JPS6359549A - Manufacture of thermal head - Google Patents

Manufacture of thermal head

Info

Publication number
JPS6359549A
JPS6359549A JP20400286A JP20400286A JPS6359549A JP S6359549 A JPS6359549 A JP S6359549A JP 20400286 A JP20400286 A JP 20400286A JP 20400286 A JP20400286 A JP 20400286A JP S6359549 A JPS6359549 A JP S6359549A
Authority
JP
Japan
Prior art keywords
resistance
voltage
value
thermal head
voltage pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20400286A
Other languages
Japanese (ja)
Other versions
JPH068054B2 (en
Inventor
Hirohisa Sugihara
杉原 広久
Hiromi Yamashita
山下 博實
Takafumi Endo
孝文 遠藤
Yutaka Ozaki
裕 尾崎
Yahei Takase
高瀬 弥平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61204002A priority Critical patent/JPH068054B2/en
Publication of JPS6359549A publication Critical patent/JPS6359549A/en
Publication of JPH068054B2 publication Critical patent/JPH068054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To obtain a thermal head which does not require much time for uniformizing the resistances of heat generating resistors, by determining a voltage value of a voltage pulse to be applied by the use of a resistance vs. applied voltage table. CONSTITUTION:Measurement of change in resistance is performed for selected samples of heat generating resistors in a thermal head. The resistance change ratio varies along a curve Y, from which an equation of the relationship between the resistance change ratio DELTAR and applied voltage V is derived. Next, a resistance vs. applied voltage table is formed. Then, a dot for which trimming is to be carried out is selected, and the resistance of the dot is measured. A resistance change ratio DELTARn for lowering the resistance to a target value is calculated. Further, an applied voltage Vn corresponding to the resistance change ratio DELTARn is read from the table, thereby determining a voltage value of a voltage pulse to be applied. Thus, trimming can be completed by one application of the voltage pulse, and it is possible to markedly reduce the period of time required for uniformizing the resistances of the heat generating resistors.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は厚膜形サーマルヘッドの製造方法、特にその
発熱抵抗体の抵抗値の均一化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a thick film thermal head, and particularly to making the resistance value of a heating resistor thereof uniform.

〔従来の技術〕[Conventional technology]

厚膜形のサーマルヘッドは、ペースト状の抵抗材料をス
クリーン印刷法等によって所定のパターンに印刷し、そ
の後焼成することで発熱抵抗体を形成している。そのた
め厚膜形のサーマルヘッドは比較的短い製造工程によっ
て安価に製造できる反面1発熱抵抗体の抵抗値のばらつ
きが大きくなる欠点を持ち合せている。この発熱抵抗体
の抵抗値のばらつきは印字等の質に直接影響を及ぼすも
のであるため、厚膜形のサーマルヘッドの製造において
は発熱抵抗体の抵抗値の均一化は極めて重要なファクタ
である。この発熱抵抗体の抵抗値の均一化としては1発
熱抵抗体形成後、各発熱抵抗体に個別に比較的高圧の電
圧パルスを印加するとその抵抗値が低下するという現象
を利用したトリミング処理がある。
In the thick film type thermal head, a heat generating resistor is formed by printing a paste-like resistive material into a predetermined pattern by screen printing or the like, and then firing it. Therefore, although the thick film type thermal head can be manufactured at low cost through a relatively short manufacturing process, it has the disadvantage that the resistance value of the single heating resistor varies widely. Variations in the resistance value of the heating resistor directly affect the quality of printing, so uniformity of the resistance value of the heating resistor is an extremely important factor in the manufacture of thick-film thermal heads. . To make the resistance values of the heating resistors uniform, there is a trimming process that utilizes the phenomenon that, after forming one heating resistor, applying a relatively high voltage pulse to each heating resistor individually reduces its resistance value. .

