JPH06342027A - Method and apparatus for evaluating wire - Google Patents

Method and apparatus for evaluating wire

Info

Publication number
JPH06342027A
JPH06342027A JP5130274A JP13027493A JPH06342027A JP H06342027 A JPH06342027 A JP H06342027A JP 5130274 A JP5130274 A JP 5130274A JP 13027493 A JP13027493 A JP 13027493A JP H06342027 A JPH06342027 A JP H06342027A
Authority
JP
Japan
Prior art keywords
temperature
wiring
wire
resistance value
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5130274A
Other languages
Japanese (ja)
Other versions
JP3235272B2 (en
Inventor
Yoshihiko Isobe
良彦 磯部
Makio Iida
眞喜男 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP13027493A priority Critical patent/JP3235272B2/en
Publication of JPH06342027A publication Critical patent/JPH06342027A/en
Application granted granted Critical
Publication of JP3235272B2 publication Critical patent/JP3235272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To highly accurately measure EM life/wire temperature characteristics by measuring a resistance value and disconnection time of a wire for each temperature, calculating a temperature of the wire from the resistance value and a temperature coefficient of resistance which has been measured and determining a relation between the disconnection time and the wire temperature. CONSTITUTION:A temperature of a temperature control base 1 is maintained at a set temperature by a controller 5, constant current is supplied 7 to a wire 3, and cumulative time is counted by a timer simultaneously. Voltage V across the wire 3 is detected by a probe 4, a resistance value R of the wire 3 is calculated from the voltage V, disconnection is determined when the voltage V exceeds a threshold Vth, and the resistance value R and disconnection time H are stored. Then a temperature T of the wire 3 is calculated from TCR (temperature coefficient of resistance) which has been measured and the measured resistance value R. Then an inverse of the wire temperature T and a logarithm of the disconnection time H are plotted to obtain a characteristic curve. An activation energy Ea and a proportional constant A are determined from the characteristic curve to calculate EM(electro-migration) life H (average failure time).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配線の評価方法及び評
価装置に関し、、例えば半導体ウエハ上に敷設されたア
ルミニウム配線などの寿命推定を行う装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring evaluation method and an evaluation apparatus, and more particularly, to an apparatus for estimating the life of an aluminum wiring laid on a semiconductor wafer.

【0002】[0002]

【従来の技術】Al配線のエレクトロマイグレーション
(以下、EMという)寿命の推定は、従来、パッケージ
に組付け後、恒温槽で一定温度で長時間にわたって定電
流通電を行って実施しており、500〜1000hrが
必要であった。第38回応用物理学会関係連合講演会講
演予稿集No.2(1991)、P639ページには、
アルミ配線の活性化エネルギーを短時間で評価する方法
が提案されている。
2. Description of the Related Art The electromigration (hereinafter referred to as EM) life of Al wiring has been conventionally estimated by assembling it in a package and then applying a constant current at a constant temperature for a long time in a thermostatic chamber. ~ 1000 hr was required. Proceedings of the 38th JSAP Joint Lecture Meeting No. 2 (1991), p. 639,
A method for evaluating the activation energy of aluminum wiring in a short time has been proposed.

【0003】この評価方法は、それぞれ放熱特性が異な
る被試験配線パターンからなる多数のサンプルにそれぞ
れ一定電流密度Jcで通電し、各サンプル毎に熱伝導シ
ュミレーション(3次元放熱特性解析)及び抵抗温度係
数に基づいて配線温度をそれぞれ算出し、更に各サンプ
ルの断線時間を測定して各サンプル毎に配線温度と断線
時間との関係を求め、これによりこの被試験配線パター
ンにおける配線温度と断線時間との関係を示す特性線を
求め、その傾斜率により活性化エネルギEaを推定して
いる。
This evaluation method applies a constant current density Jc to a large number of samples each of which has a wiring pattern under test having different heat dissipation characteristics, and conducts heat conduction simulation (three-dimensional heat dissipation characteristics analysis) and temperature coefficient of resistance for each sample. The wiring temperature is calculated based on the above, and the disconnection time of each sample is measured to obtain the relationship between the wiring temperature and the disconnection time for each sample. The characteristic line indicating the relationship is obtained, and the activation energy Ea is estimated from the slope rate.

