JPS6359552A - Manufacture of thermal head - Google Patents

Manufacture of thermal head

Info

Publication number
JPS6359552A
JPS6359552A JP20400586A JP20400586A JPS6359552A JP S6359552 A JPS6359552 A JP S6359552A JP 20400586 A JP20400586 A JP 20400586A JP 20400586 A JP20400586 A JP 20400586A JP S6359552 A JPS6359552 A JP S6359552A
Authority
JP
Japan
Prior art keywords
voltage
resistance
resistance value
trimming
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20400586A
Other languages
Japanese (ja)
Other versions
JPH06414B2 (en
Inventor
Hirohisa Sugihara
杉原 広久
Hiromi Yamashita
山下 博實
Takafumi Endo
孝文 遠藤
Yutaka Ozaki
裕 尾崎
Yahei Takase
高瀬 弥平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61204005A priority Critical patent/JPH06414B2/en
Publication of JPS6359552A publication Critical patent/JPS6359552A/en
Publication of JPH06414B2 publication Critical patent/JPH06414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To uniformize the resistances of heat generating resistors without requiring much time, by determining a voltage value of a voltage pulse to be applied based on a resistance fall curve approximated by using trimming constants. CONSTITUTION:Voltage pulses are applied to selected samples of dots in a thermal head, in the order of increasing voltage, and the changes in the resistances of heat generating resistors are measured on each application of the voltage pulse to obtain trimming constants alpha, beta. A plot of beta on the ordinate against alpha on the abscissa conforms substantially to a fixed curve Z. When deviations of the constants alpha, beta are within the range of + or -5% of Z, a resistance fall curve Y representing the relationship between resistance change rate DELTAR and applied voltage V is approximated. The resistance of the dot for which trimming it to be carried out is measured. Then, the resistance change rate DELTARn for lowering the resistance to a target value is calculated, and a voltage value Vn of a voltage pulse to be applied is determined by using the curve Y, whereby the resistance of the relevant heat generating resistor is lowered to a value approximate to the target value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は厚膜形サーマルヘッドの製造方法、特にその
発熱抵抗体の抵抗値の均一化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a thick film thermal head, and particularly to making the resistance value of a heating resistor thereof uniform.

〔従来の技術〕[Conventional technology]

厚膜形のサーマルヘッドは、ペースト状の抵抗材料をス
クリーン印刷法等によって所定のパターンに印刷し、そ
の後焼成することで発熱抵抗体を形成している。そのた
め厚膜形のサーマルヘッドは比較的短い製造工程によっ
て安価に製造できる反面、発熱抵抗体の抵抗値のばらつ
きが大きくなる欠点を持ち合せている。この発熱抵抗体
の抵抗値のばらつきは印字等の質に直接影響を及ぼすも
のであるため、厚膜形のサーマルヘッドの製造において
は発熱抵抗体の抵抗値の均一化は極めて重要なファクタ
である。この発熱抵抗体の抵抗値の均一化としては、発
熱抵抗体形成後、各発熱抵抗体に個別に比較的高圧の電
圧パルスを印加するとその抵抗値が低下するという現象
を利用したトリミング処理がある。
In the thick film type thermal head, a heat generating resistor is formed by printing a paste-like resistive material into a predetermined pattern by screen printing or the like, and then firing it. Therefore, although the thick film type thermal head can be manufactured at low cost through a relatively short manufacturing process, it has the disadvantage that the resistance value of the heating resistor varies widely. Variations in the resistance value of the heating resistor directly affect the quality of printing, so uniformity of the resistance value of the heating resistor is an extremely important factor in the manufacture of thick-film thermal heads. . To make the resistance values of the heating resistors uniform, there is a trimming process that utilizes the phenomenon that after the heating resistors are formed, when a relatively high voltage pulse is applied to each heating resistor individually, the resistance value decreases. .

