JP3235272B2 - Wiring evaluation method and evaluation device - Google Patents

Wiring evaluation method and evaluation device

Info

Publication number
JP3235272B2
JP3235272B2 JP13027493A JP13027493A JP3235272B2 JP 3235272 B2 JP3235272 B2 JP 3235272B2 JP 13027493 A JP13027493 A JP 13027493A JP 13027493 A JP13027493 A JP 13027493A JP 3235272 B2 JP3235272 B2 JP 3235272B2
Authority
JP
Japan
Prior art keywords
wiring
temperature
constant current
disconnection time
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13027493A
Other languages
Japanese (ja)
Other versions
JPH06342027A (en
Inventor
良彦 磯部
眞喜男 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP13027493A priority Critical patent/JP3235272B2/en
Publication of JPH06342027A publication Critical patent/JPH06342027A/en
Application granted granted Critical
Publication of JP3235272B2 publication Critical patent/JP3235272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、配線の評価方法及び評
価装置に関し例えば半導体ウエハ上に敷設されたアル
ミニウム配線などの寿命推定を行う装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for evaluating wiring, and more particularly to an apparatus for estimating the life of aluminum wiring laid on a semiconductor wafer.

【0002】[0002]

【従来の技術】Al配線のエレクトロマイグレーション
(以下、EMという)寿命の推定は、従来、パッケージ
に組付け後、恒温槽で一定温度で長時間にわたって定電
流通電を行って実施しており、500〜1000hrが
必要であった。第38回応用物理学会関係連合講演会講
演予稿集No.2(1991)、P639ページには、
アルミ配線の活性化エネルギーを短時間で評価する方法
が提案されている。
2. Description of the Related Art Electromigration (hereinafter, referred to as EM) life of an Al wiring is conventionally estimated by assembling a package and then applying a constant current for a long time at a constant temperature in a constant temperature bath. 10001000 hr was required. Proceedings of the 38th Annual Conference of the Japan Society of Applied Physics No. 2 (1991), page 639,
A method for evaluating the activation energy of aluminum wiring in a short time has been proposed.

【0003】この評価方法は、それぞれ放熱特性が異な
る被試験配線パターンからなる多数のサンプルにそれぞ
れ一定電流密度Jcで通電し、各サンプル毎に熱伝導シ
ミュレーション(3次元放熱特性解析)及び抵抗温度係
数に基づいて配線温度をそれぞれ算出し、更に各サンプ
ルの断線時間を測定して各サンプル毎に配線温度と断線
時間との関係を求め、これによりこの被試験配線パター
ンにおける配線温度と断線時間との関係を示す特性線を
求め、その傾斜率により活性化エネルギEaを推定して
いる。
In this evaluation method, a large number of samples each having a wiring pattern under test having different heat radiation characteristics are supplied with current at a constant current density Jc, and each sample is subjected to heat conduction.
The wiring temperature is calculated based on the simulation (three-dimensional heat radiation characteristic analysis) and the temperature coefficient of resistance, and the disconnection time of each sample is measured to obtain the relationship between the wiring temperature and the disconnection time for each sample. A characteristic line indicating the relationship between the wiring temperature and the disconnection time in the wiring pattern under test is obtained, and the activation energy Ea is estimated from the slope ratio.

【0004】したがって、EM寿命(平均故障時間MT
F)は、電流密度Jと、配線温度Tと活性化エネルギー
Eaとの関数値となるので、上記提案の評価方法で算出
された活性化エネルギEaを用いれば、所望の配線温度
(例えば150℃)におけるEM寿命を推定することが
でき、更に上記熱伝導シミュレーションにより電流密度
Jと配線温度Tとの関係が既知であれば、任意の電流密
度JにおけるEM寿命が推定できる。
Therefore, EM life (mean time to failure MT
F) is a function value of the current density J, the wiring temperature T, and the activation energy Ea. Therefore, if the activation energy Ea calculated by the above-described evaluation method is used, a desired wiring temperature (for example, 150 ° C.) is used. ) can be estimated EM lifetime in further if it is known the relationship between the wiring temperature T and current density J by the heat conducting simulations, EM lifetime at any current density J can be estimated.

