればステップST6にてステップST
Iで設定されたトリミングの目標値と比較し、目標値よ
り小さくなっていなければ、ステップST9にて電圧パ
ルスの電圧値をΔVだけ上昇させてステップST3に戻
り、電圧パルスの再印加を行なう、この処理はその発熱
抵抗体の抵抗値が前記目標値より小さくなるまで繰返さ
れ、目標値より小さくなればそのドツトの発熱抵抗体の
トリミングを終了してステップST7へ移る。ステップ
ST7では全ドツトのトリミングが終了したか否かを識
別しており、全ドツトのトリミングが終了していなけれ
ば処理をステップST2へ戻す、ステップST2では新
たなドツトが選択されてその発熱抵抗体が電圧パルス発
生手段に接続され、同様の処理が全ドツトのトリミング
終了まで繰返される。
Next, the operation will be explained. First, in step ST1, initial conditions such as the initial value of the voltage pulse applied to the heating resistor to be trimmed and the target value for trimming are set.Next, in step ST2, the thermal head is probed and a dot to be trimmed is selected. Then connect the heating resistor to voltage pulse generating means, and step ST
In step 3, a voltage pulse having the initial value set in step 1 is applied.Next, in step ST4, the resistance value of the heating resistor is measured, and in step ST5, it is determined whether or not the resistance value has decreased. If not, it is assumed that the contact of the probe is poor and the probing is repeated in step ST8.
Return to step ST4 and measure the resistance value again. If the resistance value has decreased, proceed to step ST6 and measure the resistance value again.
Compare with the trimming target value set in I, and if it is not smaller than the target value, increase the voltage value of the voltage pulse by ΔV in step ST9, return to step ST3, and reapply the voltage pulse. This process is repeated until the resistance value of the heating resistor becomes smaller than the target value, and when the resistance value of the heating resistor becomes smaller than the target value, the trimming of the heating resistor of the dot is completed and the process moves to step ST7. In step ST7, it is determined whether or not all dots have been trimmed. If all dots have not been trimmed, the process returns to step ST2. In step ST2, a new dot is selected and its heating resistor is is connected to the voltage pulse generating means, and the same process is repeated until all dots are trimmed.

第6図はこの発熱抵抗体の抵抗値の減少を示す線図であ
り、トリミング前にはR,、R,、R,と大きくばらつ
いていた抵抗値が、目標値R0よりわずかに低い、狭い
範囲内に均一化される0図においてv5は前記電圧パル
スの初期値であり、電圧パルスの印加によって発熱抵抗
体の抵抗値が減少をはじめる境界電圧が通常25V近傍
にあるため例えば25Vに設定されている。また、ΔV
はステップST9による電圧パルスの電圧値の増し分で
あり9発熱抵抗体の抵抗値が減少し過ぎないように例え
ば2.5vに設定して除々に抵抗値を減少させている。
Figure 6 is a diagram showing the decrease in the resistance value of this heating resistor. Before trimming, the resistance value varied widely as R, , R, , R, but now it is slightly lower than the target value R0, and is narrower. In the figure, v5 is the initial value of the voltage pulse, which is set to 25V, for example, because the boundary voltage at which the resistance value of the heating resistor starts to decrease by application of the voltage pulse is usually around 25V. ing. Also, ΔV
is the increment in the voltage value of the voltage pulse in step ST9, and is set to, for example, 2.5 V so that the resistance value of the heating resistor 9 does not decrease too much, and the resistance value is gradually decreased.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のサーマルヘッド請造方法は以上のように構成され
ているので、1ドツトの発熱抵抗体のトリミングには2
0〜30回の電圧パルスの印加、及び抵抗値の測定をし
なければならず、発熱抵抗体の抵抗値の均一化には多大
な時間を要するという問題点があった。
Since the conventional thermal head manufacturing method is configured as described above, it takes two steps to trim one dot of the heating resistor.
There is a problem in that it is necessary to apply a voltage pulse 0 to 30 times and measure the resistance value, and it takes a lot of time to equalize the resistance value of the heating resistor.

