JPS6359551A - Manufacture of thermal head - Google Patents

Manufacture of thermal head

Info

Publication number
JPS6359551A
JPS6359551A JP20400486A JP20400486A JPS6359551A JP S6359551 A JPS6359551 A JP S6359551A JP 20400486 A JP20400486 A JP 20400486A JP 20400486 A JP20400486 A JP 20400486A JP S6359551 A JPS6359551 A JP S6359551A
Authority
JP
Japan
Prior art keywords
resistance
voltage
resistance value
value
thermal head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20400486A
Other languages
Japanese (ja)
Other versions
JPH068056B2 (en
Inventor
Hirohisa Sugihara
杉原 広久
Hiromi Yamashita
山下 博實
Takafumi Endo
孝文 遠藤
Yutaka Ozaki
裕 尾崎
Yahei Takase
高瀬 弥平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61204004A priority Critical patent/JPH068056B2/en
Publication of JPS6359551A publication Critical patent/JPS6359551A/en
Publication of JPH068056B2 publication Critical patent/JPH068056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To obtain a thermal head not requiring much time for uniformizing the resistances of heat generating resistors, by determining a voltage value of a voltage pulse to be applied based on a resistance fall curve. CONSTITUTION:Voltage pulses are applied to selected samples of dots in a thermal head, in the order of increasing voltages, and the changes in the resistances of heat generating resistors are measured on each application of the voltage pulse. Then, a resistance fall curve Y representing the relationship between resistance change rate DELTAR and applied voltage V is approximated. After selection of one of the dots for which trimming is to be carried out by a relay network 3, the resistance of the selected dot is measured by connecting the dot to a resistance meter 6. Then, the resistance change rate DELTARn for lowering the resistance to a target value is calculated by a CPU 9, and a voltage value Vn of a voltage pulse to be applied is determined by using the resistance fall curve Y, whereby the resistance of the relevant heat generating resistor is lowered to a value approximate to the target value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は厚膜形サーマルヘッドの製造方法、特にその
発熱抵抗体の抵抗値の均一化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a thick film thermal head, and particularly to making the resistance value of a heating resistor thereof uniform.

〔従来の技術〕[Conventional technology]

厚膜形のサーマルヘッドは、ペースト状の抵抗材料をス
クリーン印刷法等によって所定のパターンに印刷し、そ
の後焼成することで発熱抵抗体を形成している。そのた
め厚膜形のサーマルヘッドは比較的短い製造工程によっ
て安価に製造できる反面、発熱抵抗体の抵抗値のばらつ
きが大きくなる欠点を持ち合せている。この発熱抵抗体
の抵抗値のばらつきは印字等の質に直接影響を及ぼすも
のであるため、厚膜形のサーマルヘッドの製造において
は発熱抵抗体の抵抗値の均一化は極めて重要なファクタ
である。この発熱抵抗体の抵抗値の均一化としては、発
熱抵抗体形成後、各発熱抵抗体に個別に比較的高圧の電
圧パルスを印加するとその抵抗値が低下するという現象
を利用したトリミング処理がある。
In the thick film type thermal head, a heat generating resistor is formed by printing a paste-like resistive material into a predetermined pattern by screen printing or the like, and then firing it. Therefore, although the thick film type thermal head can be manufactured at low cost through a relatively short manufacturing process, it has the disadvantage that the resistance value of the heating resistor varies widely. Variations in the resistance value of the heating resistor directly affect the quality of printing, so uniformity of the resistance value of the heating resistor is an extremely important factor in the manufacture of thick-film thermal heads. . To make the resistance values of the heating resistors uniform, there is a trimming process that utilizes the phenomenon that after the heating resistors are formed, when a relatively high voltage pulse is applied to each heating resistor individually, the resistance value decreases. .