【0005】[0005]

【発明が解決しようとする課題】ただし上記提案の評価
方法では、サンプル毎に放熱特性を変える必要があり、
このために各被試験アルミ配線の一部にそれぞれ異なる
形状の放熱フィンを設け、これにより放熱特性を変更し
て、配線温度Tを変更している。しかし、この配線温度
変更方式によれば、各サンプル毎に熱伝導シミュレーシ
ョン(3次元放熱特性解析)を実施して各配線温度を算
出する必要があり、その結果、各サンプルの作成及びそ
れら熱伝導シミュレーションを実行せねばならず、多大
な作業負担となっていた。
However, in the evaluation method proposed above, it is necessary to change the heat radiation characteristics for each sample.
For this purpose, heat radiation fins having different shapes are provided on a part of each aluminum wiring under test, thereby changing the heat radiation characteristics and changing the wiring temperature T. However, according to the wiring temperature change method, it is necessary to calculate each wire temperature by carrying out heat-conducting simula- Reshi <br/> ® emission (3D radiation characteristic analysis) for each sample, as a result, not must not execute the creation and their heat conduction simulation each sample, it has been a great deal of work burden.

【0006】その上、このような放熱フィンの形状変更
では、得られる配線温度の変化に限界があり、その結
果、得られた特性線の傾斜率すなわち活性化エネルギー
Eaの精度が低下してしまう。本案は、上記問題点に鑑
みなされたものであり、作業負担が軽く、しかも高精度
のEM寿命/配線温度特性が得られる配線の評価方法及
び評価装置を提供することを、その目的としている。
In addition, such a change in the shape of the radiating fins has a limit on a change in the obtained wiring temperature, and as a result, the accuracy of the obtained characteristic line gradient, that is, the activation energy Ea is reduced. . The present invention has been made in view of the above problems, and an object of the present invention is to provide a wiring evaluation method and an evaluation apparatus which can reduce the work load and obtain highly accurate EM life / wiring temperature characteristics.

【0007】[0007]

【課題を解決するための手段】本発明の配線の評価方法
は、配線が絶縁物上に敷設されている被試験体を所定の
複数の温度状態に維持しつつ前記配線に一定電流密度で
定電流を通電し、前記各温度状態毎の前記配線の各抵抗
値及び各断線時間を測定し、前記各抵抗値及び予め測定
した前記配線の抵抗温度係数に基づいて前記配線の温
度を算出し、前記各断線時間と前記各配線の温度との関
係を決定することを特徴としている。
According to the present invention, there is provided a method for evaluating a wiring, wherein a test object having the wiring laid on an insulator is maintained at a plurality of predetermined temperature states and the current is applied to the wiring at a constant current density. br /> energized the constant current, the measured resistance values and the disconnection time of the wiring for each temperature condition, of the respective wires based on the resistance temperature coefficient of said wires as measured resistance values and previously The method is characterized in that a temperature is calculated and a relationship between each of the disconnection times and the temperature of each of the wirings is determined.

【0008】本発明の配線の評価装置は、図7の概念図
に示すように、配線が絶縁物上に敷設されている被試験
体を所定の複数の温度状態に維持する温度維持手段と、
前記配線に一定電流密度で定電流を通電する通電手段
と、前記各温度状態毎の前記配線の各抵抗値及び各断線
時間をそれぞれ測定する測定手段と、前記各抵抗値及び
予め測定した前記配線の抵抗温度係数に基づいて前記
配線の温度を算出する配線温度算出手段と、前記各配線
温度と前記各断線時間との関係に基づいて、前記配線の
任意配線温度での断線時間又は活性化エネルギーを推定
する評価手段とを備えることを特徴としている。
As shown in the conceptual diagram of FIG. 7, the wiring evaluation apparatus of the present invention comprises a temperature maintaining means for maintaining a test object having a wiring laid on an insulator at a plurality of predetermined temperature states;
Energizing means for applying a constant current to the wiring at a constant current density ; measuring means for measuring each resistance value and each disconnection time of the wiring for each of the temperature conditions; and each of the resistance values and the previously measured wiring Wiring temperature calculating means for calculating the temperature of each of the wirings based on the temperature coefficient of resistance of the wiring; and disconnection of the wiring at an arbitrary wiring temperature based on a relationship between each of the wiring temperatures and each of the disconnection times. Evaluation means for estimating time or activation energy.

【0009】配線としてはアルミ及びアルミ合金他、電
気配線として用いられる各種導体材料が採用される。
As the wiring, various conductor materials used for electric wiring, such as aluminum and aluminum alloy, are employed.

【0010】[0010]

【作用及び発明の効果】本発明では、所定形状の金属配
線に一定電流密度Jcで通電しつつサンプルの雰囲気温
度を変更して各抵抗値及び断線時間Hを測定する。次
に、予め測定した前記金属配線の抵抗温度係数と前記抵
抗値とから各配線温度Tを算出する。そして、求めた断
線時間H及び配線温度Tの関係を示す特性線を求める。
According to the present invention, the resistance value and the disconnection time H are measured by changing the ambient temperature of the sample while energizing the metal wiring having a predetermined shape at a constant current density Jc. Next, each wiring temperature T is calculated from the previously measured resistance temperature coefficient of the metal wiring and the resistance value. Then, a characteristic line indicating the relationship between the determined disconnection time H and the determined wiring temperature T is determined.

【0011】このようにすれば、求めた特性線から、活
性化エネルギーEa及びEM寿命を簡単に求めることが
できる。
In this way, the activation energy Ea and the EM lifetime can be easily obtained from the obtained characteristic lines.

【0012】[0012]

【実施例】本発明を適用した評価装置の一例を図1に示
す。この評価装置は、アルミ配線のEM寿命及び活性化
エネルギーを推定するものであって、温度制御基台(加
熱手段)1にはウェハ2が載置されており、ウェハ2上
に不図示の絶縁膜を介して敷設された所定パタンのアル
ミ配線3の両端部にはプローブ針(測定手段)4、4が
コンタクトされている。
FIG. 1 shows an example of an evaluation apparatus to which the present invention is applied. This evaluation device estimates the EM life and activation energy of aluminum wiring. A wafer 2 is mounted on a temperature control base (heating means) 1 and an insulating material (not shown) is placed on the wafer 2. Probe needles (measuring means) 4 and 4 are in contact with both ends of the aluminum wiring 3 of a predetermined pattern laid through the film.

【0013】温度制御基台1内には、ヒータ(図示せ
ず)及び温度センサ(図示せず)が内蔵されており、こ
のヒータはコントローラ5を通じて不図示の直流電源又
は商用交流電源から通電されている。なお、上記温度セ
ンサはウェハ2との境界面近傍に配置されている。コン
トローラ5は、マイコン(配線温度算出手段、評価手
段)6によりPCM制御されており、また、上記温度セ
ンサはマイコン6に検出温度を出力している。
The temperature control base 1 has a built-in heater (not shown) and a temperature sensor (not shown). The heater is energized from a DC power supply or a commercial AC power supply (not shown) through a controller 5. ing. The temperature sensor is disposed near the boundary surface with the wafer 2. The controller 5 is under PCM control by a microcomputer (wiring temperature calculation means, evaluation means) 6, and the temperature sensor outputs a detected temperature to the microcomputer 6.

【0014】一方、プローブ針4、4は定電流源(通電
手段)7から一定電流を給電されており、プローブ針
4、4の両端の電圧はアンプ(測定手段)8、A/Dコ
ンバータ(測定手段)9を介してマイコン6に伝送され
る。図2に要部詳細を拡大図示する。ウェハ2上への定
電流の通電によりアルミ配線3が加熱され、アルミ配線
3で生じた熱は外部、特に温度制御基台1に放熱する。
したがって、温度制御基台1の温度を調節することによ
りアルミ配線3の温度が制御される。
On the other hand, the probe needles 4, 4 are supplied with a constant current from a constant current source (energizing means) 7, and the voltage across the probe needles 4, 4 is supplied to an amplifier (measuring means) 8, an A / D converter ( It is transmitted to the microcomputer 6 via the measuring means 9. FIG. 2 is an enlarged view of a main part in detail. The aluminum wiring 3 is heated by applying a constant current to the wafer 2, and the heat generated in the aluminum wiring 3 is radiated to the outside, particularly to the temperature control base 1.
Therefore, the temperature of the aluminum wiring 3 is controlled by adjusting the temperature of the temperature control base 1.

【0015】以下、図5及び図6のフローチャートによ
り、本実施例の評価方法を説明する。まず、上記温度
御基台1を設定温度Ta=25℃とする(100)。こ
の温度制御は、温度センサから検出温度と設定温度Ta
との差に応じてコントローラ5のオンデューティ比をフ
ィードバック制御することにより簡単に実行されるが、
このような制御自体は周知であるので、これ以上の説明
は省略する。
Hereinafter, the evaluation method of this embodiment will be described with reference to the flowcharts of FIGS. First, the temperature control base 1 is set to the set temperature Ta = 25 ° C. (100). This temperature control is performed by detecting a detected temperature and a set temperature Ta from a temperature sensor.
This is easily performed by feedback-controlling the on-duty ratio of the controller 5 according to the difference between
Since such control itself is well known, further description is omitted.

【0016】次に、検出温度が設定温度Taになった
後、定電流源7に指令してアルミ配線3に定電流Ic
(電流密度J=7.7×106 A/cm2 )を給電し
(102)、同時に内蔵タイマをスタートさせて累積通
電時間をカウントする(104)。次に、上記通電に伴
うアルミ配線3の発熱による温度分布状態が平衡に達す
るに充分な時間が経過した後、アルミ配線3の両端の電
圧Vを検出し、この電圧Vからアルミ配線3の抵抗値R
を算出し(V/Ic)、記憶する(106)。
Next, after the detected temperature has reached the set temperature Ta, a command is sent to the constant current source 7 to supply a constant current Ic to the aluminum wiring 3.
(Current density J = 7.7 × 10 6 A / cm 2 ) is supplied (102), and at the same time, a built-in timer is started to count the accumulated energizing time (104). Next, after a lapse of time sufficient for the temperature distribution state due to the heat generation of the aluminum wiring 3 due to the energization to reach an equilibrium, the voltage V across the both ends of the aluminum wiring 3 is detected. Value R
Is calculated (V / Ic) and stored (106).

【0017】その後も、アルミ配線3の両端の電圧Vを
検出し、電圧Vが所定電圧値Vthを超えた場合に、ア
ルミ配線3の断線と判定し(108)、上記内蔵タイマ
のカウント値(すなわち断線時間H)を記憶し、タイマ
を0にリセットし、カウントを停止し(110)、ルー
チンを終了する。これにより、抵抗値Rと断線時間Hの
ペアが求められる。
Thereafter, the voltage V at both ends of the aluminum wiring 3 is detected, and when the voltage V exceeds a predetermined voltage value Vth, it is determined that the aluminum wiring 3 is disconnected (108), and the count value of the built-in timer (108) That is, the disconnection time H) is stored, the timer is reset to 0, the counting is stopped (110), and the routine ends. Thus, a pair of the resistance value R and the disconnection time H is obtained.