この発明は上記のような問題点を解消するためになされ
たもので、発熱抵抗体の抵抗値の均一化に多大の時間を
必要とすることのないサーマルヘッドの製造方法を得る
ことを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to provide a method for manufacturing a thermal head that does not require a large amount of time to equalize the resistance value of the heating resistor. do.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るサーマルヘッドの製造方法は、サーマル
ヘッドのドツト中よりいくつかのサンプルを選定してそ
れに電圧値の異なるいくつかの電圧パルスを低いものか
ら順に印加してその都度発熱抵抗体の抵抗変化を測定し
て、抵抗値に変化が現われはじめめ印加電圧の境界値に
その代表的な値を固定的に与えて抵抗対印加電圧テーブ
ルを作成し、各ドツトのトリミングに際しては、まずそ
の発熱抵抗体の抵抗値を測定して、必要な抵抗値の降下
量から前記抵抗対印加電圧テーブルを用いて印加する電
圧パルスの電圧値を決定するものである。
The method for manufacturing a thermal head according to the present invention involves selecting several samples from among the dots of the thermal head, applying several voltage pulses with different voltage values to the samples in order from the lowest to the lowest, and measuring the resistance of the heating resistor each time. When a change in resistance value begins to appear, a resistance vs. applied voltage table is created by fixing the representative value as the boundary value of the applied voltage. The resistance value of the resistor is measured, and the voltage value of the voltage pulse to be applied is determined from the required amount of drop in resistance value using the resistance vs. applied voltage table.

〔作用〕[Effect]

この発明におけるサーマルヘッドの製造方法は。 A method of manufacturing a thermal head according to the present invention is as follows.

当該サーマルヘッド内のサンプルドツトの測定を行い、
抵抗値に変化が現われはじめる印加電圧の境界値にその
代表的な値を予め固定的に与えておいて抵抗対印加電圧
テーブルを作成することでその作成時間を短縮し、トリ
ミングに際してこの抵抗対印加電圧テーブルを用いて、
測定したそのドツトの発熱抵抗体の抵抗値より印加する
電圧パルスの電圧値を決定して、1回の電圧パルスの印
加で発熱抵抗体の抵抗値を目標値に近いものとする。
Measure the sample dot in the thermal head,
By creating a resistance vs. applied voltage table by giving a fixed representative value in advance to the boundary value of the applied voltage at which a change in resistance value begins to appear, the creation time can be shortened. Using the voltage table,
The voltage value of the voltage pulse to be applied is determined from the measured resistance value of the heating resistor of that dot, and the resistance value of the heating resistor is brought close to the target value by applying one voltage pulse.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、STI 1は初期設定のステップ、5T1
2は前記ステップ5TIIに続くサンプルの抵抗変化測
定のステップ、5T13は前記ステップSTI 2に続
く抵抗対印加電圧テーブル作成のステップ、5T14は
前記ステップ5T13に続く抵抗値測定のステップ、5
T15は前記ステップ5T14に続く印加電圧決定のス
テップ、5T16は前記ステップ5T15に続く電圧パ
ルス印加のステップ、5T17は前記ステップ5T16
に続くトリミングの全ドツト終了検出のステップであり
、このステップ5T17の分岐からはステップ5T14
に処理が戻される。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, STI 1 is the initial setting step, 5T1
2 is the step of measuring the resistance change of the sample following step 5TII, 5T13 is the step of creating a resistance vs. applied voltage table following step STI 2, 5T14 is the step of measuring the resistance value following step 5T13, 5
T15 is a step of determining the applied voltage following step 5T14, 5T16 is a voltage pulse application step following step 5T15, and 5T17 is step 5T16.
This is the step of detecting the end of all the trimming dots following step 5T17, and from step 5T17 branching to step 5T14.
Processing is returned to .