【0004】したがって、EM寿命(平均故障時間MT
F)は、電流密度Jと、配線温度Tと活性化エネルギー
Eaとの関数値となるので、上記提案の評価方法で算出
された活性化エネルギEaを用いれば、所望の配線温度
(例えば150℃)におけるEM寿命を推定することが
でき、更に上記熱伝導シュミレーションにより電流密度
Jと配線温度Tとの関係が既知であれば、任意の電流密
度JにおけるEM寿命が推定できる。
Therefore, the EM life (mean failure time MT
Since F) is a function value of the current density J, the wiring temperature T, and the activation energy Ea, if the activation energy Ea calculated by the above-described evaluation method is used, a desired wiring temperature (for example, 150 ° C.) is obtained. ), The EM life at any current density J can be estimated if the relationship between the current density J and the wiring temperature T is known by the heat conduction simulation.

【0005】[0005]

【発明が解決しようとする課題】ただし上記提案の評価
方法では、サンプル毎に放熱特性を変える必要があり、
このために各被試験アルミ配線の一部にそれぞれ異なる
形状の放熱フィンを設け、これにより放熱特性を変更し
て、配線温度Tを変更している。しかし、この配線温度
変更方式によれば、各サンプル毎に熱伝導シュミレーシ
ョン(3次元放熱特性解析)を実施して各配線温度を算
出する必要があり、その結果、各サンプルの作成及びそ
れら熱伝導シュミレーションを実行せねばならず、多大
な作業負担となっていた。
However, in the evaluation method proposed above, it is necessary to change the heat dissipation characteristics for each sample.
For this reason, a radiation fin having a different shape is provided on a part of each aluminum wiring to be tested, whereby the radiation characteristic is changed and the wiring temperature T is changed. However, according to this wiring temperature changing method, it is necessary to perform heat conduction simulation (three-dimensional heat dissipation characteristic analysis) for each sample to calculate each wiring temperature, and as a result, each sample is prepared and their heat conduction is performed. The simulation had to be performed, which was a great burden on the work.

【0006】その上、このような放熱フィンの形状変更
では、得られる配線温度の変化に限界があり、その結
果、得られた特性線の傾斜率すなわち活性化エネルギー
Eaの精度が低下してしまう。本案は、上記問題点に鑑
みなされたものであり、作業負担が軽く、しかも高精度
のEM寿命/配線温度特性が得られる配線の評価方法及
び評価装置を提供することを、その目的としている。
In addition, such a change of the shape of the heat radiation fin has a limit in the change of the obtained wiring temperature, and as a result, the accuracy of the slope rate of the obtained characteristic line, that is, the activation energy Ea is lowered. . The present invention has been made in view of the above problems, and an object thereof is to provide a wiring evaluation method and a wiring evaluation apparatus that are light in work load and can obtain highly accurate EM life / wiring temperature characteristics.

【0007】[0007]

【課題を解決するための手段】本発明の配線の評価方法
は、配線が絶縁物上に敷設されている被試験体を所定の
複数の温度状態に維持しつつ定電流を通電して前記各温
度状態毎の前記配線の各抵抗値及び各断線時間を測定
し、前記各抵抗値及び予め測定した前記配線の抵抗温度
係数に基づいて前記配線の温度を算出し、前記各断線時
間と前記各配線の温度との関係を決定することを特徴と
している。
According to the wiring evaluation method of the present invention, a constant current is passed through while maintaining an object to be tested in which wiring is laid on an insulator at a plurality of predetermined temperature states. Each resistance value and each disconnection time of the wiring for each temperature state is measured, the temperature of the wiring is calculated based on the resistance value and the resistance temperature coefficient of the wiring measured in advance, and each of the disconnection time and each The feature is that the relationship with the temperature of the wiring is determined.