第5図は例えば特開昭61−83053号公報に示され
た従来のサーマルヘッドの製造方法を示すフローチャー
トである。図において、STIは初期設定のステップ、
Sr1は前記ステップST1に続くプローバ及びスイッ
チングのステップ、Sr1は前記ステップST2に続く
電圧パルス印加のステップ、Sr1は前記ステップST
3に続く抵抗値測定のステップ、Sr1は前記ステップ
ST4に続く前回データとの比較のステップ、Sr6は
前記ステップST5に続く抵抗値減少検出のステップ、
Sr1は前記ステップST6に続くトリミングの全ドツ
ト終了検出のステップ、Sr1は前記ステップST5よ
り分岐したりプローブのステップ、Sr1は前記ステッ
プST6より分岐した電圧パルスの電圧調整のステップ
であり、前記ステップST7の分岐からはステップST
2へ、ステップST8からはステップST4へ、ステッ
プST9からはステップST3へ、それぞれ処理が戻さ
れる。
FIG. 5 is a flowchart showing a conventional method of manufacturing a thermal head disclosed in, for example, Japanese Patent Application Laid-Open No. 61-83053. In the figure, STI is the initial setting step,
Sr1 is the prober and switching step following step ST1, Sr1 is the voltage pulse application step following step ST2, and Sr1 is the step ST
Sr1 is a step of comparing with the previous data following step ST4, Sr6 is a step of detecting a decrease in resistance value following step ST5,
Sr1 is a step for detecting the end of all trimming dots following step ST6, Sr1 is a step branching from step ST5 or a probe step, Sr1 is a step for voltage adjustment of a voltage pulse branching from step ST6, and step ST7 is From the branch of step ST
2, from step ST8 to step ST4, and from step ST9 to step ST3.

次に動作について説明する。まず、ステップST1にお
いて、トリミングする発熱抵抗体に加える電圧パルスの
初期値、トリミングの目標値等の初期条件が設定される
0次に、ステップST2において、サーマルヘッドにプ
ロービングし、トリミングするドツトを選択してその発
熱抵抗体を電圧パルス発生手段に接続し、ステップST
3で前記ステップ1で設定された初期値の電圧パルスを
印加する0次にステップST4でその発熱抵抗体の抵抗
値を測定し、ステップST5において抵抗値が減少した
か否かを識別し、していなければプローブの接触不良と
みなしてステップST8にてブロービングをやり直し、
ステップST4に戻って再度抵抗値の測定を行なう、抵
抗値が減少していればステップST6にてステップST
Iで設定されたトリミングの目標値と比較し、目標値よ
り小さくなっていなければ、ステップST9にて電圧パ
ルスの電圧値をΔVだけ上昇させてステップST3に戻
り、電圧パルスの再印加を行なう、この処理はその発熱
抵抗体の抵抗値が前記目標値より小さくなるまで繰返さ
れ、目標値より小さくなればそのドツトの発熱抵抗体の
トリミングを終了してステップST7へ移る。ステップ
ST7では全ドツトのトリミングが終了したか否かを識
別しており、全ドツトのトリミングが終了していなけれ
ば処理をステップST2へ戻す、ステップST2では新
たなドツトが選択されてその発熱抵抗体が電圧パルス発
生手段に接続され、同様の処理が全ドツトのトリミング
終了まで繰返される。
Next, the operation will be explained. First, in step ST1, initial conditions such as the initial value of the voltage pulse applied to the heating resistor to be trimmed and the target value for trimming are set.Next, in step ST2, the thermal head is probed and a dot to be trimmed is selected. Then connect the heating resistor to voltage pulse generating means, and step ST
In step 3, a voltage pulse having the initial value set in step 1 is applied.Next, in step ST4, the resistance value of the heating resistor is measured, and in step ST5, it is determined whether or not the resistance value has decreased. If not, it is assumed that the contact of the probe is poor and the probing is repeated in step ST8.
Return to step ST4 and measure the resistance value again. If the resistance value has decreased, proceed to step ST6 and measure the resistance value again.
Compare with the trimming target value set in I, and if it is not smaller than the target value, increase the voltage value of the voltage pulse by ΔV in step ST9, return to step ST3, and reapply the voltage pulse. This process is repeated until the resistance value of the heating resistor becomes smaller than the target value, and when the resistance value of the heating resistor becomes smaller than the target value, the trimming of the heating resistor of the dot is completed and the process moves to step ST7. In step ST7, it is determined whether or not all dots have been trimmed. If all dots have not been trimmed, the process returns to step ST2. In step ST2, a new dot is selected and its heating resistor is is connected to the voltage pulse generating means, and the same process is repeated until all dots are trimmed.