第4図は例えば特開昭61−83053号公報に示され
た従来のサーマルヘッドの製造方法を示すフローチャー
トである。図において、STIは初期設定のステップ、
Sr1は前記ステップST1に続くプローバ及びスイッ
チングのステップ、Sr1は前記スタップST2に続く
電圧パルス印加のステップ、Sr1は前記ステップST
3に続く抵抗値測定のステップ、Sr5は前記ステップ
ST4に続く前回データとの比較のステップ、Sr6は
前記ステップST5に続く抵抗値減少検出のステップ、
Sr1は前記ステップST6に続くトリミングの全ドツ
ト終了検出のステップ、Sr1は前記ステップST5よ
り分岐したりプローブのステップ、Sr1は前記ステッ
プST6より分岐した電圧パルスの電圧調整のステップ
であり。
FIG. 4 is a flowchart showing a conventional thermal head manufacturing method disclosed in, for example, Japanese Unexamined Patent Publication No. 61-83053. In the figure, STI is the initial setting step,
Sr1 is a prober and switching step following step ST1, Sr1 is a voltage pulse application step following step ST2, and Sr1 is step ST
Sr5 is a step of comparing with the previous data following step ST4, Sr6 is a step of detecting a decrease in resistance value following step ST5,
Sr1 is a step for detecting the end of all trimming dots following step ST6, Sr1 is a step branching from step ST5 or a probe step, and Sr1 is a step for voltage adjustment of a voltage pulse branching from step ST6.

前記ステップST7の分岐からはステップST2へ、ス
テップST8からはステップST4へ、ステップST9
からはステップST3へ、それぞれ処理が戻される。
From the branch of step ST7, the process goes to step ST2, from step ST8 to step ST4, and from step ST9.
From there, the process returns to step ST3.

次に動作について説明する。まず、ステップSTlにお
いて、トリミングする発熱抵抗体に加える電圧パルスの
初期値、トリミングの目標値等の初期条件が設定される
9次に、ステップST2において、サーマルヘッドにプ
ロービングし、トリミングするドツトを選択してその発
熱抵抗体を電圧パルス発生手段に接続し、ステップST
3で前記ステップlで設定された初期値の電圧パルスを
印加する0次にステップST4でその発熱抵抗体の抵抗
値を測定し、ステップST5において抵抗値が減少した
か否かを識別し、していなければプローブの接触不良と
みなしてステップST8にてブロービングをやり直し、
ステップST4に戻って再度抵抗値の測定を行なう、抵
抗値が減少していればステップST6にてステップST
Iで設定されたトリミングの目標値と比較し、目標値よ
り小さくなっていなければ、ステップST9にて電圧パ
ルスの電圧値をΔVだけ上昇させてステップST・3に
戻り、電圧パルスの再印加を行なう、この処理はその発
熱抵抗体の抵抗値が前記目標値より小さくなるまで繰返
され、目標値より小さくなればそのドツトの発熱抵抗体
のトリミングを終了してステップST7へ移る。ステッ
プST7では全ドツトのトリミングが終了したか否かを
識別しており、全ドツトのトリミングが終了していなけ
れば処理をステップST2へ戻す、ステップST2では
新たなドツトが選択されてその発熱抵抗体が電圧パルス
発生手段に接続され、同様の処理が全ドツトのトリミン
グ終了まで繰返される。
Next, the operation will be explained. First, in step STl, initial conditions such as the initial value of the voltage pulse applied to the heating resistor to be trimmed and the target value for trimming are set.Next, in step ST2, the thermal head is probed and a dot to be trimmed is selected. Then connect the heating resistor to voltage pulse generating means, and step ST
In step 3, a voltage pulse having the initial value set in step l is applied.Next, in step ST4, the resistance value of the heating resistor is measured, and in step ST5, it is determined whether the resistance value has decreased. If not, it is assumed that the contact of the probe is poor and the probing is repeated in step ST8.
Return to step ST4 and measure the resistance value again. If the resistance value has decreased, proceed to step ST6 and measure the resistance value again.
It is compared with the trimming target value set in step I, and if it is not smaller than the target value, the voltage value of the voltage pulse is increased by ΔV in step ST9, and the process returns to step ST.3 to reapply the voltage pulse. This process is repeated until the resistance value of the heating resistor becomes smaller than the target value, and when the resistance value of the heating resistor becomes smaller than the target value, the trimming of the heating resistor of the dot is completed and the process moves to step ST7. In step ST7, it is determined whether or not all dots have been trimmed. If all dots have not been trimmed, the process returns to step ST2. In step ST2, a new dot is selected and its heating resistor is is connected to the voltage pulse generating means, and the same process is repeated until all dots are trimmed.

