RU1501684C - Cryogenic liquids level sensor - Google Patents

Cryogenic liquids level sensor

Info

Publication number
RU1501684C
RU1501684C SU4276122A RU1501684C RU 1501684 C RU1501684 C RU 1501684C SU 4276122 A SU4276122 A SU 4276122A RU 1501684 C RU1501684 C RU 1501684C
Authority
RU
Russia
Prior art keywords
sensor
heater
superconductor
power
level sensor
Prior art date
Application number
Other languages
Russian (ru)
Inventor
В.Г. Дубасов
В.В. Мымриков
Original Assignee
Dubasov V G
Mymrikov V V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dubasov V G, Mymrikov V V filed Critical Dubasov V G
Priority to SU4276122 priority Critical patent/RU1501684C/en
Application granted granted Critical
Publication of RU1501684C publication Critical patent/RU1501684C/en

Links

Images

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

FIELD: measurement engineering. SUBSTANCE: sensor is made as a heater in the form of a wire of a high-resistance material, that is covered by a layer of a superconductor. In the case, electric contact is made between the heater and the superconductor all over the length. During the sensor joining a power source, power is not absorbed by its liquid immersed part and as for the part of the sensor, that is located in gas phase, all the power of the heater is used to heat the superconductor there. Change of the liquid level is determined by the sensor voltage lowering. EFFECT: decrease of power, dissipated by sensor in gas phase. 1 dwg

Description

Изобретение относится к приборостроению и измерительной технике и может быть использовано для непрерывного измерения уровня криогенных жидкостей в металлических криостатах и сосудах Дьюара. The invention relates to instrumentation and measuring equipment and can be used for continuous measurement of the level of cryogenic liquids in metal cryostats and Dewar vessels.

Цель изобретения - уменьшение мощности, рассеиваемой датчиком в газовую среду. The purpose of the invention is to reduce the power dissipated by the sensor into the gas environment.

На чертеже схематично изображены датчик и измерительная электрическая цепь. The drawing schematically shows a sensor and a measuring electrical circuit.

Датчик содержит нагреватель 1 в виде нити из высокоомного материала с нанесенным на него слоем сверхпроводника 2, имеющего надежный электрический контакт с нагревателем 1 по всей длине. Измерительная цепь содержит источник 3 тока и измерительный прибор 4. Если нижний конец датчика размещен вблизи дна криостата, то при наличии криогенной жидкости, например, на уровне С погруженный в нее участок датчика lСЕ не имеет активного сопротивления, так как высокоомный нагреватель шунтируется сверхпроводником. На этом участке датчика полностью отсутствует тепловыделение от протекающего по датчику тока. В этом случае величина напряжения, измеряемого прибором Е, пропорциональна активному сопротивлению части датчика, находящейся над жидкостью.The sensor contains a heater 1 in the form of a filament of high resistance material with a superconductor layer 2 deposited on it, having reliable electrical contact with the heater 1 along its entire length. The measuring circuit contains a current source 3 and a measuring device 4. If the lower end of the sensor is located near the bottom of the cryostat, then in the presence of a cryogenic liquid, for example, at level C, the sensor section l CE immersed in it has no active resistance, since the high-resistance heater is shunted by a superconductor. In this section of the sensor, there is completely no heat emission from the current flowing through the sensor. In this case, the voltage measured by the device E is proportional to the active resistance of the part of the sensor located above the liquid.

Для точных измерений необходимо, чтобы сопротивление датчика было равномерно распределено по его длине. Для этого сверхпроводник наносится на нить из высокоомного материала методом химического осаждения либо методом поверхностной диффузии, катодного распыления или вакуумного напыления. При такой конструкции датчика расширяется диапазон применимых сверхпроводников, включая металлокерамические, что позволяет измерить уровень различных криогенных жидкостей, в том числе гелия, кислорода, водорода, азота и т.п. в сильных магнитных полях. For accurate measurements, it is necessary that the resistance of the sensor be evenly distributed along its length. For this, a superconductor is deposited on a filament of high-resistance material by chemical deposition or by surface diffusion, cathodic sputtering, or vacuum deposition. With this design of the sensor, the range of applicable superconductors, including cermet, is expanded, which makes it possible to measure the level of various cryogenic liquids, including helium, oxygen, hydrogen, nitrogen, etc. in strong magnetic fields.

Claims (1)

ДАТЧИК УРОВНЯ КРИОГЕННЫХ ЖИДКОСТЕЙ, содержащий сверхпроводящий элемент и нагреватель, имеющие электрический контакт по всей длине, отличающийся тем, что, с целью повышения экономичности устройства путем уменьшения рассеиваемой мощности, сверхпроводящий элемент нанесен на поверхность нагревателя. CRYOGENIC LIQUID LEVEL SENSOR containing a superconducting element and a heater having an electrical contact along the entire length, characterized in that, in order to increase the efficiency of the device by reducing power dissipation, the superconducting element is applied to the surface of the heater.
SU4276122 1987-05-12 1987-05-12 Cryogenic liquids level sensor RU1501684C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4276122 RU1501684C (en) 1987-05-12 1987-05-12 Cryogenic liquids level sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4276122 RU1501684C (en) 1987-05-12 1987-05-12 Cryogenic liquids level sensor

Publications (1)

Publication Number Publication Date
RU1501684C true RU1501684C (en) 1994-07-30

Family

ID=21316271

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4276122 RU1501684C (en) 1987-05-12 1987-05-12 Cryogenic liquids level sensor

Country Status (1)

Country Link
RU (1) RU1501684C (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1272860, кл. G 01F 23/22, 1985. *

Similar Documents

Publication Publication Date Title
Clarke Experimental comparison of the Josephson voltage-frequency relation in different superconductors
JP2008532022A (en) Superconducting liquid level measuring device for liquefied hydrogen and liquefied neon and measuring method for measuring liquid level
RU1501684C (en) Cryogenic liquids level sensor
Cook et al. The thermal conductivity and electrical resistivity of gold from 80 to 340 K
Arenz et al. Thermal conductivity and electrical resistivity of copper in intense magnetic fields at low temperatures
Efferson A superconducting (Nb-Ti) liquid helium level detector
US5134360A (en) Apparatus and method for critical current measurements
Harper et al. Low temperature thermal and electrical properties of chemical-vapor-deposited Nb3Ge
Anderson et al. Penetration depth and flux creep in thin superconducting indium films
Norton A simple instrument for determining superconducting transition temperatures
Hudson et al. The critical current density of filamentary Nb 3 Sn as a function of temperature and magnetic field
Andrianov et al. Superconducting current stability in composite superconductors
JP2658140B2 (en) Liquid level measurement method and apparatus
Hasebe et al. Critical current measurement unit utilizing Bi-based oxide superconducting current leads and cryocoolers
JPH01138423A (en) Liquid volume meter for liquid nitrogen
Moreland et al. Cryogenic bathysphere for rapid variable‐temperature characterization of high‐T c superconductors
Fujita et al. Practical SQUID technique for the precise measurements of transport coefficients
Elmquist et al. High-temperature superconductor cryogenic current comparator
Gömöry et al. Variable temperature insert for ac susceptibility measurements at ac field amplitudes up to 0.1 T
McConnell et al. Variable temperature apparatus using a thermal conductivity measurement technique for the determination of superconducting ac power loss
Tanaka et al. Development of a High-T c SQUID Cryo-System for the Measurement of a Remanent Magnetic Field of Rock
JPH0242321A (en) Liquid level gauge
Schwall et al. Evaluation of layered Nb 3 Sn conductor
Issi et al. The measurement of isothermal galvanomagnetic properties of thermoelectric materials
Hasebe et al. Experimental apparatus for critical current measurement above 5 K using Bi-based oxide current leads