第6図はこの発熱抵抗体の抵抗値の減少を示す線図であ
り、トリミング前にはR1,R,、R,と大きくばらつ
いていた抵抗値が、目標値R0よりわずかに低い、狭い
範囲内に均一化される。図においてv5は前記電圧パル
スの初期値であり、電圧パルスの印加によって発熱抵抗
体の抵抗値が減少をはじめる境界電圧が通常25V近傍
にあるため例えば25Vに設定されている。また、ΔV
はステップST9による電圧パルスの電圧値の増し分で
あり、発熱抵抗体の抵抗値が減少し過ぎないように例え
ば2.5vに設定して除々に抵抗値を減少させている。
Figure 6 is a diagram showing the decrease in the resistance value of this heating resistor. Before trimming, the resistance value varied widely as R1, R, , R, but within a narrow range slightly lower than the target value R0. homogenized within. In the figure, v5 is the initial value of the voltage pulse, and is set to, for example, 25V because the boundary voltage at which the resistance value of the heating resistor begins to decrease upon application of the voltage pulse is usually around 25V. Also, ΔV
is the increment in the voltage value of the voltage pulse in step ST9, and is set to, for example, 2.5 V so that the resistance value of the heating resistor does not decrease too much, and the resistance value is gradually decreased.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のサーマルヘッド請造方法は以上のように構成され
ているので、1ドツトの発熱抵抗体のトリミングには2
0〜30回の電圧パルスの印加。
Since the conventional thermal head manufacturing method is configured as described above, it takes two steps to trim one dot of the heating resistor.
Application of 0-30 voltage pulses.

及び抵抗値の測定をしなければならず、発熱抵抗体の抵
抗値の均一化には多大な時間を要するという問題点があ
った。
There is a problem in that it takes a lot of time to make the resistance values of the heating resistors uniform.

この発明は上記のような問題点を解消するためになされ
たもので、発熱抵抗体の抵抗値の均一化に多大の時間を
必要とすることのないサーマルヘッドの製造方法を得る
ことを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to provide a method for manufacturing a thermal head that does not require a large amount of time to equalize the resistance value of the heating resistor. do.

〔問題点を解決するための手段〕 この発明に係るサーマルヘッドの製造方法は。[Means for solving problems] A method for manufacturing a thermal head according to the present invention.

サーマルヘッドのドツト中よりいくつかのサンプルを選
定してそれに電圧値の異なるいくつかの電圧パルスを低
いものから順に印加し、その都度発熱抵抗体の抵抗変化
を測定して抵抗値降下曲線近似のためのトリミング定数
α、βを求め、このトリミング定数α、βの所定の関係
式からのずれを検定して、そのずれが所定の範囲内にあ
る場合に当該トリミング定数α、βを用いて抵抗値降下
曲線を近似し、各ドツトのトリミングに際しては、まず
その発熱抵抗体の抵抗値を8u定して、必要な抵抗値の
降下量から前記抵抗値降下曲線に基づいて印加する電圧
パルスの電圧値を決定するものである。
Select several samples from among the dots of the thermal head, apply several voltage pulses with different voltage values to them in order from low to high, measure the resistance change of the heating resistor each time, and approximate the resistance drop curve. Find trimming constants α, β for When trimming each dot by approximating the value drop curve, first determine the resistance value of the heating resistor by 8u, and then calculate the voltage of the voltage pulse to be applied based on the required resistance value drop amount based on the resistance value drop curve. It determines the value.

〔作用〕[Effect]

この発明におけるサーマルヘッドの製造方法は、当該サ
ーマルヘッド内のサンプルドツトの測定によって抵抗値
降下曲線を近似するとともに、その近似にあたってはト
リミング定数α、βの検定を行なって、近似された抵抗
値降下曲線が真の曲線から大きくずれることのないよう
にし、トリミングに際してこの抵抗値降下曲線を用いて
、測定したそのドツトの発熱抵抗体の抵抗値より印加す
る電圧パルスの電圧値を決定して、1回の電圧パルスの
印加で発熱抵抗体の抵抗値を目標値に近いものとする。
The method of manufacturing a thermal head according to the present invention approximates a resistance drop curve by measuring sample dots in the thermal head, and in the approximation, tests trimming constants α and β to determine the approximated resistance drop. Make sure that the curve does not deviate greatly from the true curve, use this resistance value drop curve during trimming, and determine the voltage value of the voltage pulse to be applied from the measured resistance value of the heating resistor of that dot. The resistance value of the heating resistor is made close to the target value by applying the voltage pulse twice.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、5TIIは初期設定のステップ、5T12
は前記ステップSTI 1に続くサンプルの抵抗変化測
定のステップ、5T13は前記ステップ5T12に続く
トリミング定数α、β算出のステップ、5T14は前記
ステップ5T13に続くトリミング定数α、βの検出の
ステップ、5T15は前記ステップ5T14に続く抵抗
値降下曲線近似のステップ、5T16は前記ステップ5
T15に続く抵抗値測定のステップ、5T17は前記ス
テップ5T16に続く印加電圧決定のステップ、5T1
8は前記ステップSTI 7に続く電圧パルス印加のス
テップ、5T19は前記ステップ5T18に続くトリミ
ングの全ドツト終了検出のステップ、5T20は前記ス
テップ5T14から分岐した別サンプルの選定のステッ
プであり、前記ステップ5T19の分岐からはステップ
5T16へ、ステップ5T20がらはステップ5T12
へ、それぞれ処理が戻される。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 5TII is the initial setting step, 5T12
5T13 is the step of calculating the trimming constants α and β following step 5T12, 5T14 is the step of detecting the trimming constants α and β following step 5T13, and 5T15 is the step of measuring the resistance change of the sample following step STI 1. The step 5T16 of approximating the resistance value drop curve following step 5T14 is the step 5T16 of approximating the resistance value drop curve following step 5T14.
Step 5T17 of measuring the resistance value following T15 is a step of determining the applied voltage following step 5T16.
8 is a step of applying a voltage pulse following step STI 7, 5T19 is a step of detecting the end of all trimming dots following step 5T18, 5T20 is a step of selecting another sample branched from step 5T14, and step 5T19 is a step of selecting another sample branched from step 5T14. From the branch, go to step 5T16, and from step 5T20 to step 5T12
The processing is returned to each.