第2図はこの発明のサーマルヘッドの製造方法を実施す
る装置の一例を示すブロック図であり、図において、1
はトリミング処理が行なわれるサーマルヘッド、2はこ
のサーマルヘッド1の各発熱抵抗体の端子にプローブを
押し当てるブロービング装置、3はブロービング装W1
2に接続されて前記発熱抵抗体の選択を行なうリレー網
、4はリレー網3に接続されて電圧パルスの印加と抵抗
値の測定とを切り換えるスイッチ、5はスイッチ4の一
方に接続されて指定された電圧値の電圧パルスを送出す
るパルス発生器、6はスイッチ4の他方に接続された抵
抗計、7は入出力部8、中央処理装置(以下、CPUと
いう)9、メモリ10、キーボード11等を備えて、前
記諸装置の制御を行なうとともに所要の演算処理を行な
う制御演算部、12はこの制御演算部7に接続されたプ
リンタである。
FIG. 2 is a block diagram showing an example of an apparatus for carrying out the method of manufacturing a thermal head of the present invention, and in the figure, 1
2 is a thermal head where trimming processing is performed; 2 is a blowing device that presses a probe against the terminal of each heating resistor of this thermal head 1; 3 is a blowing device W1;
2 is a relay network connected to select the heating resistor; 4 is a switch connected to relay network 3 and switches between applying voltage pulses and measuring resistance; 5 is a switch connected to one side of switch 4 for designation; 6 is a resistance meter connected to the other side of the switch 4; 7 is an input/output unit 8; a central processing unit (hereinafter referred to as CPU) 9; a memory 10; a keyboard 11; 12 is a printer connected to this control calculation section 7.

次に動作について説明する。第3図は前記抵抗値降下曲
線の一例を示す線図であり、図中の実線Yがその抵抗値
降下曲線で、横軸には電圧パルスによる印加電圧値が、
縦軸には電圧パルス印加による発熱抵抗体の抵抗変化率
が目盛られている。
Next, the operation will be explained. FIG. 3 is a diagram showing an example of the resistance value drop curve, and the solid line Y in the figure is the resistance value drop curve, and the horizontal axis shows the applied voltage value due to the voltage pulse.
On the vertical axis, the rate of change in resistance of the heating resistor due to voltage pulse application is scaled.

実験の結果、第6図の縦軸を抵抗変化率にして、初期の
抵抗値から何%降下したかをプロットすると、第3図に
破線で示す如く、初期の抵抗値には関係なくほぼ一定の
曲gy上をたどり、その曲線Yは(1)式で近似できる
ことがねかった。
As a result of the experiment, when we plot the percentage drop from the initial resistance value with the vertical axis in Figure 6 as the resistance change rate, we find that it remains almost constant regardless of the initial resistance value, as shown by the broken line in Figure 3. It turns out that the curve Y can be approximated by equation (1).

Ro       ΔV なお、(1)式中、Roは発熱抵抗体の初期の抵抗値、
■、は抵抗値に変化が現われはじめる印加電圧の境界値
、ΔVは印加電圧の変化ステップ、α、βはサーマルヘ
ッドの構造、ドツト密度等で決まる定数である。
Ro ΔV In formula (1), Ro is the initial resistance value of the heating resistor,
(2) is the boundary value of the applied voltage at which a change in resistance value begins to appear, ΔV is the change step of the applied voltage, and α and β are constants determined by the structure of the thermal head, dot density, etc.

また、別の実験の結果、所定の電圧値の電圧パルスを1
回だけ印加した場合の抵抗減少率は、第3図の如く電圧
値を暫増させながら何回も電圧パルスを印加した場合の
同一電圧値のそれと同等の値を示すこと、さらには、抵
抗値に変化が現われはじめる印加電圧の境界電圧値v0
は個々のサーマルヘッドによって異なるものであるが、
その値は25V付近に集中しており、大きなばらつきの
ないこともわかった。この発明はこれらの実験結果に基
づくものである。
In addition, as a result of another experiment, a voltage pulse of a predetermined voltage value was
The resistance reduction rate when the voltage pulse is applied only once is equivalent to that of the same voltage value when the voltage pulse is applied many times while increasing the voltage value as shown in Figure 3, and furthermore, the resistance value Boundary voltage value v0 of the applied voltage at which a change begins to appear
varies depending on the individual thermal head,
It was also found that the values were concentrated around 25V, and there was no large variation. This invention is based on these experimental results.