【0008】本発明の配線の評価装置は、図7の概念図
に示すように、配線が絶縁物上に敷設されている被試験
体を所定の複数の温度状態に維持する温度維持手段と、
前記配線に定電流を通電する通電手段と、前記各温度状
態毎の前記配線の各抵抗値及び各断線時間をそれぞれ測
定する測定手段と、前記各抵抗値及び予め測定した前記
配線の抵抗温度係数に基づいて前記配線の温度を算出す
る配線温度算出手段と、前記各配線温度と前記各断線時
間との関係に基づいて、前記配線の任意配線温度での断
線時間又は活性化エネルギーを推定する評価手段とを備
えることを特徴としている。
As shown in the conceptual diagram of FIG. 7, the wiring evaluation apparatus of the present invention comprises temperature maintaining means for maintaining a device under test in which wiring is laid on an insulator at a plurality of predetermined temperature states,
Energizing means for applying a constant current to the wiring, measuring means for measuring each resistance value and each disconnection time of the wiring for each temperature state, each resistance value and resistance temperature coefficient of the wiring measured in advance Based on the relationship between each wiring temperature and each disconnection time, a wiring temperature calculating means for calculating the temperature of the wiring based on the above, and an evaluation for estimating a disconnection time or activation energy of the wiring at an arbitrary wiring temperature. And means.

【0009】配線としてはアルミ及びアルミ合金他、電
気配線として用いられる各種導体材料が採用される。
As the wiring, various conductor materials used for electric wiring other than aluminum and aluminum alloy are adopted.

【0010】[0010]

【作用及び発明の効果】本発明では、所定形状の金属配
線に一定電流密度Jcで通電しつつサンプルの雰囲気温
度を変更して各抵抗値及び断線時間Hを測定する。次
に、予め測定した前記金属配線の抵抗温度係数と前記抵
抗値とから各配線温度Tを算出する。そして、求めた断
線時間H及び配線温度Tの関係を示す特性線を求める。
According to the present invention, the resistance value and the disconnection time H are measured by changing the ambient temperature of the sample while energizing the metal wiring having a predetermined shape with a constant current density Jc. Next, each wiring temperature T is calculated from the previously measured resistance temperature coefficient of the metal wiring and the resistance value. Then, a characteristic line indicating the relationship between the calculated disconnection time H and the wiring temperature T is calculated.

【0011】このようにすれば、求めた特性線から、活
性化エネルギーEa及びEM寿命を簡単に求めることが
できる。
By doing so, the activation energy Ea and the EM life can be easily obtained from the obtained characteristic line.

【0012】[0012]

【実施例】本発明を適用した評価装置の一例を図1に示
す。この評価装置は、アルミ配線のEM寿命及び活性化
エネルギーを推定するものであって、温度制御基台(加
熱手段)1にはウェハ2が載置されており、ウェハ2上
に不図示の絶縁膜を介して敷設された所定パタンのアル
ミ配線3の両端部にはプローブ針(測定手段)4、4が
コンタクトされている。
FIG. 1 shows an example of an evaluation device to which the present invention is applied. This evaluation device estimates the EM life and activation energy of aluminum wiring. A wafer 2 is placed on a temperature control base (heating means) 1, and an insulating layer (not shown) is placed on the wafer 2. Probe needles (measuring means) 4 and 4 are in contact with both ends of an aluminum wiring 3 having a predetermined pattern laid via a film.

【0013】温度制御基台1内には、ヒータ(図示せ
ず)及び温度センサ(図示せず)が内蔵されており、こ
のヒータはコントローラ5を通じて不図示の直流電源又
は商用交流電源から通電されている。なお、上記温度セ
ンサはウェハ2との境界面近傍に配置されている。コン
トローラ5は、マイコン(配線温度算出手段、評価手
段)6によりPCM制御されており、また、上記温度セ
ンサはマイコン6に検出温度を出力している。
A heater (not shown) and a temperature sensor (not shown) are built in the temperature control base 1, and the heater is energized from a DC power supply or a commercial AC power supply (not shown) through the controller 5. ing. The temperature sensor is arranged near the boundary surface with the wafer 2. The controller 5 is PCM controlled by a microcomputer (wiring temperature calculation means, evaluation means) 6, and the temperature sensor outputs a detected temperature to the microcomputer 6.