第2図はこの発明のサーマルヘッドの製造方法を実施す
る装置の一例を示すブロック図であり、図において、1
はトリミング処理が行なわれるサーマルヘッド、2はこ
のサーマルヘッド1の各発熱抵抗体の端子にプローブを
押し当てるブロービング装置、3はブロービング装置2
に接続されて前記発熱抵抗体の選択を行なうリレー網、
4はリレー網3に接続されて電圧パルスの印加と抵抗値
の測定とを切り換えるスイッチ、5はスイッチ4の一方
に接続されて指定された電圧値の電圧パルスを送出する
パルス発生器、6はスイッチ4の他方に接続された抵抗
計、7は入出力部8、中央処理装置(以下、CPUとい
う)9、メモリ10、キーボード11等を備えて、前記
諸装置の制御を行なうとともに所要の演算処理を行なう
制御演算部、12はこの制御演算部7に接続されたプリ
ンタである。
FIG. 2 is a block diagram showing an example of an apparatus for carrying out the method of manufacturing a thermal head of the present invention, and in the figure, 1
2 is a thermal head where trimming processing is performed; 2 is a blowing device that presses a probe against the terminal of each heating resistor of this thermal head 1; 3 is a blowing device 2
a relay network connected to select the heating resistor;
4 is a switch that is connected to the relay network 3 and switches between applying a voltage pulse and measuring a resistance value; 5 is a pulse generator that is connected to one side of the switch 4 and sends out a voltage pulse of a specified voltage value; and 6 is a A resistance meter 7 connected to the other side of the switch 4 includes an input/output section 8, a central processing unit (hereinafter referred to as CPU) 9, a memory 10, a keyboard 11, etc., and controls the various devices mentioned above and performs necessary calculations. A control calculation unit 12 that performs processing is a printer connected to this control calculation unit 7.

次に動作について説明する。第3図は前記抵抗値降下曲
線の一例を示す線図であり、図中の実線Yがその抵抗値
降下曲線で、横軸には電圧パルスによる印加電圧値が、
縦軸には電圧パルス印加による発熱抵抗体の抵抗変化率
が目盛られている。
Next, the operation will be explained. FIG. 3 is a diagram showing an example of the resistance value drop curve, and the solid line Y in the figure is the resistance value drop curve, and the horizontal axis shows the applied voltage value due to the voltage pulse.
On the vertical axis, the rate of change in resistance of the heating resistor due to voltage pulse application is scaled.

実験の結果、第6図の縦軸を抵抗変化率にして。As a result of the experiment, the vertical axis in Figure 6 represents the rate of change in resistance.

初期の抵抗値から何%降下したかをプロットすると、第
3図に破線で示す如く、初期の抵抗値には関係なくほぼ
一定の曲線Y上をたどり、その曲線Yは(1)式で近似
できることがわかった。
When plotting the percentage drop from the initial resistance value, it follows a nearly constant curve Y regardless of the initial resistance value, as shown by the broken line in Figure 3, and the curve Y is approximated by equation (1). I found out that it can be done.

Ro      ΔV なお、(1)式中、Roは発熱抵抗体の初期の抵抗値、
voは抵抗値に変化が現われはじめる印加電圧の境界値
、ΔVは印加電圧の変化ステップ、α、βはサーマルヘ
ッドの構造、ドツト密度等で決まるトリミング定数であ
る。
Ro ΔV In formula (1), Ro is the initial resistance value of the heating resistor,
vo is the boundary value of the applied voltage at which a change in resistance value begins to appear, ΔV is the change step of the applied voltage, and α and β are trimming constants determined by the structure of the thermal head, dot density, etc.

また、このトリミング定数α、β相互の関係は、第4図
に示すように、横軸にα、縦軸にβを目盛ってプロット
すると、はぼ一定の曲線Z上をたどり、その曲線Zは(
2)式で近似できる双曲線であることがわかった。
Furthermore, as shown in Figure 4, the relationship between the trimming constants α and β is plotted with α on the horizontal axis and β on the vertical axis. teeth(
It was found that it is a hyperbola that can be approximated by equation 2).

β=Ω・α             ・・・ (2)
なお、(2)式中、Ω2mはドツト密度に関係なく一定
の値をとる定数である。
β=Ω・α... (2)
Note that in equation (2), Ω2m is a constant that takes a constant value regardless of the dot density.

さらに、別の実験の結果、所定の電圧値の電圧パルスを
1回だけ印加した場合の抵抗減少率は、第3図の如く電
圧値を暫増させながら何回も電圧パルスを印加した場合
の同一電圧値のそれと同等の値を示すこともわかった。
Furthermore, as a result of another experiment, the resistance reduction rate when a voltage pulse of a predetermined voltage value is applied only once is the same as that when a voltage pulse is applied many times while increasing the voltage value as shown in Figure 3. It was also found that the value was equivalent to that of the same voltage value.

この発明はこれらの実験結果に基づくものである。This invention is based on these experimental results.

この実施例では、まず、ステップ11で初期設定が行な
われ、次いでステップ12でサンプルの抵抗変化測定が
行なわれる。即ち、リレー網3を制御してサーマルヘッ
ド1のサンプルとして指定されたドツトの発熱抵抗体を
選択し、スイッチ4を切り換えて抵抗計6へ接続して抵
抗値を測定し、その測定値を制御演算部7へ送り、制御
演算部7のCPU9はこれをメモリ10へ格納する0次
にスイッチ4を切り換えてパルス発生器5より所定の電
圧値の電圧パルスを前記抵抗発熱体に印加する。ここで
、この電圧パルスは例えば幅が2μsecのパルスが1
5個周期50μsecで連続するパルス列である0次に
、再度スイッチ4を切り換えて。
In this embodiment, first, initial settings are performed in step 11, and then, in step 12, resistance change measurement of the sample is performed. That is, the relay network 3 is controlled to select the dot heating resistor designated as a sample of the thermal head 1, the switch 4 is switched to connect it to the resistance meter 6, the resistance value is measured, and the measured value is controlled. The CPU 9 of the control calculation unit 7 stores the voltage in the memory 10.The CPU 9 of the control calculation unit 7 then switches the switch 4 to apply a voltage pulse of a predetermined voltage value to the resistance heating element from the pulse generator 5. Here, this voltage pulse is, for example, a pulse with a width of 2 μsec.
Switch 4 is switched again after the 0th pulse, which is a series of five consecutive pulses with a period of 50 μsec.

この電圧パルスが印加された発熱抵抗体を抵抗計6に接
続して抵抗値を測定し、制御演算部7へ送る。制御演算
部7のCPU9はそれを印加した電圧パルスの電圧値と
ともにメモリ10に格納する。
The heating resistor to which this voltage pulse has been applied is connected to a resistance meter 6 to measure the resistance value and send it to the control calculation section 7. The CPU 9 of the control calculation section 7 stores it in the memory 10 together with the voltage value of the applied voltage pulse.

以下、同様にして、電圧パルスの電圧値を適宜上昇させ
ながらこれらの処理を繰返す、この処理は少くとも3回
繰返して実行され、リレー網3を切り換えていくつかの
サンプルについて実行される。
Thereafter, these processes are repeated in the same manner while appropriately increasing the voltage value of the voltage pulse. This process is repeated at least three times, and is executed for several samples by switching the relay network 3.

次に、ステップ5T13において、このようにして測定
された抵抗変化に基づいて抵抗値降下曲線の近似のため
のトリミング定数α、βの算出が行なわれる。即ち、制
御演算部7のCPU9はメモリ10に格納しておいた抵
抗変化から、電圧パルスによる各印加電圧における抵抗
変化率ΔR=(R−R,) /Reを求め、これを前記
(1)式に代入する。これによって各サンプル毎にそれ
ぞれα、β、v0を未知数とする方程式を作成してこれ
を解く、ここで、三つの未知数に対して四つ以上の方程
式がある場合にはこれを統計的に処理して解を得る。得
られた解はさらに各サンプル間で統計的に処理されて、
印加電圧の境界値v0とともに所望のトリミング定数α
、βが得られる。
Next, in step 5T13, trimming constants α and β for approximating the resistance value drop curve are calculated based on the resistance change thus measured. That is, the CPU 9 of the control calculation unit 7 determines the rate of resistance change ΔR=(R-R,)/Re at each applied voltage due to the voltage pulse from the resistance change stored in the memory 10, and calculates this by the above (1). Substitute into the expression. This creates and solves equations with α, β, and v0 as unknowns for each sample. If there are four or more equations for three unknowns, they are statistically processed. and get the solution. The obtained solution is further statistically processed between each sample, and
The desired trimming constant α along with the applied voltage boundary value v0
, β are obtained.

このようにして得られたトリミング定数α、βは、次に
ステップ5T14において、(2)式の関係からのずれ
が検出される。即ち、第4図に点Aで示す如く、ずれが
一定の範囲、例えば同図にハツチングを施した±5%の
領域をはずれた場合には誤測定とみなして、ステップ5
T12による抵抗値変化の測定をやり直す、その場合、
ステップ5T20によって以前に電圧パルスが印加され
たことのないドツトが新しいサンプルとして選択゛され
る。第4図に点Bで示す如く、ずれが一定の範囲内であ
る場合には、当該トリミング定数α。
In the trimming constants α and β obtained in this way, a deviation from the relationship expressed by equation (2) is then detected in step 5T14. That is, as shown by point A in Figure 4, if the deviation is outside a certain range, for example, the ±5% area hatched in the same figure, it is regarded as an erroneous measurement, and step 5 is performed.
If you want to re-measure the resistance change using T12, in that case,
Dots to which no voltage pulses have been previously applied are selected as new samples by step 5T20. As shown by point B in FIG. 4, if the deviation is within a certain range, the trimming constant α.

βはステップSTI 5にて印加電圧の境界値v0とと
もに(1)式に代入されて、抵抗変化率ΔRと印加電圧
Vとの関係を示す抵抗値降下曲線が近似される。
β is substituted into equation (1) together with the applied voltage boundary value v0 in step STI 5, and a resistance value drop curve showing the relationship between the resistance change rate ΔR and the applied voltage V is approximated.

これで準備段階を終了してステップ5T16よりトリミ
ングの処理に入る。まず、ステップ5T16において、
リレー網3でトリミングを実施するドツトを選択し、ス
イッチによってこれを抵抗計6に接続してその抵抗値を
測定する。次に、ステップ5T17ではCPU9によっ
て、得られた抵抗値を目標値まで降下させるための抵抗
変化率ΔRnが算出され、さらに前述の抵抗値降下曲線
Yを用いて電圧パルスの印加電圧Vnを決定する。
This completes the preparation stage and starts the trimming process from step 5T16. First, in step 5T16,
A dot to be trimmed is selected by the relay network 3, and connected to the resistance meter 6 by a switch to measure its resistance value. Next, in step 5T17, the CPU 9 calculates the resistance change rate ΔRn for lowering the obtained resistance value to the target value, and further determines the applied voltage Vn of the voltage pulse using the aforementioned resistance value drop curve Y. .

その様子は第3図に示され、具体的には前記α。The situation is shown in FIG. 3, specifically the above-mentioned α.

βt Vaが代入された関係式に前記ΔRnを代入して
印加電圧Vnを算出する。得られた印加電圧Vnは制御
演算部7よりパルス発生器5へ送られる。ステップ5T
18でスイッチ4が切り換えられると、パルス発生器5
からは電圧がVnの電圧パルスが送出され、トリミング
を実施するドツトの発熱抵抗体に印加される。これによ
って当該発熱抵抗体の抵抗値は目標値に近い値に降下す
る。
The applied voltage Vn is calculated by substituting the ΔRn into the relational expression in which βt Va is substituted. The obtained applied voltage Vn is sent from the control calculation section 7 to the pulse generator 5. Step 5T
When the switch 4 is switched at 18, the pulse generator 5
A voltage pulse with a voltage of Vn is sent out from , and is applied to the heating resistor of the dot to be trimmed. As a result, the resistance value of the heating resistor falls to a value close to the target value.

以下ステップ5T19が全ドツトのトリミングの終了を
検出するまで、ステップ5T16以後の処理が繰返され
る。
Thereafter, the processing from step 5T16 onward is repeated until step 5T19 detects that all dots have been trimmed.

なお、上記実施例では1つのサンプルに対して。In addition, in the above embodiment, for one sample.

少くとも3回の電圧パルス印加を行なって抵抗値降下曲
線を近似するものを示したが、抵抗値に変化が現われは
じめる印加電圧の境界値v0を25Vとして固定的に与
えてしまえば、2回の電圧パルス印加で抵抗値降下曲線
を近似することも可能となる。
We have shown that the resistance value drop curve is approximated by applying voltage pulses at least three times, but if we fix the applied voltage boundary value v0 at which the resistance value begins to change at 25V to approximate the resistance value drop curve, we can apply voltage pulses at least three times. It is also possible to approximate the resistance value drop curve by applying a voltage pulse of .

また、上記実施例では電圧パルスに所定数連続したパル
ス列を用いたが単パルスであってもよく。
Further, in the above embodiment, a predetermined number of continuous pulse trains are used as the voltage pulses, but a single pulse may be used.

上記実施例と同様の効果を奏する。The same effects as in the above embodiment are achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、少ないサンプルの抵
抗変化を測定して抵抗値降下曲線を近似し、トリミング
に際しては、そのドツトの発熱抵抗体の抵抗値を測定し
て、前記抵抗値降下曲線を用いて電圧パルスの電圧値を
決定するように構成したので、各ドツト毎に1回の電圧
パルスの印加によってトリミングが完了するため1発熱
抵抗体の抵抗値の均一化に要する時間を大幅に削減する
ことでき、さらに、抵抗値降下曲線の近似に際して、ト
リミング定数α、βの検出を行なっているので、近似さ
れた曲線が真の抵抗値降下曲線から大きくずれるような
ことはなく、抵抗値降下曲線の近似ミスによる過剰トリ
ミングあるいは発熱抵抗体の破壊、及びトリミング不足
あるいは未トリミングが生ずることのないサーマルヘッ
ドの製造方法が得られるなどの効果がある。
As described above, according to the present invention, a resistance drop curve is approximated by measuring the resistance change of a small number of samples, and when trimming, the resistance value of the heating resistor of the dot is measured, and the resistance value drop is calculated by measuring the resistance value of the heating resistor of the dot. Since the voltage value of the voltage pulse is determined using a curve, trimming is completed by applying one voltage pulse to each dot, which greatly reduces the time required to equalize the resistance value of one heating resistor. Furthermore, since the trimming constants α and β are detected when approximating the resistance value drop curve, the approximated curve will not deviate greatly from the true resistance value drop curve, and the resistance value will be reduced to It is possible to obtain a method for manufacturing a thermal head that does not cause excessive trimming or destruction of the heating resistor due to an error in approximating the value drop curve, and does not cause insufficient trimming or non-trimming.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるサーマルヘッドの製
造方法を示すフローチャート、第2図はそれを実施する
ための装置の一例を示すブロック図、第3図はその抵抗
値降下曲線の一例を示す線図、第4図はそのトリミング
定数αとβの相互の関係を示す線図、第5図は従来のサ
ーマルヘッドの製造方法を示すフローチャート、第6図
はその発熱抵抗体の抵抗値の減少を示す線図である。 1はサーマルヘッド、2はプロービング装置、3はリレ
ー網、4はスイッチ、5はパルス発生器。 6は抵抗計、7は制御演算部。 第1図 第2図 第4図 第5図 第6図
FIG. 1 is a flowchart showing a method for manufacturing a thermal head according to an embodiment of the present invention, FIG. 2 is a block diagram showing an example of an apparatus for carrying out the method, and FIG. 3 is an example of a resistance value drop curve. 4 is a diagram showing the relationship between the trimming constants α and β, FIG. 5 is a flowchart showing the conventional method for manufacturing a thermal head, and FIG. 6 is a diagram showing the resistance value of the heating resistor. It is a line diagram showing a decrease. 1 is a thermal head, 2 is a probing device, 3 is a relay network, 4 is a switch, and 5 is a pulse generator. 6 is a resistance meter, and 7 is a control calculation section. Figure 1 Figure 2 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 複数の発熱抵抗体を備えたサーマルヘッドの前記発熱抵
抗体の各々に電圧パルスを印加し、その抵抗値を降下さ
せて均一化するサーマルヘッドの製造方法において、前
記発熱抵抗体中からサンプルを選び、電圧値の異なる電
圧パルスを低圧のものから順次、前記サンプルとして選
ばれた発熱抵抗体に印加して、印加電圧と抵抗変化の関
係を示す抵抗値降下曲線を近似するためのトリミング定
数α、βを求め、このトリミング定数α、βが所定の関
係式で表現される関係を有するものとして、得られた前
記トリミング定数α、βと前記関係式とのずれを検定し
、そのずれが一定の範囲内であれば、当該トリミング定
数α、βに基づいて前記抵抗値降下曲線を近似し、前記
各発熱抵抗体へ印加する前記電圧パルスの電圧値を、当
該発熱抵抗体の初期の抵抗値に基づいて前記抵抗値降下
曲線を用いて決定することを特徴とするサーマルヘッド
の製造方法。
In a method for manufacturing a thermal head in which a voltage pulse is applied to each of the heating resistors of a thermal head equipped with a plurality of heating resistors to lower and equalize the resistance value, a sample is selected from among the heating resistors. , a trimming constant α for approximating a resistance value drop curve showing the relationship between applied voltage and resistance change by sequentially applying voltage pulses with different voltage values to the heating resistor selected as the sample, starting from the lowest voltage pulse; β is determined, and assuming that the trimming constants α and β have a relationship expressed by a predetermined relational expression, the deviation between the obtained trimming constants α and β and the above relational expression is tested, and if the deviation is constant. If it is within the range, the resistance value drop curve is approximated based on the trimming constants α and β, and the voltage value of the voltage pulse applied to each heating resistor is adjusted to the initial resistance value of the heating resistor. A method for manufacturing a thermal head, characterized in that the determination is made using the resistance value drop curve based on the resistance value drop curve.
JP61204005A 1986-08-29 1986-08-29 Thermal head resistance adjustment device Expired - Lifetime JPH06414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61204005A JPH06414B2 (en) 1986-08-29 1986-08-29 Thermal head resistance adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61204005A JPH06414B2 (en) 1986-08-29 1986-08-29 Thermal head resistance adjustment device

Publications (2)

Publication Number Publication Date
JPS6359552A true JPS6359552A (en) 1988-03-15
JPH06414B2 JPH06414B2 (en) 1994-01-05

Family

ID=16483194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61204005A Expired - Lifetime JPH06414B2 (en) 1986-08-29 1986-08-29 Thermal head resistance adjustment device

Country Status (1)

Country Link
JP (1) JPH06414B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252760A (en) * 1987-04-09 1988-10-19 Matsushita Electric Ind Co Ltd Thermal resistor trimming of thermal head
JPS63252759A (en) * 1987-04-09 1988-10-19 Matsushita Electric Ind Co Ltd Thermal resistor trimming device for thermal head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131404A (en) * 1984-11-29 1986-06-19 ロ−ム株式会社 Pulse trimming for thermal head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131404A (en) * 1984-11-29 1986-06-19 ロ−ム株式会社 Pulse trimming for thermal head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252760A (en) * 1987-04-09 1988-10-19 Matsushita Electric Ind Co Ltd Thermal resistor trimming of thermal head
JPS63252759A (en) * 1987-04-09 1988-10-19 Matsushita Electric Ind Co Ltd Thermal resistor trimming device for thermal head

Also Published As

Publication number Publication date
JPH06414B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
JPH07198777A (en) Semiconductor testing device
JPS6359552A (en) Manufacture of thermal head
US5504681A (en) Mass air flow sensor calibration
JP3461937B2 (en) How to measure insulation resistance
JPS6359549A (en) Manufacture of thermal head
JPS6359551A (en) Manufacture of thermal head
JPH0326527B2 (en)
JPH01120363A (en) Manufacture of thermal head
US6163759A (en) Method for calibrating variable delay circuit and a variable delay circuit using the same
JPH05133997A (en) Method for calibrating ic testing device
JPS6359550A (en) Manufacture of thermal head
JPS6359548A (en) Manufacture of thermal head
JPS6359557A (en) Manufacture of thermal head
JPS6359556A (en) Manufacture of thermal head
JPS63252760A (en) Thermal resistor trimming of thermal head
JP2590916B2 (en) Method of manufacturing thick film type thermal head
JP2990323B2 (en) Thermal head trimming method and trimming device
US5410245A (en) Method and apparatus for calibrating electronic scales for the horizontal axis
JP2831854B2 (en) Resistor trimming method for thin film thermal head
JPS63178060A (en) Method for trimming heat generating resistor of thermal head
JPH0754772B2 (en) Laser trimming method
JPS62283602A (en) Method of trimming thick film resistance array
JPS6385370A (en) Resistance measuring apparatus
JPS62281402A (en) Method of trimming thick film resistance array
JPH07191072A (en) Method for measuring line insulation resistance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term