この実施例では、まず、ステップ11で初期設定が行な
われ、次いでステップ12でサンプルの抵抗変化測定が
行なわれる。即ち、リレー網3を制御してサーマルヘッ
ド1のサンプルとして指定されたドツトの発熱抵抗体を
選択し、スイッチ4を切り換えて抵抗計6へ接続して抵
抗値を測定し。
In this embodiment, first, initial settings are performed in step 11, and then, in step 12, resistance change measurement of the sample is performed. That is, the relay network 3 is controlled to select a designated dot heating resistor as a sample of the thermal head 1, and the switch 4 is switched to connect it to the resistance meter 6 to measure the resistance value.

その測定値を制御演算部7へ送り、制御演算部7のCP
U9はこれをメモリ10へ格納する0次にスイッチ4を
切り換えてパルス発生器5より所定の電圧値の電圧パル
スを前記抵抗発熱体に印加する。ここで、この電圧パル
スは例えば幅が2μsecのパルスが15個周期50μ
secで連続するパルス列である0次に、再度スイッチ
4を切り換えて。
The measured value is sent to the control calculation unit 7, and the CP of the control calculation unit 7 is
U9 stores this in the memory 10, and then switches the switch 4 to apply a voltage pulse of a predetermined voltage value from the pulse generator 5 to the resistance heating element. Here, this voltage pulse includes, for example, 15 pulses each having a width of 2 μsec and a period of 50 μsec.
Next, turn switch 4 again, which is a pulse train that continues in seconds.

この電圧パルスが印加された発熱抵抗体を抵抗計6に接
続して抵抗値を測定し、制御演算部7へ送る。制御演算
部7のCPU9はそれを印加した電圧パルスの電圧値と
ともにメモリ10に格納する。
The heating resistor to which this voltage pulse has been applied is connected to a resistance meter 6 to measure the resistance value and send it to the control calculation section 7. The CPU 9 of the control calculation section 7 stores it in the memory 10 together with the voltage value of the applied voltage pulse.

以下、同様にして、電圧パルスの電圧値を適宜上昇させ
ながらこれらの処理を繰返す、この処理は少くとも3回
繰返して実行され、リレー網3を切り換えていくつかの
サンプルについて実行される。
Thereafter, these processes are repeated in the same manner while appropriately increasing the voltage value of the voltage pulse. This process is repeated at least three times, and is executed for several samples by switching the relay network 3.

次に、ステップ5TI3において、まずこのようにして
測定された抵抗変化に基づく前記抵抗値降下曲線の近似
が行なわれる。即ち、制御演算部7のCPU9はメモリ
10に格納しておいた抵抗変化から、電圧パルスによる
各印加電圧における抵抗変化率ΔR= (R−R@)/
R@を求め、これを前記(1)式に代入する。このとき
、抵抗値に変化が現われはじめる境界電圧V、とじて、
その代表的な値、例えば25Vを固定的に与える。これ
によって各サンプル毎にそれぞれα、βを未知数とする
方程式を作成してこれを解く、ここで。
Next, in step 5TI3, the resistance value drop curve is approximated based on the resistance change measured in this manner. That is, the CPU 9 of the control calculation unit 7 calculates the resistance change rate ΔR= (R-R@)/ at each applied voltage due to the voltage pulse from the resistance change stored in the memory 10.
Find R@ and substitute it into the equation (1) above. At this time, the boundary voltage V at which a change in resistance value begins to appear is as follows:
A typical value thereof, for example 25V, is fixedly given. From this, we create and solve equations with α and β as unknowns for each sample, here.

二つの未知数に対して三つ以上の方程式がある場合には
これを統計的手段で処理して解を得る。この方程式はα
、βt V6の三つを未知数とするものに比べてはるか
に短時間で解が得られ、その解も境界電圧値V、が25
Vの付近に集中しているため、大きな誤差を含むような
ことはない、得られた解はさらに各サンプル間で統計的
に処理され。
When there are three or more equations for two unknowns, they are processed using statistical means to obtain a solution. This equation is α
, βt V6 as unknowns, the solution can be obtained in a much shorter time, and the solution also has a boundary voltage value V of 25
Since it is concentrated near V, it does not contain large errors.The obtained solution is further statistically processed between each sample.

得られた定数α、β、が(1)式に代入されて、原点が
第3図に二点鎖線で示す位置まで移動した抵抗値降下曲
線が近似され、抵抗変化率ΔRと印加電圧Vとの関係を
示す式を得る0次いで、得られた式に抵抗変化率の具体
的な値ΔRnを逐次退入してその時の印加電圧Vnの値
を計算し、この両者を対応付けて配列して抵抗対印加電
圧テーブルを作成する。第4図はこの抵抗対印加電圧テ
ーブルの一例を示す説明図である。
The obtained constants α and β are substituted into equation (1), and a resistance drop curve in which the origin moves to the position indicated by the two-dot chain line in FIG. 3 is approximated, and the resistance change rate ΔR and the applied voltage V are Next, calculate the value of the applied voltage Vn at that time by sequentially subtracting the specific value ΔRn of the resistance change rate into the obtained equation, and then arrange the two in correspondence. Create a resistance vs. applied voltage table. FIG. 4 is an explanatory diagram showing an example of this resistance versus applied voltage table.

これで準備段階を終了してステップ5T14よりトリミ
ングの処理に入る。まず、ステップ5T14において、
リレー網3でトリミングを実施するドツトを選択し、ス
イッチによってこれを抵抗計6に接続してその抵抗値を
測定する1次に、ステップ5T15ではCPU9によっ
て、得られた抵抗値を目標値まで降下させるための抵抗
変化率ΔRnが算出され、さらに前述の抵抗封印加電圧
テーブルから、算出した抵抗変化率に近い抵抗変化率Δ
Rnに対応する印加電圧Vnを読み取り、電圧パルスの
印加電圧を決定する。具体的には。
This completes the preparation stage and starts the trimming process from step 5T14. First, in step 5T14,
The relay network 3 selects the dot to be trimmed, and the switch connects it to the resistance meter 6 to measure its resistance value.In step 5T15, the CPU 9 lowers the obtained resistance value to the target value. The rate of resistance change ΔRn to
The applied voltage Vn corresponding to Rn is read to determine the applied voltage of the voltage pulse. in particular.

例えばバイナリ・サーチ法(中間比較法)等によって抵
抗対印加電圧テーブルの読取りが行なわれ。
For example, the resistance versus applied voltage table is read by a binary search method (intermediate comparison method) or the like.

当該テーブルにある抵抗変化率ΔRnの中間の値につい
ては比例配分等によって印加電圧を決定する。また、読
み取った印加電圧Vnをそのまま用いるようにしてもよ
い。
For intermediate values of the resistance change rate ΔRn in the table, the applied voltage is determined by proportional allocation or the like. Alternatively, the read applied voltage Vn may be used as is.

得られた印加電圧は制御演算部7よりパルス発生器5へ
送られる。ステップ5T16でスイッチ4が切り換えら
れると、パルス発生器5からは電圧が前記印加電圧に調
整された電圧パルスが送出され、トリミングを実施する
ドツトの発熱抵抗体に印加される。これによって当該発
熱抵抗体の抵抗値は目標値に近い値に降下する。以下ス
テップ5T17が全ドツトのトリミングの終了を検出す
るまで、ステップ5T14以後の処理が繰返される。
The obtained applied voltage is sent from the control calculation section 7 to the pulse generator 5. When the switch 4 is switched in step 5T16, a voltage pulse whose voltage is adjusted to the applied voltage is sent out from the pulse generator 5, and is applied to the heating resistor of the dot to be trimmed. As a result, the resistance value of the heating resistor falls to a value close to the target value. Thereafter, the processing from step 5T14 onward is repeated until step 5T17 detects that all dots have been trimmed.

また、上記実施例では電圧パルスに所定数連続したパル
ス列を用いたが単パルスであってもよく、上記実施例と
同様の効果を奏する。
Further, in the above embodiment, a predetermined number of continuous pulse trains are used as the voltage pulse, but a single pulse may be used, and the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、少ないサンプルの抵
抗変化を測定し、抵抗値に変化が現われはじめる境界電
圧値にその代表的な値を固定的に与えることで原点の移
動を行なって、抵抗対印加電圧テーブルを作成し、トリ
ミングに際しては、そのドツトの発熱抵抗体の抵抗値を
測定して、前記抵抗封印加電圧テーブルを用いて電圧パ
ルスの電圧値を決定するように構成したので、抵抗対印
加電圧テーブルを短時間で作成することができ、各ドツ
ト毎に1回の電圧パルスの印加によってトリミングが完
了し、さらに電圧パルスの電圧値の決定もめんどうな計
算をしないですむため短時間で行なうことができ、発熱
抵抗体の抵抗値の均一化に要する時間を大幅に削減でき
る効果がある。
As described above, according to the present invention, the origin is moved by measuring the resistance change of a small number of samples and fixedly giving a representative value to the boundary voltage value at which the resistance value starts to change. A resistance vs. applied voltage table was created, and during trimming, the resistance value of the heating resistor of the dot was measured, and the voltage value of the voltage pulse was determined using the resistance sealed applied voltage table. A resistance vs. applied voltage table can be created in a short time, trimming can be completed by applying one voltage pulse to each dot, and the voltage value of the voltage pulse can be determined without the need for troublesome calculations. This can be done in a short amount of time, and has the effect of significantly reducing the time required to equalize the resistance values of the heating resistors.

この効果はファクシミリ用サーマルヘッドの如く。This effect is similar to that of a thermal head for facsimile.

1000ドツトあるいはそれ以上の発熱抵抗体を有する
ような、多ドツトのサーマルヘッドに適用した場合、特
に顕著である。
This is particularly noticeable when applied to a multi-dot thermal head having a heating resistor of 1000 dots or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるサーマルヘッドの製
造方法を示すフローチャート、第2図はそれを実施する
ための装置の一例を示すブロック図、第3図はその抵抗
値降下曲線の一例を示す線図、第4図はその抵抗封印加
電圧テーブルの一例を示す説明図、第5図は従来のサー
マルヘッドの製造方法を示すブローチヤード、第6図は
その発熱抵抗体の抵抗値の減少を示す線図である。 1はサーマルヘッド、2はブロービング装置。 3はリレー網、4はスイッチ、5はパルス発生器、6は
抵抗計、7は制御演算部。 特許出願人  三菱電機株式会社 第1図 第2図 第4図 第5図 第6図
FIG. 1 is a flowchart showing a method for manufacturing a thermal head according to an embodiment of the present invention, FIG. 2 is a block diagram showing an example of an apparatus for carrying out the method, and FIG. 3 is an example of a resistance value drop curve. Fig. 4 is an explanatory diagram showing an example of the resistance sealed applied voltage table, Fig. 5 is a broach yard showing a conventional method of manufacturing a thermal head, and Fig. 6 is a diagram showing a reduction in the resistance value of the heating resistor. FIG. 1 is a thermal head, 2 is a blobbing device. 3 is a relay network, 4 is a switch, 5 is a pulse generator, 6 is a resistance meter, and 7 is a control calculation section. Patent applicant: Mitsubishi Electric Corporation Figure 1 Figure 2 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 複数の発熱抵抗体を備えたサーマルヘッドの前記発熱抵
抗体の各々に電圧パルスを印加し、その抵抗値を降下さ
せて均一化するサーマルヘッドの製造方法において、前
記抵抗値が降下しはじめる前記電圧パルスの印加電圧の
境界値として、予めその代表的な値を固定的に与えてお
くとともに、前記発熱抵抗体中からサンプルを選び、電
圧値の異なる電圧パルスを低いのものから順次、前記サ
ンプルとして選ばれた発熱抵抗体に印加して、印加電圧
と抵抗変化の関係を示す抵抗対印加電圧テーブルを作成
し、前記各発熱体へ印加する前記電圧パルスの電圧値を
、当該発熱抵抗体の初期の抵抗値に基づいて前記抵抗対
印加電圧テーブルを用いて決定することを特徴とするサ
ーマルヘッドの製造方法。
In a method for manufacturing a thermal head, in which a voltage pulse is applied to each of the heating resistors of a thermal head including a plurality of heating resistors to lower and equalize the resistance value, the voltage at which the resistance value starts to drop; A representative value is fixedly given in advance as the boundary value of the applied voltage of the pulse, and a sample is selected from the heat generating resistor, and voltage pulses with different voltage values are sequentially applied from the lowest to the lowest as the sample. Create a resistance vs. applied voltage table that shows the relationship between the applied voltage and resistance change by applying it to the selected heating resistor, and set the voltage value of the voltage pulse applied to each heating element to the initial value of the heating resistor. A method for manufacturing a thermal head, characterized in that the determination is made using the resistance vs. applied voltage table based on the resistance value of .
JP61204001A 1986-08-29 1986-08-29 Thermal head resistance adjustment device Expired - Lifetime JPH06413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61204001A JPH06413B2 (en) 1986-08-29 1986-08-29 Thermal head resistance adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61204001A JPH06413B2 (en) 1986-08-29 1986-08-29 Thermal head resistance adjustment device

Publications (2)

Publication Number Publication Date
JPS6359548A true JPS6359548A (en) 1988-03-15
JPH06413B2 JPH06413B2 (en) 1994-01-05

Family

ID=16483131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61204001A Expired - Lifetime JPH06413B2 (en) 1986-08-29 1986-08-29 Thermal head resistance adjustment device

Country Status (1)

Country Link
JP (1) JPH06413B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131404A (en) * 1984-11-29 1986-06-19 ロ−ム株式会社 Pulse trimming for thermal head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131404A (en) * 1984-11-29 1986-06-19 ロ−ム株式会社 Pulse trimming for thermal head

Also Published As

Publication number Publication date
JPH06413B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
US3793717A (en) Method of controlling resistance values of thick-film resistors
JPS6359548A (en) Manufacture of thermal head
US5504681A (en) Mass air flow sensor calibration
JPS6359549A (en) Manufacture of thermal head
JPS6359551A (en) Manufacture of thermal head
JPS6359552A (en) Manufacture of thermal head
JPH01120363A (en) Manufacture of thermal head
JPS6359550A (en) Manufacture of thermal head
JPS6359557A (en) Manufacture of thermal head
JPS6359556A (en) Manufacture of thermal head
JP2590916B2 (en) Method of manufacturing thick film type thermal head
JPH06342027A (en) Method and apparatus for evaluating wire
JPS63252760A (en) Thermal resistor trimming of thermal head
JPH06270444A (en) Method and device for trimming thermal head
JP2831854B2 (en) Resistor trimming method for thin film thermal head
JP2523934B2 (en) Resistance trimming method of thermal head
JPH04164655A (en) Method for trimming resistors of thin-film thermal head
JP2987915B2 (en) Semiconductor element sorting method
JPS63178060A (en) Method for trimming heat generating resistor of thermal head
CN116674296A (en) Temperature control-based nondestructive resistance repairing method for thermal printing head
JPS6313340A (en) Method for measurement of characteristic of semiconductor element
JPH04261059A (en) Method for trimming semiconductor element
JPS62281402A (en) Method of trimming thick film resistance array
SU1318885A1 (en) Method of measuring thermal conductivity of material
JP2739857B2 (en) Grain size measurement method for conductive wiring

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term