【0014】一方、プローブ針4、4は定電流源(通電
手段)7から一定電流を給電されており、プローブ針
4、4の両端の電圧はアンプ(測定手段)8、A/Dコ
ンバータ(測定手段)9を介してマイコン6に伝送され
る。図2に要部詳細を拡大図示する。ウェハ2上への定
電流の通電によりアルミ配線3が加熱され、アルミ配線
3で生じた熱は外部、特に温度制御基台1に放熱する。
したがって、温度制御基台1の温度を調節することによ
りアルミ配線3の温度が制御される。
On the other hand, the probe needles 4, 4 are supplied with a constant current from a constant current source (energizing means) 7, and the voltage across the probe needles 4, 4 is an amplifier (measuring means) 8 and an A / D converter ( It is transmitted to the microcomputer 6 via the measurement means) 9. FIG. 2 is an enlarged view of details of main parts. The aluminum wiring 3 is heated by passing a constant current on the wafer 2, and the heat generated in the aluminum wiring 3 is radiated to the outside, particularly to the temperature control base 1.
Therefore, the temperature of the aluminum wiring 3 is controlled by adjusting the temperature of the temperature control base 1.

【0015】以下、図5及び図6のフローチャートによ
り、本実施例の評価方法を説明する。まず、上記温度が
検出する温度制御基台1を設定温度Ta=25℃とする
(100)。この温度制御は、温度センサから検出温度
と設定温度Taとの差に応じてコントローラ5のオンデ
ューティ比をフィードバック制御することにより簡単に
実行されるが、このような制御自体は周知であるので、
これ以上の説明は省略する。
The evaluation method of this embodiment will be described below with reference to the flow charts of FIGS. First, the temperature control base 1 detected by the above temperature is set to a set temperature Ta = 25 ° C. (100). This temperature control is simply executed by feedback-controlling the on-duty ratio of the controller 5 according to the difference between the detected temperature and the set temperature Ta from the temperature sensor, but such control itself is well known.
Further description will be omitted.

【0016】次に、検出温度が設定温度Taになった
後、定電流源7に指令してアルミ配線3に定電流Ic
(電流密度J=7.7×106 A/cm2 )を給電し
(102)、同時に内蔵タイマをスタートさせて累積通
電時間をカウントする(104)。次に、上記通電に伴
うアルミ配線3の発熱による温度分布状態が平衡に達す
るに充分な時間が経過した後、アルミ配線3の両端の電
圧Vを検出し、この電圧Vからアルミ配線3の抵抗値R
を算出し(V/Ic)、記憶する(106)。
Next, after the detected temperature reaches the set temperature Ta, the constant current source 7 is instructed to apply a constant current Ic to the aluminum wiring 3.
(Current density J = 7.7 × 10 6 A / cm 2 ) is supplied (102), and at the same time, the built-in timer is started to count the cumulative energization time (104). Next, after a sufficient time has passed for the temperature distribution state due to heat generation of the aluminum wiring 3 due to the energization to reach equilibrium, the voltage V across the aluminum wiring 3 is detected, and the resistance of the aluminum wiring 3 is determined from this voltage V. Value R
Is calculated (V / Ic) and stored (106).

【0017】その後も、アルミ配線3の両端の電圧Vを
検出し、電圧Vが所定電圧値Vthを超えた場合に、ア
ルミ配線3の断線と判定し(108)、上記内蔵タイマ
のカウント値(すなわち断線時間H)を記憶し、タイマ
を0にリセットし、カウントを停止し(110)、ルー
チンを終了する。これにより、抵抗値Rと断線時間Hの
ペアが求められる。
Thereafter, the voltage V at both ends of the aluminum wiring 3 is detected, and when the voltage V exceeds the predetermined voltage value Vth, it is judged that the aluminum wiring 3 is broken (108), and the count value of the built-in timer ( That is, the disconnection time H) is stored, the timer is reset to 0, the counting is stopped (110), and the routine is ended. Thereby, a pair of the resistance value R and the disconnection time H is obtained.

【0018】以下、設定温度Ta=25℃、50℃、7
5℃毎にそれぞれ多数のサンプルを用意し、各サンプル
毎に、上記と同じプロセスにて抵抗値R及び断線時間H
を測定する。次に、これら各抵抗値R毎に配線温度Tを
求める(201)。各抵抗値Rから配線温度Tを算出す
るには、予め、アルミ配線3のTCR(抵抗温度係数)
を測定しておき、このTCRと各抵抗値とから配線温度
Tを算出すればよい。抵抗値Rと、配線温度Tと、抵抗
温度係数TCRとの関係式を以下に示す。
Below, set temperatures Ta = 25 ° C., 50 ° C., 7
A large number of samples are prepared for each 5 ° C., and the resistance value R and disconnection time H are set for each sample by the same process as above.
To measure. Next, the wiring temperature T is calculated for each of these resistance values R (201). In order to calculate the wiring temperature T from each resistance value R, the TCR (resistance temperature coefficient) of the aluminum wiring 3 is calculated in advance.
Is measured in advance, and the wiring temperature T may be calculated from this TCR and each resistance value. The relational expression of the resistance value R, the wiring temperature T, and the temperature coefficient of resistance TCR is shown below.

【0019】 次に、求めた配線温度Tの逆数を求め(202)、断線
時間Hの対数値を求め(203)、求めた値をアレニウ
スプロットし(204)、それに基づいて特性線L1
(図3参照)を求める(205)。
[0019] Next, the reciprocal of the obtained wiring temperature T is obtained (202), the logarithmic value of the disconnection time H is obtained (203), the obtained value is Arrhenius plotted (204), and the characteristic line L1 is obtained based on it.
(See FIG. 3) is calculated (205).

【0020】次に、この特性線L1と下記の理論式とか
ら活性化エネルギーEa及び比例定数Aを決定し(20
6)、ルーチンを終了する。なお、この実験で求めたア
ルミ配線3の活性化エネルギーEaは0.72evとな
り、従来方法で求めた値0.68evとよく一致してい
た。 ただし、EM寿命HはMTF(平均故障時間)を表し、
wは配線幅、tは配線厚、Jは電流密度、Aは比例定
数、Kはボルツマン定数、Eaは活性化エネルギー、T
は配線温度(絶対温度)である。
Next, the activation energy Ea and the proportional constant A are determined from this characteristic line L1 and the following theoretical formula (20)
6), the routine ends. The activation energy Ea of the aluminum wiring 3 obtained in this experiment was 0.72 ev, which was in good agreement with the value 0.68 ev obtained by the conventional method. However, EM life H represents MTF (mean failure time),
w is wiring width, t is wiring thickness, J is current density, A is proportional constant, K is Boltzmann constant, Ea is activation energy, T
Is the wiring temperature (absolute temperature).

【0021】このようにして求めた特性線L1を図1に
示し、一方、電流密度J=1×10 6 A/cm2 におけ
る従来方法における実験値Pも示す。次に、特性線L1
(電流密度Jを7.7×106 A/cm2 )から電流密
度Jが1×106 A/cm2 である場合の特性線L2を
求める。このようにして求めた電流密度J=1×106
A/cm2 時の特性線L2は、従来の実験で得た推定点
Pと良く一致している。
The characteristic line L1 thus obtained is shown in FIG.
On the other hand, the current density J = 1 × 10 6A / cm2Oke
The experimental value P in the conventional method is also shown. Next, the characteristic line L1
(The current density J is 7.7 × 106A / cm2) From the current tight
Degree J is 1 × 106A / cm2The characteristic line L2
Ask. Current density J = 1 × 106
A / cm2The characteristic line L2 at time is an estimated point obtained in the conventional experiment.
It agrees well with P.

【0022】以上説明したように、本実施例によれば、
簡単な構成及び操作にもかかわらず高精度に活性化エネ
ルギーEaやEM寿命Hを算出することができる。
As described above, according to this embodiment,
The activation energy Ea and the EM life H can be calculated with high accuracy despite the simple configuration and operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の評価装置の一実施例を示すブロック
図である。
FIG. 1 is a block diagram showing an embodiment of an evaluation device of the present invention.

【図2】 図1の要部拡大断面図である。FIG. 2 is an enlarged sectional view of a main part of FIG.

【図3】 測定データをアレニウスプロットして得たグ
ラフである。
FIG. 3 is a graph obtained by Arrhenius plot of measurement data.

【図4】 電流密度と基台温度と配線温度との関係をし
めす特性図である。
FIG. 4 is a characteristic diagram showing the relationship between current density, base temperature, and wiring temperature.

【図5】 本発明の評価方法の一実施例を示すフローチ
ャートである。
FIG. 5 is a flowchart showing an embodiment of the evaluation method of the present invention.

【図6】 本発明の評価方法の一実施例を示すフローチ
ャートである。
FIG. 6 is a flowchart showing an embodiment of the evaluation method of the present invention.

【図7】 本発明の概念図である。FIG. 7 is a conceptual diagram of the present invention.

【符号の説明】 本発明を適用した評価装置の一例を図1に示す。 1は温度制御基台(温度維持手段)、 3はアルミ配線(配線) 4はプローブ針(測定手段)、 6はマイコン(配線温度算出手段、評価手段)、 7は定電流源(通電手段)、 8はアンプ(測定手段)、 9はA/Dコンバータ(測定手段)。[Description of Reference Signs] FIG. 1 shows an example of an evaluation apparatus to which the present invention is applied. 1 is a temperature control base (temperature maintaining means), 3 is aluminum wiring (wiring), 4 is a probe needle (measuring means), 6 is a microcomputer (wiring temperature calculating means, evaluating means), 7 is a constant current source (energizing means) , 8 is an amplifier (measuring means), 9 is an A / D converter (measuring means).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 配線が絶縁物上に敷設されている被試験
体を所定の複数の温度状態に維持しつつ定電流を通電し
て前記各温度状態毎の前記配線の各抵抗値及び各断線時
間を測定し、前記各抵抗値及び予め測定した前記配線の
抵抗温度係数に基づいて前記配線の温度を算出し、前記
各断線時間と前記各配線の温度との関係を決定すること
を特徴とする配線の評価方法。
1. A resistance value and a disconnection of the wiring for each temperature state by applying a constant current while maintaining the DUT whose wiring is laid on an insulator in a plurality of predetermined temperature states. The time is measured, the temperature of the wiring is calculated based on the resistance value and the temperature coefficient of resistance of the wiring measured in advance, and the relationship between the disconnection time and the temperature of the wiring is determined. How to evaluate the wiring.
【請求項2】 配線が絶縁物上に敷設されている被試験
体を所定の複数の温度状態に維持する温度維持手段と、 前記配線に定電流を通電する通電手段と、 前記各温度状態毎の前記配線の各抵抗値及び各断線時間
をそれぞれ測定する測定手段と、 前記各抵抗値及び予め測定した前記配線の抵抗温度係数
に基づいて前記配線の温度を算出する配線温度算出手段
と、 前記各配線温度と前記各断線時間との関係に基づいて、
前記配線の任意配線温度での断線時間又は活性化エネル
ギーを推定する評価手段と、 を備えることを特徴とする配線の評価装置。
2. A temperature maintaining means for maintaining a device under test in which wiring is laid on an insulator in a plurality of predetermined temperature states, an energizing means for supplying a constant current to the wiring, and each of the temperature states. Measuring means for measuring each resistance value and each disconnection time of the wiring, wiring temperature calculating means for calculating the temperature of the wiring based on the resistance value and the resistance temperature coefficient of the wiring measured in advance, and Based on the relationship between each wiring temperature and each disconnection time,
An evaluation device for estimating a disconnection time or activation energy of the wiring at an arbitrary wiring temperature, and a wiring evaluation apparatus comprising:
JP13027493A 1993-06-01 1993-06-01 Wiring evaluation method and evaluation device Expired - Fee Related JP3235272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13027493A JP3235272B2 (en) 1993-06-01 1993-06-01 Wiring evaluation method and evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13027493A JP3235272B2 (en) 1993-06-01 1993-06-01 Wiring evaluation method and evaluation device

Publications (2)

Publication Number Publication Date
JPH06342027A true JPH06342027A (en) 1994-12-13
JP3235272B2 JP3235272B2 (en) 2001-12-04

Family

ID=15030389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13027493A Expired - Fee Related JP3235272B2 (en) 1993-06-01 1993-06-01 Wiring evaluation method and evaluation device

Country Status (1)

Country Link
JP (1) JP3235272B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376680A1 (en) 2002-06-21 2004-01-02 Infineon Technologies AG Method and corresponding detector for production monitoring and quality evaluation of a metallisation
US7888672B2 (en) 2002-11-23 2011-02-15 Infineon Technologies Ag Device for detecting stress migration properties
CN103280413A (en) * 2013-04-23 2013-09-04 上海宏力半导体制造有限公司 Industrial realization method for obtaining dispersion of wafer resistance temperature coefficient
WO2016201194A3 (en) * 2015-06-10 2017-01-12 Qualcomm Incorporated Method and apparatus for integrated circuit monitoring and prevention of electromigration failure
CN106449460A (en) * 2016-10-26 2017-02-22 上海华力微电子有限公司 A current acceleration factor assessment method in a constant temperature electromigration test
CN113471173A (en) * 2021-06-29 2021-10-01 上海华力微电子有限公司 Test structure and test method
CN113471173B (en) * 2021-06-29 2024-05-03 上海华力微电子有限公司 Test structure and test method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376680A1 (en) 2002-06-21 2004-01-02 Infineon Technologies AG Method and corresponding detector for production monitoring and quality evaluation of a metallisation
US7888672B2 (en) 2002-11-23 2011-02-15 Infineon Technologies Ag Device for detecting stress migration properties
US8323991B2 (en) 2002-11-23 2012-12-04 Infineon Technologies Ag Method for detecting stress migration properties
CN103280413A (en) * 2013-04-23 2013-09-04 上海宏力半导体制造有限公司 Industrial realization method for obtaining dispersion of wafer resistance temperature coefficient
CN103280413B (en) * 2013-04-23 2016-06-08 上海华虹宏力半导体制造有限公司 Obtain the industrial realization method of the plastisied dispersion of the temperature coefficient of resistance of wafer
WO2016201194A3 (en) * 2015-06-10 2017-01-12 Qualcomm Incorporated Method and apparatus for integrated circuit monitoring and prevention of electromigration failure
US10591531B2 (en) 2015-06-10 2020-03-17 Qualcomm Incorporated Method and apparatus for integrated circuit monitoring and prevention of electromigration failure
CN106449460A (en) * 2016-10-26 2017-02-22 上海华力微电子有限公司 A current acceleration factor assessment method in a constant temperature electromigration test
CN106449460B (en) * 2016-10-26 2019-09-17 上海华力微电子有限公司 Electric current accelerated factor appraisal procedure in constant temperature electromigration test
CN113471173A (en) * 2021-06-29 2021-10-01 上海华力微电子有限公司 Test structure and test method
CN113471173B (en) * 2021-06-29 2024-05-03 上海华力微电子有限公司 Test structure and test method

Also Published As

Publication number Publication date
JP3235272B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JP7252194B2 (en) Sensor systems and integral heater-sensors for measuring and controlling the performance of heater systems
KR101643786B1 (en) Adaptive temperature controller
US6593761B1 (en) Test handler for semiconductor device
HU186066B (en) Method and apparatus for measuring coefficient of heat transfer
JP6263600B2 (en) Method and apparatus for thermal analysis of samples and / or calibration of temperature measuring instruments
JPH06342027A (en) Method and apparatus for evaluating wire
JP4474550B2 (en) Thermoelectric element characteristic evaluation method
TWI230952B (en) Testing method for electronic part and testing device
WO2010101006A1 (en) Method and device for determining specific heat capacity and semispherical total emissivity of conductive sample
Zarr et al. Sensitivity analysis of factors affecting the calibration of heat-flow-meter apparatus
JP3628849B2 (en) Method and apparatus for evaluating metal wiring in integrated circuit
JP3776257B2 (en) Electromigration evaluation method and evaluation apparatus for metal wiring
JPH06151537A (en) Evaluation for life of wiring
JPH09246342A (en) Method and apparatus for evaluating electromigration
JPS627983B2 (en)
Dilley et al. Commercial apparatus for measuring thermal transport properties from 1.9 to 390 Kelvin
RU2263306C1 (en) Method of identifying set of thermal-physical characteristics of solid materials
RU2755330C1 (en) Method for measuring thermal conductivity
RU2716466C1 (en) Method of controlling thermophysical properties of materials and device for its implementation
JPH05188021A (en) Probe for measuring thermophysical property value of thin film
JP3670167B2 (en) Equipment for measuring thermal conductivity of fine single wires
Baroncini et al. Accurate extraction of the temperature of the heating element in micromachined gas sensors
RU2703720C1 (en) Method of determining the temperature coefficient of resistance of thin conducting films using a four-probe measurement method
RU167045U1 (en) DEVICE FOR MEASURING THERMO-EMF OF MATERIALS
Muntean et al. Calibration of Isoperibolic Calorimeter by Using Transient Time Constants

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees