JPH01138423A - Liquid volume meter for liquid nitrogen - Google Patents

Liquid volume meter for liquid nitrogen

Info

Publication number
JPH01138423A
JPH01138423A JP29651287A JP29651287A JPH01138423A JP H01138423 A JPH01138423 A JP H01138423A JP 29651287 A JP29651287 A JP 29651287A JP 29651287 A JP29651287 A JP 29651287A JP H01138423 A JPH01138423 A JP H01138423A
Authority
JP
Japan
Prior art keywords
liquid nitrogen
liquid
superconductor wire
resistance value
ammeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29651287A
Other languages
Japanese (ja)
Inventor
Yoshihiko Fukuoka
福岡 義彦
Yasuhiro Hioki
日置 康弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29651287A priority Critical patent/JPH01138423A/en
Publication of JPH01138423A publication Critical patent/JPH01138423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To detect the continuous change in the liquid volume of liquid nitrogen by connecting a superconductor wire of a Y-Ba-Cu-O system, a constant voltage power supply and an electric resistor in series. CONSTITUTION:The resistance value is decreased to zero by a superconductive state in the superconductor wire 5 of the Y-Ba-Cu-O system when the superconductor wire 5 is held immersed in the liquid nitrogen 3. An ammeter 7, therefore, indicates the current value determined by the source voltage of the constant voltage power supply 6 and the electric resistor 8. The superconductive state is broken and a part of the superconductor wire 5 has the finite resistance value when this part is no longer immersed in the liquid nitrogen 3. The current 7, therefore, decreases by as much as the resistance value. Since the resistance value possessed by the superconductor wire 5 increases in proportion to the length of the part which is not immersed in the liquid nitrogen 3, the resistance value of the superconductor wire 5 changes continuously with the change in the liquid level of the liquid nitrogen. The value of the volume of the liquid nitrogen is, thereupon, detected continuously if the scale of the ammeter 7 is previously calibrated by the value of the volume of the liquid nitrogen.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は液体窒素の液量の測定に用いることができる液
体窒素液量計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a liquid nitrogen meter that can be used to measure the amount of liquid nitrogen.

従来の技術 近年、エックス線微小分析器において、エネルギー分散
型が多く用いられてきている。ところがエネルギー分散
型エックス線微小分析器においてはエックス線検出器と
して分解能を上げるために半導体検出器が用いられてい
る。ところが半導体検出器はその性能劣化を防止するた
め常時検出器を液体窒素で冷却しなければならない、そ
のためエネルギー分散型エックス線微小分析器は液体窒
素保存容器を備え、これが空にならないように液体窒素
を補充しなければならない。
BACKGROUND OF THE INVENTION In recent years, energy dispersive type X-ray microanalyzers have been increasingly used. However, in energy dispersive X-ray microanalyzers, semiconductor detectors are used as X-ray detectors in order to increase resolution. However, semiconductor detectors must be constantly cooled with liquid nitrogen to prevent their performance from deteriorating. Therefore, energy dispersive X-ray microanalyzers are equipped with a liquid nitrogen storage container, and liquid nitrogen is kept in the container to prevent it from emptying. Must be replenished.

以下図面を参照しながら従来の液体窒素液量計について
説明する。第2図は従来の液体窒素液量計の構成図であ
り、1はIC熱電対、2は熱起動電力検出計、3は液体
窒素、4は液体窒素保存容器である。1の熱電対は4の
液体窒素保存容器の入口から一端が底面近くに達するよ
うに挿入され、他端は4の液体窒素保存容器の入口に配
置され、導線で2の熱起電力検出計に接続されている。
A conventional liquid nitrogen liquid meter will be described below with reference to the drawings. FIG. 2 is a configuration diagram of a conventional liquid nitrogen liquid meter, in which 1 is an IC thermocouple, 2 is a thermal activation power detector, 3 is liquid nitrogen, and 4 is a liquid nitrogen storage container. The thermocouple No. 1 is inserted into the inlet of the liquid nitrogen storage container No. 4 so that one end reaches near the bottom, and the other end is placed at the entrance of the liquid nitrogen storage container No. 4, and connected to the thermoelectromotive force detector No. 2 with a conductor. It is connected.

以上のように構成された液体窒素液量計についてその動
作を以下に説−明する。液体窒素が熱電対1の底面に近
い方の端部より液面が上にある時は、熱電対の両端で室
温と液体窒素温度の温度差による熱起電力を発生し、熱
起電力検出計2によって検出される。ところが、液体窒
素が少なくなり液体窒素液面が熱電対の底面に近い方の
端部より下がると、熱電対の両端間で温度差がなくなり
、熱起電力は減少する。従って熱起電力検出計により、
液体窒素の量を検出することができ′る。
The operation of the liquid nitrogen liquid meter constructed as described above will be explained below. When the liquid nitrogen level is higher than the end near the bottom of thermocouple 1, a thermoelectromotive force is generated at both ends of the thermocouple due to the temperature difference between the room temperature and the liquid nitrogen temperature, and a thermoelectromotive force detector is detected. Detected by 2. However, when the amount of liquid nitrogen decreases and the liquid nitrogen level drops below the end of the thermocouple near the bottom, the temperature difference disappears between both ends of the thermocouple, and the thermoelectromotive force decreases. Therefore, using a thermoelectromotive force detector,
The amount of liquid nitrogen can be detected.

発明が解決しようとする問題点    ′しかしながら
、上記のような構成においては温度を検出することによ
り、液体窒素液量を検出する方法であるので、熱電対の
一端より液面が上にあるか下にあるかのどちらかを検出
するだけであり、連続的な液量の変化を検出できないと
いう問題点を有していた。
Problems to be Solved by the Invention ``However, in the above configuration, the amount of liquid nitrogen is detected by detecting the temperature, so whether the liquid level is above or below one end of the thermocouple, However, it has the problem that continuous changes in liquid volume cannot be detected.

本発明は上記問題点に鑑み、液体窒素の液量の連続的な
変化を検出することのできる液体窒素液量計を提供する
ものである。
In view of the above-mentioned problems, the present invention provides a liquid nitrogen liquid meter that can detect continuous changes in the amount of liquid nitrogen.

問題点を解決するための手段 上記問題点を解決するために本発明の液体窒素液量計は
、Y−Ba−Cu−0系超伝導体線と定電圧電源と電流
計と電気抵抗とを備え、前記超伝導体線と前記定電圧電
源と前記電気抵抗とが直列に接続されているという構成
を備えたものである。
Means for Solving the Problems In order to solve the above problems, the liquid nitrogen liquid meter of the present invention uses a Y-Ba-Cu-0 based superconductor wire, a constant voltage power supply, an ammeter, and an electric resistance. The superconductor wire, the constant voltage power supply, and the electric resistance are connected in series.

作用  、 本発明は上記した構成によって、Y−Ba−Cu−0系
超伝導体線を液体窒素中に浸し、液体窒素液量変化によ
る超伝導体線の抵抗変化を超伝導体線を流れる電流の変
化として検出する方法であるので、液体窒素液量の連続
的変化を検出することができる。
Effect: With the above configuration, the present invention immerses a Y-Ba-Cu-0 based superconductor wire in liquid nitrogen, and calculates the resistance change of the superconductor wire due to the change in the amount of liquid nitrogen by measuring the current flowing through the superconductor wire. Since this method detects changes in the amount of liquid nitrogen, it is possible to detect continuous changes in the amount of liquid nitrogen.

実施例 以下本発明の一実施例の液体窒素液量計について、図面
を参照しながら説明する。
EXAMPLE Hereinafter, a liquid nitrogen liquid meter according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における液体窒素液量計の構
成図を示すものである。第1図において、5はY−Ba
−Cu−0系超伝導体線、6は定電圧電源、7は電流計
、8は電気抵抗、3は液体窒素、4は液体窒素保存容器
である。U字型に曲げられた超伝導体線5が液体窒素保
存容器4に鉛直につり下げられ、液体窒素中に浸されて
いる。
FIG. 1 shows a configuration diagram of a liquid nitrogen liquid meter according to an embodiment of the present invention. In Figure 1, 5 is Y-Ba
-Cu-0 based superconductor wire, 6 is a constant voltage power supply, 7 is an ammeter, 8 is an electric resistance, 3 is liquid nitrogen, and 4 is a liquid nitrogen storage container. A superconductor wire 5 bent into a U-shape is vertically suspended in a liquid nitrogen storage container 4 and immersed in the liquid nitrogen.

一方、この超伝導体線5に定電圧電源6、電流計7、電
気抵抗日が直列に接続されている。
On the other hand, a constant voltage power source 6, an ammeter 7, and an electric resistance are connected in series to this superconductor wire 5.

以上のように構成された液体窒素液量計について、以下
その動作を説明する。超伝導体線全体が液体窒素に浸か
っている時、Y−Ba−Cu−0系超伝導体線では超伝
導状態が実現されるので抵抗値が零となる。従って電流
計7は定電圧電源6の電源電圧と電気抵抗8により決ま
る電流値を示す。液体窒素の液量が減少し超伝導体線の
一部が液体窒素に浸からなくなるとこの部分では超伝導
状態が破れ、有限の抵抗値を持つ。従って電流計7を流
れる電流はこの抵抗値による分だけ減少する。また、こ
の超伝導体線の持つ抵抗値は、液体窒素に浸かっていな
い部分の長さに比例して大きくなるので、液体窒素液面
の変化に連続して超伝導体線の抵抗値が変化することに
なる。この結果、電流計7を流れる電流値は液体窒素液
量の減少とともに連続的に減少する。そこで電流計の目
盛を液体窒素液量の値で較正しておけば液体窒素液量の
値を直読することができる。
The operation of the liquid nitrogen liquid meter configured as described above will be described below. When the entire superconductor wire is immersed in liquid nitrogen, the Y-Ba-Cu-0 superconductor wire achieves a superconducting state, so the resistance value becomes zero. Therefore, the ammeter 7 indicates a current value determined by the power supply voltage of the constant voltage power supply 6 and the electric resistance 8. When the amount of liquid nitrogen decreases and a part of the superconductor wire is no longer immersed in liquid nitrogen, the superconducting state is broken in this part and the wire has a finite resistance value. Therefore, the current flowing through the ammeter 7 is reduced by this resistance value. In addition, the resistance value of this superconductor wire increases in proportion to the length of the part not immersed in liquid nitrogen, so the resistance value of the superconductor wire changes continuously with changes in the liquid nitrogen liquid level. I will do it. As a result, the value of the current flowing through the ammeter 7 continuously decreases as the amount of liquid nitrogen decreases. Therefore, if the scale of the ammeter is calibrated with the value of the amount of liquid nitrogen, the value of the amount of liquid nitrogen can be directly read.

以上のように本実施例によれば、Y−Ba−Cu−0系
超伝導体線と定電圧電源と電流計と電気抵抗を直列に接
続し、超伝導体線を液体窒素中に浸けることにより、液
体窒素液量を連続的に直読することができる。
As described above, according to this embodiment, a Y-Ba-Cu-0 based superconductor wire, a constant voltage power source, an ammeter, and an electric resistance are connected in series, and the superconductor wire is immersed in liquid nitrogen. This makes it possible to continuously and directly read the amount of liquid nitrogen.

発明の効果 以上のように本発明はY−Ba−Cu−0系超伝導体線
と定電圧電源と電流計と電気抵抗を直列に接続すること
により、液体窒素液量を連続的に知ることができ、例え
ばエネルギー分散型エックス線微小分析器のエックス線
検出器冷却用液体窒素液量検出計として用いれば、液体
窒素量を的確に知ることができ、液体窒素欠乏による事
故を防ぐのに大いに役立つものである。
Effects of the Invention As described above, the present invention is capable of continuously determining the amount of liquid nitrogen by connecting a Y-Ba-Cu-0 superconductor wire, a constant voltage power source, an ammeter, and an electric resistance in series. For example, if it is used as a liquid nitrogen liquid amount detector for cooling the X-ray detector of an energy dispersive X-ray microanalyzer, the amount of liquid nitrogen can be accurately determined, which is very useful in preventing accidents due to liquid nitrogen deficiency. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における液体窒素液量計の構
成図、第2図は従来の液体窒素液量計の構成図である。 1・・・・・・IC熱電対、2・・・・・・熱起電力検
出計、3・・・・・・液体窒素、4・・・・・・液体窒
素保存容器、5・・・・・・Y−Ba−Cu−0系超伝
導体線、6・・・・・・定電圧電源、7・・・・・・電
流計、8・旧・・電気抵抗。 代理人の氏名 弁理士 中尾敏男 はが1名/−IC8
電対 第1図 、j  4 5 第2図
FIG. 1 is a block diagram of a liquid nitrogen liquid meter according to an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional liquid nitrogen liquid meter. 1...IC thermocouple, 2...thermoelectromotive force detector, 3...liquid nitrogen, 4...liquid nitrogen storage container, 5... ... Y-Ba-Cu-0 system superconductor wire, 6 ... Constant voltage power supply, 7 ... Ammeter, 8. Old ... Electric resistance. Name of agent: Patent attorney Toshio Nakao, 1 person/-IC8
Electrocouple Figure 1, j 4 5 Figure 2

Claims (1)

【特許請求の範囲】[Claims] Y−Ba−Cu−O系超伝導体線と定電圧電源と電流計
と電気抵抗とを備え、前記Y−Ba−Cu−O系超伝導
体線と前記定電圧電源と前記電流計と前記電気抵抗とが
直列に接続されていることを特徴とする液体窒素液量計
The Y-Ba-Cu-O based superconductor wire, the constant voltage power source, the ammeter and the electrical resistance are provided. A liquid nitrogen liquid meter characterized by being connected in series with an electric resistance.
JP29651287A 1987-11-25 1987-11-25 Liquid volume meter for liquid nitrogen Pending JPH01138423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29651287A JPH01138423A (en) 1987-11-25 1987-11-25 Liquid volume meter for liquid nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29651287A JPH01138423A (en) 1987-11-25 1987-11-25 Liquid volume meter for liquid nitrogen

Publications (1)

Publication Number Publication Date
JPH01138423A true JPH01138423A (en) 1989-05-31

Family

ID=17834501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29651287A Pending JPH01138423A (en) 1987-11-25 1987-11-25 Liquid volume meter for liquid nitrogen

Country Status (1)

Country Link
JP (1) JPH01138423A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114907A (en) * 1991-03-15 1992-05-19 Illinois Superconductor Corporation Cryogenic fluid level sensor
US5593949A (en) * 1993-07-06 1997-01-14 Lockheed Martin Corporation High temperature conductor probes for determining liquid level of cryogens
US7841235B2 (en) * 2005-03-05 2010-11-30 Technische Universität Dresden Superconductive level indicator for liquid hydrogen and liquid neon, and measuring method for liquid level measurement
WO2012020506A1 (en) * 2010-08-13 2012-02-16 日本協能電子株式会社 Liquid holding container provided with sensor, and liquid quantity measuring system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114907A (en) * 1991-03-15 1992-05-19 Illinois Superconductor Corporation Cryogenic fluid level sensor
US5593949A (en) * 1993-07-06 1997-01-14 Lockheed Martin Corporation High temperature conductor probes for determining liquid level of cryogens
US7841235B2 (en) * 2005-03-05 2010-11-30 Technische Universität Dresden Superconductive level indicator for liquid hydrogen and liquid neon, and measuring method for liquid level measurement
WO2012020506A1 (en) * 2010-08-13 2012-02-16 日本協能電子株式会社 Liquid holding container provided with sensor, and liquid quantity measuring system
JP5696148B2 (en) * 2010-08-13 2015-04-08 日本協能電子株式会社 Liquid holding container with sensor

Similar Documents

Publication Publication Date Title
Hwang et al. Measurement of heat capacity by fitting the whole temperature response of a heat-pulse calorimeter
Goodrich et al. Critical current measurements: a compendium of experimental results
Pecharsky et al. A 3–350 K fast automatic small sample calorimeter
Cetas et al. Specific heats of cu, gaas, gasb, inas, and insb from 1 to 30 k
US6925873B2 (en) Liquid helium level sensor for use in a cryogenic environment and method for assembling same
Beyer et al. A magnetic-field-fluctuation thermometer for the mK range based on SQUID-magnetometry
JPH01138423A (en) Liquid volume meter for liquid nitrogen
Arenz et al. Thermal conductivity and electrical resistivity of copper in intense magnetic fields at low temperatures
Maeno et al. Simple differential thermometer for low temperatures using a thermocouple with a SQUID detector
Schmidt et al. Ac loss measurements on superconductors in the microwatt range
JPH01138424A (en) Liquid volume meter for liquid nitrogen
US4944183A (en) Level gauge for liquid helium
Xin et al. Computer‐controlled thermoelectric power measurement for bulk high T c superconductors
Hudson et al. Evaluation of the temperature and magnetic field dependence of critical current densities of multifilamentary superconducting composites
Wieczorek et al. Thermal conductivity of amorphous films
Kose et al. Maintaining the Unit of Voltage at PTB via the Josephson Effect
Jüngst et al. Superconducting helium level sensor
JP2658140B2 (en) Liquid level measurement method and apparatus
Klaasse et al. Improved sample-holder design for specific-heat measurements in magnetic fields up to 17.5 T
RU1501684C (en) Cryogenic liquids level sensor
Moreland et al. Cryogenic bathysphere for rapid variable‐temperature characterization of high‐T c superconductors
Leeman et al. Design of a liquid nitrogen level detector using high-Tc superconductors
Soulen et al. The equivalence of the superconducting transition temperature of pure indium as determined by electrical resistance, magnetic susceptibility, and heat-capacity measurements
JPH0197876A (en) Critical current measuring method of superconductor wire
Maene et al. Amorphous Zr0. 7Pd0. 3 as a temperature reference near 2.5 K