第5図は例えば特開昭61−83053号公報に示され
た従来のサーマルヘッドの製造方法を示すフローチャー
トである。図において、STIは初期設定のステップ、
Sr1は前記ステップST1に続くプローバ及びスイッ
チングのステップ、Sr1は前記スタップST2に続く
電圧パルス印加のステップ、Sr1は前記ステップST
3に続く抵抗値測定のステップ、Sr1は前記ステップ
ST4に続く前回データとの比較のステップ、Sr6は
前記ステップST5に続く抵抗値減少検出のステップ、
Sr1は前記ステップST6に続くトリミングの全ドツ
ト終了検出のステップ、Sr1は前記ステップST5よ
り分岐したりプローブのステップ、Sr1は前記ステッ
プST6より分岐した電圧パルスの電圧調整のステップ
であり。
FIG. 5 is a flowchart showing a conventional method of manufacturing a thermal head disclosed in, for example, Japanese Patent Application Laid-Open No. 61-83053. In the figure, STI is the initial setting step,
Sr1 is a prober and switching step following step ST1, Sr1 is a voltage pulse application step following step ST2, and Sr1 is step ST
Sr1 is a step of comparing with the previous data following step ST4, Sr6 is a step of detecting a decrease in resistance value following step ST5,
Sr1 is a step for detecting the end of all trimming dots following step ST6, Sr1 is a step branching from step ST5 or a probe step, and Sr1 is a step for voltage adjustment of a voltage pulse branching from step ST6.

前記ステップST7の分岐からはステップST2へ、ス
テップST8からはステップST4へ、ステップST9
からはステップST3へ、それぞれ処理が戻される。
From the branch of step ST7, the process goes to step ST2, from step ST8 to step ST4, and from step ST9.
From there, the process returns to step ST3.

次に動作について説明する。まず、ステップST1にお
いて、トリミングする発熱抵抗体に加える電圧パルスの
初期値、トリミングの目標値等の初期条件が設定される
0次に、ステップST2において、サーマルヘッドにプ
ロービングし、トリミングするドツトを選択してその発
熱抵抗体を電圧パルス発生手段に接続し、ステップST
3で前記ステップ1で設定された初期値の電圧パルスを
印加する1次にステップST4でその発熱抵抗体の抵抗
値を測定し、ステップST5において抵抗値が減少した
か否かを識別し、していなければプローブの接触不良と
みなしてステップST8にてブロービングをやり直し、
ステップST4に戻って再度抵抗値の測定を行なう。抵
抗値が減少していればステップST6にてステップST
Iで設定されたトリミングの目標値と比較し、目標値よ
り小さくなっていなければ、ステップST9にて電圧パ
ルスの電圧値をΔVだけ上昇させてステップST3に戻
り、電圧パルスの再印加を行なう。この処理はその発熱
抵抗体の抵抗値が前記目標値より小さくなるまで繰返さ
れ、目標値より小さくなればそのドツトの発熱抵抗体の
トリミングを終了してステップST7へ移る。ステップ
ST7では全ドツトのトリミングが終了したか否かを識
別しており、全ドツトのトリミングが終了していなけれ
ば処理をステップST2へ戻す、ステップST2では新
たなドツトが選択されてその発熱抵抗体が電圧パルス発
生手段に接続され、同様の処理が全ドツトのトリミング
終了まで繰返される。
Next, the operation will be explained. First, in step ST1, initial conditions such as the initial value of the voltage pulse applied to the heating resistor to be trimmed and the target value for trimming are set.Next, in step ST2, the thermal head is probed and a dot to be trimmed is selected. Then connect the heating resistor to voltage pulse generating means, and step ST
In Step 3, a voltage pulse having the initial value set in Step 1 is applied. Next, in Step ST4, the resistance value of the heating resistor is measured, and in Step ST5, it is determined whether or not the resistance value has decreased. If not, it is assumed that the contact of the probe is poor and the probing is repeated in step ST8.
Returning to step ST4, the resistance value is measured again. If the resistance value is decreasing, step ST6 is performed.
It is compared with the trimming target value set in I, and if it is not smaller than the target value, the voltage value of the voltage pulse is increased by ΔV in step ST9, and the process returns to step ST3 to reapply the voltage pulse. This process is repeated until the resistance value of the heating resistor becomes smaller than the target value, and when the resistance value of the heating resistor becomes smaller than the target value, the trimming of the heating resistor of the dot is completed and the process moves to step ST7. In step ST7, it is determined whether or not all dots have been trimmed. If all dots have not been trimmed, the process returns to step ST2. In step ST2, a new dot is selected and its heating resistor is is connected to the voltage pulse generating means, and the same process is repeated until all dots are trimmed.

第6図はこの発熱抵抗体の抵抗値の減少を示す線図であ
り、トリミング前にはR1,R,、R,と大きくばらつ
いていた抵抗値が、目標値R0よりわずかに低い、狭い
範囲内に均一化される。図においてv5は前記電圧パル
スの初期値であり、電圧パルスの印加によって発熱抵抗
体の抵抗値が減少をはじめる境界電圧が通常25V近傍
にあるため例えば25Vに設定されている。また、ΔV
はステップST9による電圧パルスの電圧値の増し分で
あり、発熱抵抗体の抵抗値が減少し過ぎないように例え
ば2.5vに設定して除々に抵抗値を減少させている。
Figure 6 is a diagram showing the decrease in the resistance value of this heating resistor. Before trimming, the resistance value varied widely as R1, R, , R, but within a narrow range slightly lower than the target value R0. homogenized within. In the figure, v5 is the initial value of the voltage pulse, and is set to, for example, 25V because the boundary voltage at which the resistance value of the heating resistor begins to decrease upon application of the voltage pulse is usually around 25V. Also, ΔV
is the increment in the voltage value of the voltage pulse in step ST9, and is set to, for example, 2.5 V so that the resistance value of the heating resistor does not decrease too much, and the resistance value is gradually decreased.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のサーマルヘッド製造方法は以上のように構成され
ているので、1ドツトの発熱抵抗体のトリミングには2
0〜30回の電圧パルスの印加、及び抵抗値の測定をし
なければならず、発熱抵抗体の抵抗値の均一化には多大
な時間を要するという問題点があった。
Since the conventional thermal head manufacturing method is configured as described above, it takes two steps to trim one dot of the heating resistor.
There is a problem in that it is necessary to apply a voltage pulse 0 to 30 times and measure the resistance value, and it takes a lot of time to equalize the resistance value of the heating resistor.

この発明は上記のような問題点を解消するためになされ
たもので、発熱抵抗体の抵抗値の均一化に多大の時間を
必要とすることのないサーマルヘッドの製造方法を得る
ことを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to provide a method for manufacturing a thermal head that does not require a large amount of time to equalize the resistance value of the heating resistor. do.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るサーマルヘッドの製造方法は、サーマル
ヘッドのドツト中よりいくつかのサンプルを選定してそ
れに電圧値の異なるいくつかの電圧パルスを低いものか
ら順に印加し、その都度発熱抵抗体の抵抗変化を測定し
て抵抗対印加電圧テーブルを作成し、各ドツトのトリミ
ングに際しては、まずその発熱抵抗体の抵抗値を測定し
て、必要な抵抗対印加電圧テーブルを用いて印加する電
圧パルスの電圧値を決定するものである。
The method for manufacturing a thermal head according to the present invention involves selecting several samples from among the dots of the thermal head, applying several voltage pulses with different voltage values to the samples in order from the lowest to the lowest, and each time increasing the resistance of the heating resistor. Measure the change and create a resistance vs. applied voltage table. When trimming each dot, first measure the resistance value of the heating resistor, and use the required resistance vs. applied voltage table to determine the voltage of the voltage pulse to be applied. It determines the value.

〔作用〕[Effect]

この発明におけるサーマルヘッドの製造方法は、当該サ
ーマルヘッド内のサンプルドツトの測定によって抵抗対
印加電圧テーブルを作成し、トリミングに際してこの抵
抗対印加電圧テーブルを用b)で、測定したそのドツト
の発熱抵抗体の抵抗値より印加する電圧パルスの電圧値
を決定して、1回の電圧パルスの印加で発熱抵抗体の抵
抗値を目標値に近いものとする。
In the method for manufacturing a thermal head in this invention, a resistance vs. applied voltage table is created by measuring a sample dot in the thermal head, and this resistance vs. applied voltage table is used during trimming. The voltage value of the voltage pulse to be applied is determined based on the resistance value of the body, and the resistance value of the heating resistor is made close to the target value by applying one voltage pulse.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、5TIIは初期設定のステップ、5T12
は前記ステップ5TIIに続くサンプルの抵抗変化測定
のステップ、5T13は前記ステップ5T12に続く抵
抗対印加電圧テーブルを作成のステップ、5T14は前
記ステップ5T13に続く抵抗値測定のステップ、5T
15は前記ステップ5T14に続く印加電圧決定のステ
ップ、5T16は前記ステップ5T15に続く電圧パル
ス印加のステップ、5T17は前記ステップ5T16に
続くトリミングの全ドツト終了検出のステップであり、
このステップ5T17の分岐からはステップ5T14に
処理が戻される。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 5TII is the initial setting step, 5T12
5T13 is a step of creating a resistance vs. applied voltage table following step 5T12, 5T14 is a step of measuring resistance value following step 5T13, 5T
15 is a step of determining the applied voltage following step 5T14, 5T16 is a step of applying a voltage pulse following step 5T15, 5T17 is a step of detecting the end of all trimming dots following step 5T16,
From this branch of step 5T17, the process returns to step 5T14.

第2図はこの発明のサーマルヘッドの製造方法を実施す
る装置の一例を示すブロック図であり。
FIG. 2 is a block diagram showing an example of an apparatus for carrying out the method of manufacturing a thermal head of the present invention.

図において、1はトリミング処理が行なわれるサーマル
ヘッド、2はこのサーマルヘッド1の各発熱抵抗体の端
子にプローブを押し当てるプロービング装置、3はブロ
ービング装置2に接続されて前記発熱抵抗体の選択を行
なうリレー網、4はリレー網3に接続されて電圧パルス
の印加と抵抗値の測定とを切り換えるスイッチ、5はス
イッチ4の一方に接続されて指定された電圧値の電圧パ
ルスを送出するパルス発生器、6はスイッチ4の他方に
接続された抵抗計、7は入出力部8、中央処理装置(以
下、CPUという)9.メモリ10、キーボード11等
を備えて、前記諸装置の制御を行なうとともに所要の演
算処理を行なう制御演算部、12はこの制御演算部7に
接続されたプリンタである。
In the figure, 1 is a thermal head where trimming processing is performed, 2 is a probing device that presses a probe against the terminal of each heating resistor of this thermal head 1, and 3 is connected to the probing device 2 to select the heating resistor. A relay network 4 is connected to the relay network 3 and switches between applying a voltage pulse and measuring a resistance value. A pulse 5 is connected to one side of the switch 4 and sends out a voltage pulse of a specified voltage value. generator, 6 a resistance meter connected to the other side of the switch 4, 7 an input/output unit 8, a central processing unit (hereinafter referred to as CPU) 9. A control/arithmetic section 12 is a printer connected to the control/arithmetic section 7, which is equipped with a memory 10, a keyboard 11, etc., and controls the various devices mentioned above and performs necessary arithmetic processing.

次に動作について説明する。第3図は抵抗値降下曲線の
一例を示す線図であり、図中の実線Yがその抵抗値降下
曲線で、横軸には電圧パルスによる印加電圧値が、縦軸
には電圧パルス印加による発熱抵抗体の抵抗変化率が目
盛られている。実験の結果、第6図の縦軸を抵抗変化率
にして、初期の抵抗値から何%降下したかをプロットす
ると。
Next, the operation will be explained. Fig. 3 is a diagram showing an example of a resistance value drop curve, where the solid line Y in the figure is the resistance value drop curve, the horizontal axis represents the applied voltage value due to the voltage pulse, and the vertical axis represents the applied voltage value due to the voltage pulse application. The resistance change rate of the heating resistor is graduated. As a result of the experiment, the vertical axis in Fig. 6 is plotted as the rate of change in resistance, and the percentage drop from the initial resistance value is plotted.

第3図に破線で示す如く、初期の抵抗値には関係なくほ
ぼ一定の曲線Y上をたどり、その曲線Yは(1)式で近
似できることがわかった。
As shown by the broken line in FIG. 3, it was found that a substantially constant curve Y was followed regardless of the initial resistance value, and that the curve Y could be approximated by equation (1).

R,ΔV なお、(1)式中、Roは発熱抵抗体の初期の抵抗値、
vl、は抵抗値に変化が現われはじめる印加電圧の境界
値、ΔVは印加電圧の変化ステップ、α、βはサーマル
ヘッドの構造、ドツト密度等で決まる定数である。
R, ΔV In formula (1), Ro is the initial resistance value of the heating resistor,
vl is the boundary value of the applied voltage at which a change in resistance value begins to appear, ΔV is the change step of the applied voltage, and α and β are constants determined by the structure of the thermal head, dot density, etc.

また、別の実験の結果、所定の電圧値の電圧パルスを1
回だけ印加した場合の抵抗減少率は、第3図の如く電圧
値を暫増させながら何回も電圧パルスを印加した場合の
同一電圧値のそれと同等の値を示すこともわかった。こ
の発明はこれらの実験結果に基づくものである。
In addition, as a result of another experiment, a voltage pulse of a predetermined voltage value was
It was also found that the resistance reduction rate when the voltage pulse is applied only once is equivalent to that when the voltage pulse is applied many times with the same voltage value while gradually increasing the voltage value as shown in FIG. This invention is based on these experimental results.

この実施例では、まず、ステップ11で初期設定が行な
われ、次いでステップ12でサンプルの抵抗変化測定が
行なわれる。即ち、リレー網3を制御してサーマルヘッ
ド1のサンプルとして指定されたドツトの発熱抵抗体を
選択し、スイッチ4を切り換えて抵抗計6へ接続して抵
抗値を測定し、その測定値を制御演算部7へ送り、制御
演算部7のCPU9はこれをメモリ10へ格納する。次
にスイッチ4を切り換えてパルス発生器5より所定の電
圧値の電圧パルスを前記抵抗発熱体に印加する。ここで
、この電圧パルスは例えば幅が2μsecのパルスが1
5個周期50μsecで連続するパルス列である0次に
、再度スイッチ4を切り換えて、この電圧パルスが印加
された発熱抵抗体を抵抗計6に接続して抵抗値を測定し
、制御演算部7へ送る。制御演算部7のCPU9はそれ
を印加した電圧パルスの電圧値とともにメモリ10に格
納する。
In this embodiment, first, initial settings are performed in step 11, and then, in step 12, resistance change measurement of the sample is performed. That is, the relay network 3 is controlled to select the dot heating resistor designated as a sample of the thermal head 1, the switch 4 is switched to connect it to the resistance meter 6, the resistance value is measured, and the measured value is controlled. It is sent to the calculation unit 7, and the CPU 9 of the control calculation unit 7 stores it in the memory 10. Next, the switch 4 is switched to apply a voltage pulse of a predetermined voltage value from the pulse generator 5 to the resistance heating element. Here, this voltage pulse is, for example, a pulse with a width of 2 μsec.
Next, the switch 4 is switched again, the heating resistor to which this voltage pulse is applied is connected to the resistance meter 6, the resistance value is measured, and the resistance value is measured. send. The CPU 9 of the control calculation section 7 stores it in the memory 10 together with the voltage value of the applied voltage pulse.

以下、同様にして、電圧パルスの電圧値を適宜上昇させ
ながらこれらの処理を繰返す、この処理は少くとも3回
繰返して実行され、リレー網3を切り換えていくつかの
サンプルについて実行される。
Thereafter, these processes are repeated in the same way while appropriately increasing the voltage value of the voltage pulse. This process is repeated at least three times, and is executed for several samples by switching the relay network 3.

次に、ステップ5T13において、まずこのようにして
測定された抵抗変化に基づく前記抵抗値降下曲線の近似
が行なわれる。即ち、制御演算部7のCPU9はメモリ
10に格納しておいた抵抗変化から、電圧パルスによる
各印加電圧における抵抗変化率ΔR= (R−R,)/
Reを求め、これを前記(1)式に代入する。これによ
って各サンプル毎にそれぞれα、β、■、を未知数とす
る方程式を作成してこれを解く、ここで、三つの未知数
に対して四つ以上の方程式がある場合にはこれを統計的
に処理して解を得る。得られた解はさらに各サンプル間
で統計的に処理され、得られた定数α、β、境界電圧値
v0が(1)式に代入されて、抵抗値降下曲線が近似さ
れ、抵抗変化率ΔRと印加電圧Vとの関係を示す式を得
る0次いで。
Next, in step 5T13, the resistance value drop curve is approximated based on the resistance change measured in this manner. That is, the CPU 9 of the control calculation unit 7 calculates the rate of resistance change ΔR=(R-R,)/at each applied voltage due to the voltage pulse from the resistance change stored in the memory 10.
Re is determined and substituted into the equation (1) above. This creates and solves equations with α, β, and ■ as unknowns for each sample, and if there are four or more equations for three unknowns, statistically Process and get the solution. The obtained solution is further statistically processed between each sample, and the obtained constants α, β, and boundary voltage value v0 are substituted into equation (1) to approximate the resistance value drop curve and calculate the resistance change rate ΔR. Obtain a formula that shows the relationship between V and the applied voltage V.

得られた式に抵抗変化率の具体的な値ΔRnを逐次代入
してその時の印加電圧Vnの値を計算し、この両者を対
応付けて配列して抵抗対印加電圧テーブルを作成する。
The value of the applied voltage Vn at that time is calculated by sequentially substituting the specific value ΔRn of the resistance change rate into the obtained equation, and the two are arranged in correspondence to create a resistance vs. applied voltage table.

第4図はこの抵抗対印加電圧テーブルの一例を示す説明
図である。
FIG. 4 is an explanatory diagram showing an example of this resistance versus applied voltage table.

これで準備段階を終了してステップ5T14よりトリミ
ングの処理に入る。まず、ステップ5T14において、
リレー網3でトリミングを実施するドツトを選択し、ス
イッチによってこれを抵抗計6に接続してその抵抗値を
測定する0次に、ステップ5T15ではCPU9によっ
て、得られた抵抗値を目標値まで降下させるための抵抗
変化率ΔRnが算出され、さらに前述の抵抗対印加電圧
テーブルから、この算出した抵抗変化率に近い抵抗変化
率ΔRnに対応する印加電圧Vnを読み取り、電圧パル
スの印加電圧を決定する。具体的には、例えばバイナリ
・サーチ法(中間比較法)等によって抵抗対印加電圧テ
ーブルの読取りが行なわれ、当該テーブルにある抵抗変
化率ΔRnの中間の値については比例配分等によって印
加電圧を決定する。また、読も取った印加電圧Vnをそ
のまま用いるようにしてもよい。
This completes the preparation stage and starts the trimming process from step 5T14. First, in step 5T14,
A dot to be trimmed is selected by the relay network 3, and connected to the resistance meter 6 using a switch to measure its resistance value.Next, in step 5T15, the CPU 9 lowers the obtained resistance value to the target value. The resistance change rate ΔRn to cause the resistance change is calculated, and the applied voltage Vn corresponding to the resistance change rate ΔRn close to the calculated resistance change rate is read from the resistance vs. applied voltage table described above, and the applied voltage of the voltage pulse is determined. . Specifically, a resistance vs. applied voltage table is read by, for example, a binary search method (intermediate comparison method), and for intermediate values of the resistance change rate ΔRn in the table, the applied voltage is determined by proportional allocation, etc. do. Alternatively, the applied voltage Vn that has been read may be used as is.

得られた印加電圧は制御演算部7よりパルス発生器5へ
送られる。ステップ5T16でスイッチ4が切り換えら
れると、パルス発生器5からは電圧が前記印加電圧に調
整された電圧パルスが送出され、トリミングを実施する
ドツトの発熱抵抗体に印加される。これによって当該発
熱抵抗体の抵抗値は目標値に近い値に降下する。以下ス
テップ5T17が全ドツトのトリミングの終了を検出す
るまで、ステップ5T14以後の処理が繰返される。
The obtained applied voltage is sent from the control calculation section 7 to the pulse generator 5. When the switch 4 is switched in step 5T16, a voltage pulse whose voltage is adjusted to the applied voltage is sent out from the pulse generator 5, and is applied to the heating resistor of the dot to be trimmed. As a result, the resistance value of the heating resistor falls to a value close to the target value. Thereafter, the processing from step 5T14 onward is repeated until step 5T17 detects that all dots have been trimmed.

また、上記実施例では電圧パルスに所定数連続したパル
ス列を用いたが単パルスであってもよく、上記実施例と
同様の効果を奏する。
Further, in the above embodiment, a predetermined number of continuous pulse trains are used as the voltage pulse, but a single pulse may be used, and the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、少ないサンプルの抵
抗変化を測定して抵抗値対印加電圧テーブルを作成し、
トリミングに際しては、そのドツトの発熱抵抗体の抵抗
値を測定して、前記抵抗刻印加電圧テーブルを用いて電
圧パルスの電圧値を決定するように構成したので、各ド
ツト毎に1回の電圧パルスの印加によってトリミングが
完了し。
As described above, according to the present invention, a resistance value vs. applied voltage table is created by measuring resistance changes of a small number of samples,
When trimming, the resistance value of the heating resistor of the dot is measured and the voltage value of the voltage pulse is determined using the resistance stamped voltage application table, so that one voltage pulse is generated for each dot. Trimming is completed by applying .

電圧パルスの電圧値の決定もめんどうな計算をしないで
すむため短時間で行なうことができ2発熱抵抗体の抵抗
値の均一化に要する時間を大幅に削減できる効果がある
。この効果はファクシミリ用サーマルヘッドの如く、1
000ドツトあるいはそれ以上の発熱抵抗体を有するよ
うな、多ドツトのサーマルヘッドに適用した場合、特に
顕著である。
Determining the voltage value of the voltage pulse can also be done in a short time because no troublesome calculations are required, which has the effect of greatly reducing the time required to equalize the resistance values of the two heating resistors. This effect is similar to that of a facsimile thermal head.
This is particularly noticeable when applied to a multi-dot thermal head having a heating resistor of 0,000 dots or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるサーマルヘッドの製
造方法を示すフローチャート、第2図はそれを実施する
ための装置の一例を示すブロック図、第3図はその抵抗
値降下曲線の一例を示す線図、第4図はその抵抗対印加
電圧テーブルの一例を示す説明図、第5図は従来のサー
マルヘッドの製造方法を示すフローチャート、第6図は
その発熱抵抗体の抵抗値の減少を示す線図である。 1はサーマルヘッド、2はブロービング装置。 3はリレー網、4はスイッチ、5はパルス発生器。 6は抵抗計、7は制御演算部。 第1図 第2図 第4図 第5図 第6図
FIG. 1 is a flowchart showing a method for manufacturing a thermal head according to an embodiment of the present invention, FIG. 2 is a block diagram showing an example of an apparatus for carrying out the method, and FIG. 3 is an example of a resistance value drop curve. 4 is an explanatory diagram showing an example of the resistance vs. applied voltage table, FIG. 5 is a flowchart showing a conventional method for manufacturing a thermal head, and FIG. FIG. 1 is a thermal head, 2 is a blobbing device. 3 is a relay network, 4 is a switch, and 5 is a pulse generator. 6 is a resistance meter, and 7 is a control calculation section. Figure 1 Figure 2 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 複数の発熱抵抗体を備えたサーマルヘッドの前記発熱抵
抗体の各々に電圧パルスを印加し、その抵抗値を降下さ
せて均一化するサーマルヘッドの製造方法において、前
記発熱抵抗体中からサンプルを選び、電圧値の異なる電
圧パルスを低圧のものから順次、前記サンプルとして選
ばれた発熱抵抗体に印加して、印加電圧と抵抗変化の関
係を示す抵抗対印加電圧テーブルを作成し、前記各発熱
抵抗体へ印加する前記電圧パルスの電圧値を、当該発熱
抵抗体の初期の抵抗値に基づいて前記抵抗対印加電圧テ
ーブルを用いて決定することを特徴とするサーマルヘッ
ドの製造方法。
In a method for manufacturing a thermal head in which a voltage pulse is applied to each of the heating resistors of a thermal head equipped with a plurality of heating resistors to lower and equalize the resistance value, a sample is selected from among the heating resistors. , voltage pulses with different voltage values are sequentially applied to the heating resistor selected as the sample, starting from the lowest voltage, to create a resistance vs. applied voltage table showing the relationship between the applied voltage and resistance change, and A method for manufacturing a thermal head, characterized in that the voltage value of the voltage pulse applied to the thermal head is determined based on the initial resistance value of the heating resistor using the resistance vs. applied voltage table.
JP61204002A 1986-08-29 1986-08-29 Method of manufacturing thermal head Expired - Lifetime JPH068054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61204002A JPH068054B2 (en) 1986-08-29 1986-08-29 Method of manufacturing thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61204002A JPH068054B2 (en) 1986-08-29 1986-08-29 Method of manufacturing thermal head

Publications (2)

Publication Number Publication Date
JPS6359549A true JPS6359549A (en) 1988-03-15
JPH068054B2 JPH068054B2 (en) 1994-02-02

Family

ID=16483147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61204002A Expired - Lifetime JPH068054B2 (en) 1986-08-29 1986-08-29 Method of manufacturing thermal head

Country Status (1)

Country Link
JP (1) JPH068054B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451958A (en) * 1987-08-21 1989-02-28 Fuji Xerox Co Ltd Manufacture of thick membrane-type thermal head
JP2010169819A (en) * 2009-01-21 2010-08-05 Alps Electric Co Ltd Optical module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131404A (en) * 1984-11-29 1986-06-19 ロ−ム株式会社 Pulse trimming for thermal head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131404A (en) * 1984-11-29 1986-06-19 ロ−ム株式会社 Pulse trimming for thermal head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451958A (en) * 1987-08-21 1989-02-28 Fuji Xerox Co Ltd Manufacture of thick membrane-type thermal head
JP2010169819A (en) * 2009-01-21 2010-08-05 Alps Electric Co Ltd Optical module

Also Published As

Publication number Publication date
JPH068054B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
JPS6359549A (en) Manufacture of thermal head
US5504681A (en) Mass air flow sensor calibration
JPS6359552A (en) Manufacture of thermal head
JPS6359551A (en) Manufacture of thermal head
JPH0326527B2 (en)
JPS6359550A (en) Manufacture of thermal head
JPS6359548A (en) Manufacture of thermal head
JPS6359557A (en) Manufacture of thermal head
JPH01120363A (en) Manufacture of thermal head
JPS6359556A (en) Manufacture of thermal head
JP2990323B2 (en) Thermal head trimming method and trimming device
JP2590916B2 (en) Method of manufacturing thick film type thermal head
JPS63252760A (en) Thermal resistor trimming of thermal head
JP2523934B2 (en) Resistance trimming method of thermal head
JP2831854B2 (en) Resistor trimming method for thin film thermal head
JPS63178060A (en) Method for trimming heat generating resistor of thermal head
JPS63191656A (en) Trimming for resistance value of thermal head heating resistor
JPH04164655A (en) Method for trimming resistors of thin-film thermal head
JPH04261059A (en) Method for trimming semiconductor element
JPS63116870A (en) Method for trimming heat generating resistor of thermal head
JPS62283602A (en) Method of trimming thick film resistance array
JPS63141768A (en) Method for correcting resistance value of thermal head
JP2002052752A (en) Method of adjusting resistance value of thermal head
JP2830325B2 (en) Manufacturing method of thermal head
JPS62281402A (en) Method of trimming thick film resistance array

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term