第5図はこの発熱抵抗体の抵抗値の減少を示す線図であ
り、トリミング前にはR1,R2,R,と大きくばらつ
いていた抵抗値が、目標値R0よりわずかに低い、狭い
範囲内に均一化される0図においてv5は前記電圧パル
スの初期値であり、電圧パルスの印加によって発熱抵抗
体の抵抗値が減少をはじめる境界電圧が通常25V近傍
にあるため例えば25Vに設定されている。また、ΔV
はステップST9による電圧パルスの電圧値の増し分で
あり、発熱抵抗体の抵抗値が減少し過ぎないように例え
ば2.5vに設定して除々に抵抗値を減少させている。
Figure 5 is a diagram showing the decrease in the resistance value of this heating resistor. Before trimming, the resistance value varied widely as R1, R2, R, but fell within a narrow range slightly lower than the target value R0. In the 0 diagram, v5 is the initial value of the voltage pulse, and is set to, for example, 25V because the boundary voltage at which the resistance value of the heat generating resistor starts to decrease due to the application of the voltage pulse is usually around 25V. . Also, ΔV
is the increment in the voltage value of the voltage pulse in step ST9, and is set to, for example, 2.5 V so that the resistance value of the heating resistor does not decrease too much, and the resistance value is gradually decreased.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のサーマルヘッド製造方法は以上のように構成され
ているので、1ドツトの発熱抵抗体のトリミングには2
0〜30回の電圧パルスの印加、及び抵抗値の測定をし
なければならず、発熱抵抗体の抵抗値の均一化には多大
な時間を要するという問題点があった。
Since the conventional thermal head manufacturing method is configured as described above, it takes two steps to trim one dot of the heating resistor.
There is a problem in that it is necessary to apply a voltage pulse 0 to 30 times and measure the resistance value, and it takes a lot of time to equalize the resistance value of the heating resistor.

この発明は上記のような問題点を解消するためになさ九
たもので、発熱抵抗体の抵抗値の均一化に多大の時間を
必要とすることのないサーマルヘッドの製造方法を得る
ことを目的とする。
This invention was made in order to solve the above-mentioned problems, and its purpose is to provide a method for manufacturing a thermal head that does not require a large amount of time to equalize the resistance value of the heating resistor. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るサーマルヘッドの製造方法は、サーマル
ヘッドのドツト中よりいくつかのサンプルを選定してそ
れに電圧値の異なるいくつかの電圧パルスを低いものか
ら順に印加し、その都度発熱抵抗体の抵抗変化を測定し
て抵抗値降下曲線を近似・し、各ドツトのトリミングに
際しては、まずその発熱抵抗体の抵抗値を測定して、必
要な抵抗値の降下量から前記抵抗値降下曲線に基づいて
印加する電圧パルスの電圧値を決定するものである。
The method for manufacturing a thermal head according to the present invention involves selecting several samples from among the dots of the thermal head, applying several voltage pulses with different voltage values to the samples in order from the lowest to the lowest, and each time increasing the resistance of the heating resistor. Measure the change and approximate the resistance drop curve. When trimming each dot, first measure the resistance of the heating resistor, and calculate the required resistance drop based on the resistance drop curve. This determines the voltage value of the voltage pulse to be applied.

〔作用〕[Effect]

この発明におけるサーマルヘッドの製造方法は、当該サ
ーマルヘッド内のサンプルドツトの測定によって抵抗値
降下曲線を近似し、トリミングに際してこの抵抗値降下
曲線を用いて、測定したそのドツトの発熱抵抗体の抵抗
値より印加する電圧パルスの電圧値を決定して、1回の
電圧パルスの印加で発熱抵抗体の抵抗値を目標値に近い
ものとする。
The method of manufacturing a thermal head according to the present invention approximates a resistance drop curve by measuring a sample dot in the thermal head, and uses this resistance drop curve during trimming to determine the measured resistance of the heating resistor of the dot. The voltage value of the voltage pulse to be applied is determined, and the resistance value of the heating resistor is made close to the target value with one application of the voltage pulse.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、5TIIは初期設定のステップ、5T12
は前記ステップ5T11に続くサンプルの抵抗変化測定
のステップ、5T13は前記ステップ5T12に続く抵
抗値降下曲線近似のステップ、5T14は前記ステップ
5T13に続く抵抗値測定のステップ、5T15は前記
ステップ5T14に続く印加電圧決定のステップ、5T
16は前記ステップ5T15に続く電圧パルス印加のス
テップ、5T17は前記ステップ5T16に続くトリミ
ングの全ドツト終了検出のステップであり、このステッ
プ5T17の分岐からはステップ5T14に処理が戻さ
れる。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 5TII is the initial setting step, 5T12
5T13 is a step of approximating a resistance value drop curve following step 5T12, 5T14 is a step of measuring resistance value following step 5T13, and 5T15 is an application step following step 5T14. Voltage determination step, 5T
16 is a step of applying a voltage pulse following step 5T15, and 5T17 is a step of detecting completion of all trimming dots following step 5T16. From the branch of step 5T17, the process returns to step 5T14.

第2図はこの発明のサーマルヘッドの製造方法を実施す
る装置の一例を示すブロック図であり、図において、1
はトリミング処理が行なわれるサーマルヘッド、2はこ
のサーマルヘッド1の各発熱抵抗体の端子にプローブを
押し当てるブロービング装置、3はブロービング装置2
に接続されて前記発熱抵抗体の選択を行なうリレー網、
4はリレー網3に接続されて電圧パルスの印加と抵抗値
の測定とを切り換えるスイッチ、5はスイッチ4の一方
に接続されて指定された電圧値の電圧パルスを送出する
パルス発生器、6はスイッチ4の他方に接続された抵抗
計、7は入出力部8.中央処理装置f!(以下、CPU
という)9.メモリ10、キーボード11等を備えて、
前記諸装置の制御を行なうとともに所要の演算処理を行
なう制御演算部、12はこの制御演算部7に接続された
プリンタである。
FIG. 2 is a block diagram showing an example of an apparatus for carrying out the method of manufacturing a thermal head of the present invention, and in the figure, 1
2 is a thermal head where trimming processing is performed; 2 is a blowing device that presses a probe against the terminal of each heating resistor of this thermal head 1; 3 is a blowing device 2
a relay network connected to select the heating resistor;
4 is a switch that is connected to the relay network 3 and switches between applying a voltage pulse and measuring a resistance value; 5 is a pulse generator that is connected to one side of the switch 4 and sends out a voltage pulse of a specified voltage value; and 6 is a A resistance meter 7 connected to the other side of the switch 4 is an input/output section 8. Central processing unit f! (Hereinafter, CPU
9. Equipped with memory 10, keyboard 11, etc.
A control/arithmetic unit 12 which controls the various devices and performs necessary arithmetic processing is a printer connected to this control/arithmetic unit 7.

次に動作について説明する。第3図は前記抵抗値降下曲
線の一例を示す線図であり、図中の実線Yがその抵抗値
降下曲線で、横軸には電圧パルスによる印加電圧値が、
縦軸には電圧パルス印加による発熱抵抗体の抵抗変化率
が目盛られている。
Next, the operation will be explained. FIG. 3 is a diagram showing an example of the resistance value drop curve, and the solid line Y in the figure is the resistance value drop curve, and the horizontal axis shows the applied voltage value due to the voltage pulse.
On the vertical axis, the rate of change in resistance of the heating resistor due to voltage pulse application is scaled.

実験の結果、第5図の縦軸を抵抗変化率にして、初期の
抵抗値から何%降下したかをプロットすると、第3図に
破線で示す如く、初期の抵抗値には関係なくほぼ一定の
曲線Y上をたどり、その曲線Yは(1)式で近似できる
ことがわかった。
As a result of the experiment, when we plot the percentage drop from the initial resistance value with the vertical axis in Figure 5 as the resistance change rate, we find that it remains almost constant regardless of the initial resistance value, as shown by the broken line in Figure 3. It was found that the curve Y can be approximated by equation (1).

Ro       ΔV なお、(1)式中、Roは発熱抵抗体の初期の抵抗値、
voは抵抗値に変化が現われはじめる印加電圧の境界値
、ΔVは印加電圧の変化ステップ、α、βはサーマルヘ
ッドの構造、ドツト密度等で決まる定数である。
Ro ΔV In formula (1), Ro is the initial resistance value of the heating resistor,
vo is the boundary value of the applied voltage at which a change in resistance value begins to appear, ΔV is the change step of the applied voltage, and α and β are constants determined by the structure of the thermal head, dot density, etc.

また、別の実験の結果、所定の電圧値の電圧パルスを1
回だけ印加した場合の抵抗減少率は、第3図の如く電圧
値を暫増させながら何回も電圧パルスを印加した場合の
同一電圧値のそれと同等の値を示すこともわかった。こ
の発明はこれらの実験結果に基づくものである。
In addition, as a result of another experiment, a voltage pulse of a predetermined voltage value was
It was also found that the resistance reduction rate when the voltage pulse is applied only once is equivalent to that when the voltage pulse is applied many times with the same voltage value while gradually increasing the voltage value as shown in FIG. This invention is based on these experimental results.

この実施例では、まず、ステップ11で初期設定が行な
われ、次いでステップ12でサンプルの抵抗変化測定が
行なわれる。即ち、リレーIIj3を制御してサーマル
ヘッド1のサンプルとして指定されたドツトの発熱抵抗
体を選択し、スイッチ4を切り換えて抵抗計6へ接続し
て抵抗値を測定し。
In this embodiment, first, initial settings are performed in step 11, and then, in step 12, resistance change measurement of the sample is performed. That is, the dot heating resistor specified as a sample of the thermal head 1 is selected by controlling the relay IIj3, and the resistance value is measured by switching the switch 4 and connecting it to the resistance meter 6.

その測定値を制御演算部7へ送り、制御演算部7のCP
U9はこれをメモリ10へ格納する1次にスイッチ4を
切り換えてパルス発生器5より所定の電圧値の電圧パル
スを前記抵抗発熱体に印加する。ここで、この電圧パル
スは例えば幅が2μsecのパルスが15個周期50μ
secで連続するパルス列である。次に、再度スイッチ
4を切り換えて、この電圧パルスが印加された発熱抵抗
体を抵抗計6に接続して抵抗値を測定し、制御演算部7
へ送る。制御演算部7のCPU9はそれを印加した電圧
パルスの電圧値とともにメモリ10に格納する。
The measured value is sent to the control calculation unit 7, and the CP of the control calculation unit 7 is
U9 stores this in the memory 10. The primary switch 4 is switched to apply a voltage pulse of a predetermined voltage value from the pulse generator 5 to the resistance heating element. Here, this voltage pulse includes, for example, 15 pulses each having a width of 2 μsec and a period of 50 μsec.
This is a pulse train that continues in seconds. Next, the switch 4 is switched again, the heating resistor to which this voltage pulse is applied is connected to the resistance meter 6, the resistance value is measured, and the control calculation unit 7
send to The CPU 9 of the control calculation section 7 stores it in the memory 10 together with the voltage value of the applied voltage pulse.

以下、同様にして、電圧パルスの電圧値を適宜上昇させ
ながらこれらの処理を繰返す。この処理は少くとも3回
繰返して実行され、リレー網3を切り換えていくつかの
サンプルについて実行される。
Thereafter, these processes are repeated in the same manner while appropriately increasing the voltage value of the voltage pulse. This process is repeated at least three times, and is executed for several samples by switching the relay network 3.

次に、ステップ5T13において、このようにして測定
された抵抗変化に基づく抵抗値降下曲線の近似が行なわ
れる。即ち、制御演算部7のCPU9はメモリ10に格
納しておいた抵抗変化から、電圧パルスによる各印加電
圧における抵抗変化率ΔR= (R−RI、) /R,
を求め、これを前記(1)式に代入する。これによって
各サンプル毎にそれぞれα、β、vl、を未知数とする
方程式を作成してこれを解く、ここで、三つの未知数に
対して四つ以上の方程式がある場合にはこれを統計的に
処理して解を得る。得られた解はさらに各サンプル間で
統計的に処理され、得られた定数α、β、境界電圧値v
0が(1)式に代入されて、抵抗変化率ΔRと印加電圧
Vとの関係を示す抵抗値降下曲線が近似される。
Next, in step 5T13, a resistance value drop curve is approximated based on the resistance change thus measured. That is, the CPU 9 of the control calculation unit 7 determines the resistance change rate ΔR= (R-RI,) /R, at each applied voltage due to the voltage pulse, from the resistance change stored in the memory 10.
is calculated and substituted into the above equation (1). By doing this, equations with α, β, and vl as unknowns are created and solved for each sample, and if there are four or more equations for three unknowns, this is done statistically. Process and get the solution. The obtained solution is further statistically processed between each sample, and the obtained constants α, β, boundary voltage value v
0 is substituted into equation (1), and a resistance value drop curve showing the relationship between the resistance change rate ΔR and the applied voltage V is approximated.

これで準備段階を終了してステップ5T14よリドリミ
ングの処理に入る。まず、ステップ5T14において、
リレー網3でトリミングを実施するドツトを選択し、ス
イッチによってこれを抵抗計6に接続してその抵抗値を
測定する1次に、ステップ5TI5ではCPU9によっ
て、得られた抵抗値を目標値まで降下させるための抵抗
変化率ΔRnが算出され、さらに前述の抵抗値降下曲線
Yを用いて電圧パルスの印加電圧Vnを決定する。
This completes the preparation stage and starts the re-trimming process at step 5T14. First, in step 5T14,
The relay network 3 selects the dot to be trimmed, and the switch connects it to the resistance meter 6 to measure its resistance value.Next, in step 5TI5, the CPU 9 lowers the obtained resistance value to the target value. The rate of change in resistance ΔRn for this purpose is calculated, and the applied voltage Vn of the voltage pulse is determined using the resistance value drop curve Y described above.

その様子は第3図に示され、具体的には前記α。The situation is shown in FIG. 3, specifically the above-mentioned α.

β、■。が代入された関係式に前記ΔRnを代入して印
加電圧Vnを算出する。得られた印加電圧Vnは制御演
算部7よりパルス発生器5へ送られる。ステップ5T1
6でスイッチ4が切り換えられると、パルス発生器5か
らは電圧がVnの電圧パルスが送出され、トリミングを
実施するドツトの発熱抵抗体に印加される。これによっ
て当該発熱抵抗体の抵抗値は目標値に近い値に降下する
β, ■. The applied voltage Vn is calculated by substituting ΔRn into the relational expression in which ΔRn is substituted. The obtained applied voltage Vn is sent from the control calculation section 7 to the pulse generator 5. Step 5T1
When the switch 4 is switched at step 6, a voltage pulse of voltage Vn is sent out from the pulse generator 5 and applied to the heating resistor of the dot to be trimmed. As a result, the resistance value of the heating resistor falls to a value close to the target value.

以下ステップ5T17が全ドツトのトリミングの終了を
検出するまで、ステップ5T14以後の処理が繰返され
る。
Thereafter, the processing from step 5T14 onward is repeated until step 5T17 detects that all dots have been trimmed.

なお、上記実施例では1つのサンプルに対して、少くと
も3回の電圧パルス印加を行なって抵抗値降下曲線を近
似するものを示したが、抵抗値に変化が現われはじめる
印加電圧の境界値V。を25Vとして固定的に与えてし
まえば、2回の電圧パルス印加で抵抗値降下曲線を近似
することも可能となる。
In addition, in the above example, the voltage pulse is applied at least three times to one sample to approximate the resistance value drop curve, but the boundary value V of the applied voltage at which the resistance value starts to change is shown. . If it is fixedly given as 25V, it becomes possible to approximate the resistance value drop curve by applying voltage pulses twice.

また、上記実施例では電圧パルスに所定数連続したパル
ス列を用いたが単パルスであってもよく。
Further, in the above embodiment, a predetermined number of continuous pulse trains are used as the voltage pulses, but a single pulse may be used.

上記実施例と同様の効果を奏する。The same effects as in the above embodiment are achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、少ないサンプルの抵
抗変化を測定して抵抗値降下曲線を近似し、トリミング
に際しては、そのドツトの発熱抵抗体の抵抗値を測定し
て、前記抵抗値降下曲線を用いて電圧パルスの電圧値を
決定するように構成したので、各ドツト毎に1回の電圧
パルスの印加によってトリミングが完了するため、発熱
抵抗体の抵抗値の均一化に要する時間を大幅に削減でき
る効果が°ある。この効果はファクシミリ用サーマルヘ
ッドの如<、1000ドツトあるいはそれ以上の発熱抵
抗体を有するような、多ドツトのサーマルヘッドに適用
した場合、特に顕著である。
As described above, according to the present invention, a resistance drop curve is approximated by measuring the resistance change of a small number of samples, and when trimming, the resistance value of the heating resistor of the dot is measured, and the resistance value drop is calculated by measuring the resistance value of the heating resistor of the dot. Since the configuration uses a curve to determine the voltage value of the voltage pulse, trimming is completed by applying one voltage pulse to each dot, significantly reducing the time required to equalize the resistance value of the heating resistor. It has the effect of reducing This effect is particularly noticeable when applied to a multi-dot thermal head, such as a facsimile thermal head, which has a heating resistor of 1000 dots or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるサーマルヘッドの製
造方法を示すフローチャート、第2図はそれを実施する
ための装置の一例を示すブロック図、第3図はその抵抗
値降下曲線の一例を示す線図、第4図は従来のサーマル
ヘッドの製造方法を示すフローチャート、第5図はその
発熱抵抗体の抵抗値の減少を示す線図である。 1はサーマルヘッド、2はブロービング装置。 3はリレー網、4はスイッチ、5はパルス発生器、6は
抵抗計、7は制御演算部。 特許出願人  三菱電機株式会社 第1図 第2図 第4図
FIG. 1 is a flowchart showing a method for manufacturing a thermal head according to an embodiment of the present invention, FIG. 2 is a block diagram showing an example of an apparatus for carrying out the method, and FIG. 3 is an example of a resistance value drop curve. FIG. 4 is a flowchart showing a conventional method for manufacturing a thermal head, and FIG. 5 is a diagram showing a decrease in the resistance value of the heating resistor. 1 is a thermal head, 2 is a blobbing device. 3 is a relay network, 4 is a switch, 5 is a pulse generator, 6 is a resistance meter, and 7 is a control calculation unit. Patent applicant Mitsubishi Electric Corporation Figure 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 複数の発熱抵抗体を備えたサーマルヘッドの前記発熱抵
抗体の各々に電圧パルスを印加し、その抵抗値を降下さ
せて均一化するサーマルヘッドの製造方法において、前
記発熱抵抗体中からサンプルを選び、電圧値の異なる電
圧パルスを低圧のものから順次、前記サンプルとして選
ばれた発熱抵抗体に印加して、印加電圧と抵抗変化の関
係を示す抵抗値降下曲線を近似し、前記各発熱抵抗体へ
印加する前記電圧パルスの電圧値を、当該発熱抵抗体の
初期の抵抗値に基づいて前記抵抗値降下曲線を用いて決
定することを特徴とするサーマルヘッドの製造方法。
In a method for manufacturing a thermal head in which a voltage pulse is applied to each of the heating resistors of a thermal head equipped with a plurality of heating resistors to lower and equalize the resistance value, a sample is selected from among the heating resistors. , voltage pulses with different voltage values are sequentially applied to the heat generating resistor selected as the sample, starting from the lowest voltage pulse, and a resistance value drop curve showing the relationship between the applied voltage and resistance change is approximated, and each of the heat generating resistors is A method for manufacturing a thermal head, characterized in that the voltage value of the voltage pulse applied to the heating resistor is determined using the resistance value drop curve based on the initial resistance value of the heating resistor.
JP61204004A 1986-08-29 1986-08-29 Method of manufacturing thermal head Expired - Lifetime JPH068056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61204004A JPH068056B2 (en) 1986-08-29 1986-08-29 Method of manufacturing thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61204004A JPH068056B2 (en) 1986-08-29 1986-08-29 Method of manufacturing thermal head

Publications (2)

Publication Number Publication Date
JPS6359551A true JPS6359551A (en) 1988-03-15
JPH068056B2 JPH068056B2 (en) 1994-02-02

Family

ID=16483179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61204004A Expired - Lifetime JPH068056B2 (en) 1986-08-29 1986-08-29 Method of manufacturing thermal head

Country Status (1)

Country Link
JP (1) JPH068056B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101616601B1 (en) * 2013-06-05 2016-04-28 주식회사 엘지화학 Supported-catalyst for synthesizing carbon nanostructures, method for preparing thereof, and method for preparing secondary structures of carbon nanostructures using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131404A (en) * 1984-11-29 1986-06-19 ロ−ム株式会社 Pulse trimming for thermal head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131404A (en) * 1984-11-29 1986-06-19 ロ−ム株式会社 Pulse trimming for thermal head

Also Published As

Publication number Publication date
JPH068056B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
US4782202A (en) Method and apparatus for resistance adjustment of thick film thermal print heads
JPS6359551A (en) Manufacture of thermal head
JPS6359549A (en) Manufacture of thermal head
JPS6359552A (en) Manufacture of thermal head
US5504681A (en) Mass air flow sensor calibration
JPS6359548A (en) Manufacture of thermal head
JPS6359557A (en) Manufacture of thermal head
JPS6359550A (en) Manufacture of thermal head
JPH0326527B2 (en)
JPH01120363A (en) Manufacture of thermal head
JPS6359556A (en) Manufacture of thermal head
JP2990323B2 (en) Thermal head trimming method and trimming device
JP2590916B2 (en) Method of manufacturing thick film type thermal head
JP2523934B2 (en) Resistance trimming method of thermal head
JPS63252760A (en) Thermal resistor trimming of thermal head
JPS63178060A (en) Method for trimming heat generating resistor of thermal head
JPH04164655A (en) Method for trimming resistors of thin-film thermal head
JP2002052752A (en) Method of adjusting resistance value of thermal head
CN116674296A (en) Temperature control-based nondestructive resistance repairing method for thermal printing head
JPS63191656A (en) Trimming for resistance value of thermal head heating resistor
JP3621444B2 (en) Trimming method of thin film thermal print head
JP2830325B2 (en) Manufacturing method of thermal head
JP2563642B2 (en) Thermal head and its resistance trimming method
JPH07191072A (en) Method for measuring line insulation resistance
JPH06115135A (en) Production of thermal head

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term