【0018】以下、設定温度Ta=25℃、50℃、7
5℃毎にそれぞれ多数のサンプルを用意し、各サンプル
毎に、上記と同じプロセスにて抵抗値R及び断線時間H
を測定する。次に、これら各抵抗値R毎に配線温度Tを
求める(201)。各抵抗値Rから配線温度Tを算出す
るには、予め、アルミ配線3のTCR(抵抗温度係数)
を測定しておき、このTCRと各抵抗値とから配線温度
Tを算出すればよい。抵抗値Rと、配線温度Tと、抵抗
温度係数TCRとの関係式を以下に示す。
Hereinafter, set temperatures Ta = 25 ° C., 50 ° C., 7
A large number of samples are prepared for each 5 ° C., and the resistance R and the disconnection time H are determined for each sample by the same process as described above.
Is measured. Next, a wiring temperature T is obtained for each of these resistance values R (201). In order to calculate the wiring temperature T from each resistance value R, the TCR (resistance temperature coefficient) of the aluminum wiring 3 must be determined in advance.
Is measured, and the wiring temperature T may be calculated from the TCR and each resistance value. The relational expression among the resistance value R, the wiring temperature T, and the resistance temperature coefficient TCR is shown below.

【0019】 次に、求めた配線温度Tの逆数を求め(202)、断線
時間Hの対数値を求め(203)、求めた値をアレニウ
スプロットし(204)、それに基づいて特性線L1
(図3参照)を求める(205)。
[0019] Next, the reciprocal of the obtained wiring temperature T is obtained (202), the logarithmic value of the disconnection time H is obtained (203), and the obtained value is Arrhenius plotted (204).
(See FIG. 3) (205).

【0020】次に、この特性線L1と下記の理論式とか
ら活性化エネルギーEa及び比例定数Aを決定し(20
6)、ルーチンを終了する。なお、この実験で求めたア
ルミ配線3の活性化エネルギーEaは0.72evとな
り、従来方法で求めた値0.68evとよく一致してい
た。 ただし、EM寿命HはMTF(平均故障時間)を表し、
wは配線幅、tは配線厚、Jは電流密度、Aは比例定
数、Kはボルツマン定数、Eaは活性化エネルギー、T
は配線温度(絶対温度)である。
Next, the activation energy Ea and the proportionality constant A are determined from the characteristic line L1 and the following theoretical formula (20).
6) End the routine. The activation energy Ea of the aluminum wiring 3 obtained in this experiment was 0.72 ev, which was in good agreement with the value 0.68 ev obtained by the conventional method. Here, the EM life H represents MTF (mean time to failure),
w is the wiring width, t is the wiring thickness, J is the current density, A is the proportional constant, K is the Boltzmann constant, Ea is the activation energy, T
Is the wiring temperature (absolute temperature).

【0021】このようにして求めた特性線L1を図3に
示し、一方、電流密度J=1×106A/cm2における
従来方法における実験値Pも示す。次に、特性線L1
(電流密度Jを7.7×106A/cm2に基づく上記
の理論式により電流密度Jが1×106A/cm2である
場合の特性線L2を求める。このようにして求めた電流
密度J=1×106A/cm2時の特性線L2は、従来
法による実験で得た実験値Pと良く一致している。
お、図4には、温度制御基台の設定温度毎の通電電流密
度と配線温度との関係を示す。
FIG. 3 shows the characteristic line L1 obtained in this manner, and also shows the experimental value P in the conventional method at a current density J = 1 × 10 6 A / cm 2 . Next, the characteristic line L1
Above-mentioned method of (current density J 7.7 × 10 6 A / cm 2) to
The characteristic line L2 when the current density J is 1 × 10 6 A / cm 2 is obtained by the theoretical formula . Such current density J = 1 × 10 6 A / cm 2 at the characteristic line L2 obtained by the conventional way
It is in good agreement with the experimental value P obtained in the experiment by the method . What
FIG. 4 shows the current carrying density for each set temperature of the temperature control base.
The relationship between the temperature and the wiring temperature is shown.

【0022】以上説明したように、本実施例によれば、
簡単な構成及び操作にもかかわらず高精度に活性化エネ
ルギーEaやEM寿命Hを算出することができる。
As described above, according to this embodiment,
The activation energy Ea and the EM lifetime H can be calculated with high accuracy despite a simple configuration and operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の評価装置の一実施例を示すブロック
図である。
FIG. 1 is a block diagram showing one embodiment of an evaluation device of the present invention.

【図2】 図1の要部拡大断面図である。FIG. 2 is an enlarged sectional view of a main part of FIG.

【図3】 測定データをアレニウスプロットして得たグ
ラフである。
FIG. 3 is a graph obtained by Arrhenius plot of measurement data.

【図4】 電流密度と基台温度と配線温度との関係をし
めす特性図である。
FIG. 4 is a characteristic diagram showing a relationship among a current density, a base temperature, and a wiring temperature.

【図5】 本発明の評価方法の一実施例を示すフローチ
ャートである。
FIG. 5 is a flowchart showing one embodiment of the evaluation method of the present invention.

【図6】 本発明の評価方法の一実施例を示すフローチ
ャートである。
FIG. 6 is a flowchart showing one embodiment of the evaluation method of the present invention.

【図7】 本発明の概念図である。FIG. 7 is a conceptual diagram of the present invention.

【符号の説明】[Explanation of symbols]

本発明を適用した評価装置の一例を図1に示す。 1は温度制御基台(温度維持手段)、 3はアルミ配線(配線) 4はプローブ針(測定手段)、 6はマイコン(配線温度算出手段、評価手段)、 7は定電流源(通電手段)、 8はアンプ(測定手段)、 9はA/Dコンバータ(測定手段)。 FIG. 1 shows an example of an evaluation device to which the present invention is applied. 1 is a temperature control base (temperature maintaining means), 3 is aluminum wiring (wiring), 4 is a probe needle (measuring means), 6 is a microcomputer (wiring temperature calculating means, evaluating means), and 7 is a constant current source (energizing means). , 8 is an amplifier (measuring means), 9 is an A / D converter (measuring means).

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 31/02 G01R 27/08 H01L 21/66 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01R 31/02 G01R 27/08 H01L 21/66

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 配線が絶縁物上に敷設されている被試験
体を所定の複数の温度状態に維持しつつ前記配線に一定
電流密度で定電流を通電し、前記各温度状態毎の前記配
線の各抵抗値及び各断線時間を測定し、前記各抵抗値及
び予め測定した前記配線の抵抗温度係数に基づいて前記
配線の温度を算出し、前記各断線時間と前記各配線の
温度との関係を決定することを特徴とする配線の評価方
法。
1. A test apparatus, wherein wiring is laid on an insulator, is maintained at a plurality of predetermined temperature states, and is fixed to said wiring.
It energized a constant current at a current density, wherein each resistance value and each disconnection time of the wiring for each temperature condition was determined, on the basis of the resistance temperature coefficient of the measured resistance values and advance the wire
A method for evaluating a wiring, comprising calculating a temperature of each wiring, and determining a relationship between each disconnection time and a temperature of each wiring.
【請求項2】 配線が絶縁物上に敷設されている被試験
体を所定の複数の温度状態に維持する温度維持手段と、 前記配線に一定電流密度で定電流を通電する通電手段
と、 前記各温度状態毎の前記配線の各抵抗値及び各断線時間
をそれぞれ測定する測定手段と、 前記各抵抗値及び予め測定した前記配線の抵抗温度係数
に基づいて前記配線の温度を算出する配線温度算出手
段と、 前記各配線温度と前記各断線時間との関係に基づいて、
前記配線の任意配線温度での断線時間又は活性化エネル
ギーを推定する評価手段と、 を備えることを特徴とする配線の評価装置。
2. A temperature maintaining means for maintaining a test object in which wiring is laid on an insulator at a plurality of predetermined temperature states; an energizing means for applying a constant current to the wiring at a constant current density ; Measuring means for measuring each resistance value and each disconnection time of the wiring for each temperature state, and a wiring temperature for calculating the temperature of each wiring based on each resistance value and a previously measured resistance temperature coefficient of the wiring. Calculating means, based on a relationship between each of the wiring temperatures and each of the disconnection times,
Evaluation means for estimating a disconnection time or an activation energy of the wiring at an arbitrary wiring temperature.
JP13027493A 1993-06-01 1993-06-01 Wiring evaluation method and evaluation device Expired - Fee Related JP3235272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13027493A JP3235272B2 (en) 1993-06-01 1993-06-01 Wiring evaluation method and evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13027493A JP3235272B2 (en) 1993-06-01 1993-06-01 Wiring evaluation method and evaluation device

Publications (2)

Publication Number Publication Date
JPH06342027A JPH06342027A (en) 1994-12-13
JP3235272B2 true JP3235272B2 (en) 2001-12-04

Family

ID=15030389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13027493A Expired - Fee Related JP3235272B2 (en) 1993-06-01 1993-06-01 Wiring evaluation method and evaluation device

Country Status (1)

Country Link
JP (1) JP3235272B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10227829A1 (en) 2002-06-21 2004-01-15 Infineon Technologies Ag Method for monitoring the manufacture and for evaluating the quality of a metallization arrangement and associated detection device
US7888672B2 (en) 2002-11-23 2011-02-15 Infineon Technologies Ag Device for detecting stress migration properties
CN103280413B (en) * 2013-04-23 2016-06-08 上海华虹宏力半导体制造有限公司 Obtain the industrial realization method of the plastisied dispersion of the temperature coefficient of resistance of wafer
US10591531B2 (en) * 2015-06-10 2020-03-17 Qualcomm Incorporated Method and apparatus for integrated circuit monitoring and prevention of electromigration failure
CN106449460B (en) * 2016-10-26 2019-09-17 上海华力微电子有限公司 Electric current accelerated factor appraisal procedure in constant temperature electromigration test
CN113471173B (en) * 2021-06-29 2024-05-03 上海华力微电子有限公司 Test structure and test method

Also Published As

Publication number Publication date
JPH06342027A (en) 1994-12-13

Similar Documents

Publication Publication Date Title
Zawilski et al. Description of the parallel thermal conductance technique for the measurement of the thermal conductivity of small diameter samples
Hwang et al. Measurement of heat capacity by fitting the whole temperature response of a heat-pulse calorimeter
US5260668A (en) Semiconductor surface resistivity probe with semiconductor temperature control
EP0253746B1 (en) Method and apparatus for dynamic testing of thin-film conductor
US5291142A (en) Method and apparatus for measuring the resistance of conductive materials due to electromigration
TW200937595A (en) Heater device, measurement device and thermal conductivity estimation method
Rauscher et al. Efficiency determination and general characterization of thermoelectric generators using an absolute measurement of the heat flow
US7275865B2 (en) Temperature measuring apparatus using change of magnetic field
KR101706251B1 (en) Apparatus and method for measuring thermal conductivity
US6593761B1 (en) Test handler for semiconductor device
JP4284545B2 (en) Specific heat capacity measuring method and apparatus
JP3235272B2 (en) Wiring evaluation method and evaluation device
JP2001210683A (en) Chucking mechanism of prober
JP4474550B2 (en) Thermoelectric element characteristic evaluation method
JP2003130920A (en) Repetitive durability-testing method and apparatus of power module
JPS60107563A (en) Method and device for evaluating cooling performance of heat treating agent
JPH1144727A (en) Circuit board inspecting device
JP3628849B2 (en) Method and apparatus for evaluating metal wiring in integrated circuit
JP3776257B2 (en) Electromigration evaluation method and evaluation apparatus for metal wiring
JPH06151537A (en) Evaluation for life of wiring
Dilley et al. Commercial apparatus for measuring thermal transport properties from 1.9 to 390 Kelvin
JP3670167B2 (en) Equipment for measuring thermal conductivity of fine single wires
WO2024116508A1 (en) Peltier coefficient calculation method, program, and measurement system
Diez et al. Analysing defects in silicon by temperature-and injection-dependent lifetime spectroscopy (T-IDLS)
JPH01138423A (en) Liquid volume meter for liquid nitrogen

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees