JP4474550B2 - Thermoelectric element characteristic evaluation method - Google Patents

Thermoelectric element characteristic evaluation method Download PDF

Info

Publication number
JP4474550B2
JP4474550B2 JP2005239958A JP2005239958A JP4474550B2 JP 4474550 B2 JP4474550 B2 JP 4474550B2 JP 2005239958 A JP2005239958 A JP 2005239958A JP 2005239958 A JP2005239958 A JP 2005239958A JP 4474550 B2 JP4474550 B2 JP 4474550B2
Authority
JP
Japan
Prior art keywords
thermoelectric element
current
contacts
evaluation method
characteristic evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005239958A
Other languages
Japanese (ja)
Other versions
JP2007059462A (en
JP2007059462A5 (en
Inventor
健一 東崎
カリヤン スー
Original Assignee
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学 filed Critical 国立大学法人 千葉大学
Priority to JP2005239958A priority Critical patent/JP4474550B2/en
Publication of JP2007059462A publication Critical patent/JP2007059462A/en
Publication of JP2007059462A5 publication Critical patent/JP2007059462A5/ja
Application granted granted Critical
Publication of JP4474550B2 publication Critical patent/JP4474550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は熱電素子の特性を評価する方法に関する。   The present invention relates to a method for evaluating characteristics of thermoelectric elements.

熱電素子はCPU等の冷却装置や熱を利用する発電素子として広範に使用されている。素子性能向上のための研究開発や製品の品質検査のために信頼性が高く簡便な評価方法が求められている。また熱流センサーとして熱分析装置に使用されている。   Thermoelectric elements are widely used as cooling devices such as CPUs and power generation elements that use heat. A reliable and simple evaluation method is required for research and development for improving device performance and product quality inspection. It is also used in thermal analyzers as a heat flow sensor.

熱電素子の特性パラメータ(Peltier係数、Seebeck係数、熱抵抗)を決定する従来の技術として、(1)素子に一定の温度差をつけて熱起電力を測定し(Seebeck係数を決定し)、(2)素子に一定の熱流を流した条件で温度差を測定する(熱抵抗の決定)方法がある。   As conventional techniques for determining the thermoelectric element characteristic parameters (Peltier coefficient, Seebeck coefficient, thermal resistance), (1) measuring the thermoelectromotive force with a certain temperature difference between the elements (determining the Seebeck coefficient), ( 2) There is a method of measuring a temperature difference (determination of thermal resistance) under a condition where a constant heat flow is passed through the element.

しかし、この測定方法は安定した条件で行うことが困難であったため、測定者や使用装置によって結果が異なるという大きな問題があった。また、材質自身の特性と実用に供される熱電素子に組み上げた状態での特性が大きく異なるという問題もあった。   However, since this measurement method was difficult to perform under stable conditions, there was a big problem that the results differed depending on the measurer and the device used. In addition, there is a problem that the characteristics of the material itself and the characteristics in a state assembled in a thermoelectric element for practical use are greatly different.

そしてこれに対し上記のような個々の定数ではなく熱電素子の効率係数(通称Z値)を1回の測定で直接求める方法が例えば下記非特許文献1に記載されており、またこの原理を利用する装置も市販されるに至っている。
T.C.Harman、A.Appl.Phys.、29巻、1959年、1373頁
On the other hand, a method for directly obtaining the efficiency factor (commonly known as Z value) of the thermoelectric element instead of the individual constants as described above is described in, for example, Non-Patent Document 1 below, and this principle is used. Devices that do this are also commercially available.
T. T. C. Harman, A.M. Appl. Phys. 29, 1959, 1373

しかしながら、上記非特許文献1に記載の技術では、Pertier係数、Seebeck係数、熱抵抗といった個々の定数が分からないといった課題が依然残っており、熱流センサーの較正に用いることができない。   However, the technique described in Non-Patent Document 1 still has a problem that individual constants such as a Partier coefficient, a Seebeck coefficient, and a thermal resistance still remain, and cannot be used for calibration of a heat flow sensor.

更に上記の方法においては、圧力媒体に周囲を囲まれた高圧下で特性パラメータを決定しようとする場合、より困難となり、結果が大きな誤差を含んでしまうといった課題も生じる。そのため高圧下で使用できる機器は市販されておらず、また、研究レベルの実施例も殆ど無い。   Furthermore, in the above method, when it is attempted to determine the characteristic parameter under a high pressure surrounded by a pressure medium, it becomes more difficult, and there is a problem that the result includes a large error. For this reason, devices that can be used under high pressure are not commercially available, and there are almost no examples at the research level.

そこで、本発明は上記課題を解決し、Pertier係数、Seebeck係数、熱抵抗といった個々の定数を1回の測定で求めることが可能な熱電素子の特性評価方法を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problems and provide a thermoelectric element characteristic evaluation method capable of obtaining individual constants such as a Partier coefficient, a Seebeck coefficient, and a thermal resistance by a single measurement.

即ち上記課題を解決するための手段として、本発明に係る熱電素子の特性評価方法は、熱電素子の二つの接点の一方をほぼ一定温度に保ちながらこの二つの接点の間に交流電流を流すステップ、更に、この二つの接点の間に直流電流を重畳させるステップ、を有する。   That is, as a means for solving the above problems, the method for evaluating characteristics of a thermoelectric element according to the present invention is a step of passing an alternating current between the two contacts while keeping one of the two contacts of the thermoelectric element at a substantially constant temperature. And a step of superimposing a direct current between the two contacts.

また直流電流を重畳させるステップは、交流電流を流すステップの後、前記熱電素子における二つの接点の間の温度差がほぼ定常状態に達した後に行われること、また、直流電流を重畳させるステップは、熱電素子における二つの接点の温度差をほぼ0にすることも望ましい。   Further, the step of superimposing the direct current is performed after the step of flowing the alternating current and after the temperature difference between the two contacts in the thermoelectric element has reached a substantially steady state, and the step of superimposing the direct current is It is also desirable that the temperature difference between the two contacts in the thermoelectric element is substantially zero.

前記熱電素子における二つの接点間の温度差を検出するのに同熱電素子に生ずる熱起電力(ゼーベック効果)を用いる。   A thermoelectromotive force (Seebeck effect) generated in the thermoelectric element is used to detect a temperature difference between two contact points in the thermoelectric element.

また、本発明に係る熱電素子の特性評価方法は、交流電流の電流値をI(A)、前記直流電流の電流値をI(A)、熱電素子の抵抗をR(Ω)、とした場合、下記式(1)によりPeltier係数Πを求めることができる。
Further, the thermoelectric element characteristic evaluation method according to the present invention includes an alternating current value I A (A), a direct current value I D (A), and a thermoelectric element resistance R (Ω). In this case, the Peltier coefficient Π can be obtained by the following equation (1).

また、本発明に係る熱電素子の特性評価方法は、交流電流の電流値をI(A)、前記直流電流の電流値をI(A)、熱電素子の抵抗をR(Ω)、熱電素子における温度をT(K)とした場合、下記式(2)によりSeebeck係数ηを求めることができる。
In addition, the thermoelectric element characteristic evaluation method according to the present invention includes an alternating current value I A (A), a direct current value I D (A), a thermoelectric element resistance R (Ω), and a thermoelectric element resistance value. When the temperature in the element is T (K), the Seebeck coefficient η can be obtained by the following equation (2).

また、本発明に係る熱電素子の特性評価方法は、交流電流の電流値を0とし、前記直流電流の電流値をID(A)、熱電素子の抵抗をR(Ω)、熱電素子における温度をT(K)、定常状態における熱起電力をΔVs(V)とし、Peltier係数をΠとした場合、下記式(3)により熱抵抗ZTを求めることができる。
In the thermoelectric element characteristic evaluation method according to the present invention, the current value of the alternating current is 0, the current value of the direct current is ID (A), the resistance of the thermoelectric element is R (Ω), and the temperature of the thermoelectric element is When T (K), the thermoelectromotive force in the steady state is ΔVs (V), and the Peltier coefficient is Π, the thermal resistance ZT can be obtained by the following equation (3).

また、本発明に係る熱電素子の特性評価方法は、Peltier係数をΠ、熱電素子における温度をT(K)、熱抵抗をZとした場合、下記式(4)により熱流センサーの係数Kを求める請求項1乃至3のいずれかに記載の熱電素子の特性評価方法。
Moreover, the characteristic evaluation method of the thermoelectric device according to the present invention, [pi a Peltier coefficient, the temperature of the thermoelectric element T (K), if the heat resistance was Z T, a coefficient K of the heat flow sensor in accordance with the following formula (4) The thermoelectric element characteristic evaluation method according to any one of claims 1 to 3.

以上により、Pertier係数、Seebeck係数、熱抵抗といった個々の定数を求める熱電素子の特性評価方法を提供することができる。   As described above, it is possible to provide a thermoelectric element characteristic evaluation method for obtaining individual constants such as a Partier coefficient, a Seebeck coefficient, and a thermal resistance.

以下、本発明を実施するための形態について説明する。   Hereinafter, modes for carrying out the present invention will be described.

まず図1に、本発明の利用する原理を説明するための回路図を示す。   First, FIG. 1 shows a circuit diagram for explaining the principle used by the present invention.

図1における回路図において、A、Bは熱電素子の二つの接点を、I、IIは二つの接点A、Bを電気的に接続する腕を、それぞれ示す。なお腕IIは途中で切断されており、切断の端部C、Dにおいて電源1及び第一の電圧計2に接続されている。また、一方の端部Dと電源1との間には抵抗3が配置されており、その抵抗3の両端には更に第二の電圧計4が接続されており、この両端に流れる交流電圧、直流電圧を測定する。なお、電源1は直流電流、交流電流のいずれも流すことが可能であって、この限りにおいて様々なものが使用できる。   In the circuit diagram of FIG. 1, A and B indicate two contacts of the thermoelectric element, and I and II indicate arms that electrically connect the two contacts A and B, respectively. The arm II is cut halfway, and is connected to the power source 1 and the first voltmeter 2 at the cut ends C and D. Further, a resistor 3 is disposed between one end D and the power source 1, and a second voltmeter 4 is further connected to both ends of the resistor 3. Measure DC voltage. The power source 1 can flow either a direct current or an alternating current, and various types can be used as long as this is the case.

本実施形態に係る熱電素子の特性評価方法(以下「本特性評価方法」)は、まず、熱電素子の一方(例えばA)の接点を一定温度に保ちながら交流電流Iを流す。するとジュール発熱によって他方の接点Bの温度が上昇する。そして電流を流した後十分な時間が経過するとこの系が定常状態となり、接点Aと接点Bとの間にはほぼ一定の温度差が生じることとなる。 Characterization methods of the thermoelectric device according to the present embodiment (the "characterization methods") first, while keeping one of the thermoelectric elements contacts (eg A) at a constant temperature to supply an alternating current I A. Then, the temperature of the other contact B rises due to Joule heat generation. When a sufficient time elapses after the current is passed, the system is in a steady state, and a substantially constant temperature difference is generated between the contact A and the contact B.

そして次に、本特性評価方法では、この状態において更に、直流電流Iを重畳させ接点A、Bの間の温度差がほぼ0となるようにIの値を調整する。この温度調整は、Peltier効果による熱輸送により達成される。本特性評価方法では、これらの各段階における物理量を測定することにより、熱電素子の特性評価を行う。 Then, in this characteristic evaluation method, the value of ID is adjusted so that the temperature difference between the contacts A and B is substantially zero by further superimposing the DC current ID in this state. This temperature adjustment is achieved by heat transport by the Peltier effect. In this property evaluation method, the properties of the thermoelectric element are evaluated by measuring physical quantities at each of these stages.

より具体的に説明すると、点A、Bの温度が定常的にほぼ等しい条件ではPeltier効果により輸送した熱量はジュール熱の半分に等しいため、この熱量について計算を行うことによりまず熱電素子のPeltier係数を求めることができる。Peltier効果により輸送した熱量がジュール熱の半分である理由は、接点A、Bの間で発生したジュール熱は接点A、Bの双方に等しく対称に流れているためである。即ち、Peltier係数Πは、以下の式により求めることができる。なおここでI(A)は交流電流の電流値を、I(A)は直流電流の電流値を、Rは熱電素子の抵抗値(Ω)を、それぞれ表す。
More specifically, since the amount of heat transported by the Peltier effect is equal to half of the Joule heat under the condition where the temperatures of the points A and B are steadily substantially equal, the Peltier coefficient of the thermoelectric element is first calculated by calculating this amount of heat. Can be requested. The reason that the amount of heat transported by the Peltier effect is half that of Joule heat is that Joule heat generated between the contacts A and B flows equally and symmetrically in both the contacts A and B. That is, the Peltier coefficient Π can be obtained by the following equation. Here, I A (A) represents the current value of the alternating current, I D (A) represents the current value of the direct current, and R represents the resistance value (Ω) of the thermoelectric element.

そして更に、この求めたPeltier係数に基づき、Seebeck係数ηを求めることができる。Seebeck係数ηは、トムソンの第2関係式により求めることができ、下記式により求めることができる。なおここでTは絶対温度(K)である。
Further, the Seebeck coefficient η can be obtained based on the obtained Peltier coefficient. The Seebeck coefficient η can be obtained from Thomson's second relational expression, and can be obtained from the following expression. Here, T is an absolute temperature (K).

更に、熱電素子の熱抵抗Zは、Zは下記式で定義される。ここで下記ΔT=ΔV/ηで求めることができ、Jは伝導熱流である。特に本実施形態に係る熱電素子の特性評価方法においてはΔVは熱起電力であって交流電流を0とし、直流電流Iのみを流して定常状態にすることにより測定することができる。この結果、接点A、Bの間の熱抵抗Zは、下記式により求めることができる。
Furthermore, the thermal resistance Z T of the thermoelectric element, Z T is defined by the following formula. Here, the following ΔT = ΔV S / η can be obtained, and J N is a conduction heat flow. In particular, in the thermoelectric element characteristic evaluation method according to the present embodiment, ΔV S is a thermoelectromotive force, and can be measured by setting the alternating current to 0 and flowing only the direct current ID to a steady state. As a result, the contact A, the thermal resistance Z T between the B can be obtained by the following equation.

また更に、この熱電素子を熱流JNの熱流センサーとして使用する場合の係数Kは、下記式で定義されるため(式中ΔVは接点A、B間の温度差ΔTによって生じた熱起電力を示す)、結果Kは更に下記式で求めることができる。
Furthermore, since the coefficient K when this thermoelectric element is used as a heat flow sensor for the heat flow JN is defined by the following equation (where ΔV represents the thermoelectromotive force generated by the temperature difference ΔT between the contacts A and B). ) And the result K can be further obtained by the following equation.

このように、本実施形態によると、熱電素子のPertier係数、Seebeck係数、熱抵抗といった個々の定数を求める方法が提供可能となる。特に、この方法においては、加熱機構等の他の構成要素を必要とせず簡易な系とすることができ、測定系における温度差を例えば0.1K以下の小さい値とすることが可能となり、正確な測定が可能となる。もちろん、本法は圧力媒体に周囲を囲まれた圧力容器内においても真空や大気中と同様に適用が可能である。   As described above, according to the present embodiment, it is possible to provide a method for obtaining individual constants such as a Partier coefficient, a Seebeck coefficient, and a thermal resistance of a thermoelectric element. In particular, in this method, it is possible to make a simple system without requiring other components such as a heating mechanism, and the temperature difference in the measurement system can be set to a small value of, for example, 0.1K or less. Measurement is possible. Of course, the present method can also be applied in a pressure vessel surrounded by a pressure medium in the same manner as in vacuum or air.

(実施例)
上記の実施形態の具体的な例について説明する。本実施例では、対数N=31で示される熱電素子TM(Feero Tec Co.9502/031/012、内部抵抗値R:2.723Ω)を用い、この熱電素子の一方は一定温度(T=308.2K)の温度基盤(熱浴)に取り付けた。なおこの温度基盤の温度安定度は1mK以下とした。また、熱電素子の両端の接点に接続する第一の電圧計としてはDVM2(K2000)を、第二の電圧計としてはDVM1(AG3458A)を用い、電源にはAG33120を用いた。なおここで抵抗3は99.85Ωであった。ここで、本実施例で用いた測定系のブロック図を図2に示す。
(Example)
A specific example of the above embodiment will be described. In this example, a thermoelectric element TM (Feero Tec Co. 9502/031/012, internal resistance value R: 2.723 Ω) represented by a logarithm N = 31 is used, and one of the thermoelectric elements has a constant temperature (T = 308). .2K) temperature base (heat bath). The temperature stability of this temperature base was 1 mK or less. In addition, DVM2 (K2000) was used as the first voltmeter connected to the contacts at both ends of the thermoelectric element, DVM1 (AG3458A) was used as the second voltmeter, and AG33120 was used as the power source. Here, the resistance 3 was 99.85Ω. Here, a block diagram of the measurement system used in this example is shown in FIG.

そして図3に、本実施例において直流電流IDを変えて定常熱起電力ΔVSを測定した結果を示す。なおここで交流電流は周波数1kHzで、電流IAの値が41.65mAであった。図3より直流電流IDの値が0.614mAの場合、点A、Bの温度差がほぼ0になっている。   FIG. 3 shows a result of measuring the steady thermoelectromotive force ΔVS by changing the direct current ID in this example. Here, the alternating current had a frequency of 1 kHz and a current IA value of 41.65 mA. From FIG. 3, when the value of the direct current ID is 0.614 mA, the temperature difference between the points A and B is almost zero.

これに基づきPeltier係数Π、Seebeck係数ηを求めたところ、Π=R(I +I )/(2NI)=0.124(W/A)、η=Π/T=0.403mV/Kであった。これらの値は従来の方法で求めたものと一致する。(参考文献:S. Wang, K.Tozaki, H. Hayashi, S. Hosaka and H. Inaba: Thermochimica
Acta, 408 (2003) 31.
Based on this, the Peltier coefficient Π and the Seebeck coefficient η were obtained, and Π = R (I A 2 + I D 2 ) / ( 2 NI D ) = 0.124 (W / A), η = Π / T = 0.403 mV / K. These values agree with those obtained by the conventional method. (Reference: S. Wang, K. Tozaki, H. Hayashi, S. Hosaka and H. Inaba: Thermochimica
Acta, 408 (2003) 31.
)

そして更に、交流電流を0として直流電流IDを0.614mAとし、定常状態に達した場合において熱起電力ΔVsは1.190mVであった。これに基づき熱抵抗ZT、熱流センサーとしての係数Kをそれぞれ求めたところ、ZT=T・ΔVS/(N2Π2ID)=40.3K/W、K=1/(NηZT)=1.984W/Vであった。

Further, when the AC current was 0, the DC current ID was 0.614 mA, and the steady state was reached, the thermoelectromotive force ΔVs was 1.190 mV. Based on this, the thermal resistance ZT and the coefficient K as the heat flow sensor were obtained, respectively. ZT = T · ΔVS / (N2Π2ID) = 40.3 K / W, K = 1 / (NηZT) = 1.984 W / V It was.

以上、本実施例により、Pertier係数、Seebeck係数、熱抵抗といった個々の定数を求める熱電素子の特性評価方法を提供可能であることを確認できた。   As described above, according to this example, it was confirmed that it was possible to provide a method for evaluating the characteristics of thermoelectric elements for obtaining individual constants such as a Partier coefficient, a Seebeck coefficient, and a thermal resistance.

本発明の利用する原理を説明するための回路図。The circuit diagram for demonstrating the principle which this invention utilizes. 実施例における熱電素子の特性評価装置のブロック図。The block diagram of the characteristic evaluation apparatus of the thermoelectric element in an Example. 実施例において直流電流Iを変えて定常熱起電力ΔVを測定した結果を示す図。It shows the results of measurement of the transient thermal electromotive force [Delta] V S by changing the DC current I D in the Examples.

符号の説明Explanation of symbols

1・・・電源、2・・・第一の電圧計、3・・・抵抗、4・・・第2の電圧計
DESCRIPTION OF SYMBOLS 1 ... Power supply, 2 ... 1st voltmeter, 3 ... Resistance, 4 ... 2nd voltmeter

Claims (6)

熱電素子の二つの接点の一方を一定温度に保ちながら前記二つの接点の間に交流電流を流すステップ、更に、前記二つの接点の間に直流電流を重畳させて前記二つの接点の温度差を0にするステップ、を有する熱電素子の特性評価方法。 Two While the step of supplying alternating current between the two contacts while maintaining a constant temperature of contact of the thermoelectric elements, further, the temperature difference between the two contacts by superimposing a DC current between the two contacts A method for evaluating characteristics of a thermoelectric element, comprising: 前記直流電流を重畳させるステップは、前記交流電流を流すステップの後、前記熱電素子における二つの接点の間の温度差が定常状態に達した後に行われることを特徴とする請求項1記載の熱電素子の特性評価方法。 The step of superimposing a direct current, after the step of flowing the alternating current, according to claim 1, wherein the performed after reaching a temperature difference Gajo steady state between the two contacts in the thermoelectric element Thermoelectric element characteristic evaluation method. 前記熱電素子における二つの接点の温度差を検出するのに同熱電素子に生ずるSeebeck効果による熱起電力を用いる請求項1記載の熱電素子の特性評価方法。   The thermoelectric element characteristic evaluation method according to claim 1, wherein a thermoelectromotive force due to a Seebeck effect generated in the thermoelectric element is used to detect a temperature difference between two contact points in the thermoelectric element. 前記交流電流の電流値をI(A)、前記直流電流の電流値をI(A)、熱電素子の抵抗をR(Ω)、とし、下記式(1)によりPeltier係数Πを求める請求項1記載の熱電素子の特性評価方法。
I A (A) a current value of the alternating current, the current value I D of the DC current (A), the resistance of the thermoelectric element R (Omega), and then obtains the Peltier coefficient Π by the following formula (1) The thermoelectric element characteristic evaluation method according to claim 1 .
前記交流電流の電流値をI(A)、前記直流電流の電流値をI(A)、熱電素子の抵抗をR(Ω)、熱電素子における絶対温度をT(K)とし、下記式(2)によりSeebeck係数ηを求める請求項1に記載の熱電素子の特性評価方法。
The current value I A of the alternating current (A), the current value I D of the DC current (A), the resistance of the thermoelectric element and R (Ω), the absolute temperature in the thermoelectric element T (K), the following The method for evaluating characteristics of a thermoelectric element according to claim 1 , wherein the Seebeck coefficient η is obtained from the equation (2).
前記二つの接点の間に直流電流を重畳させて前記二つの接点の温度差を0にするステップの後、交流電流の電流値を0にし、前記熱電素子における絶対温度をT(K)、定常状態における熱起電力をΔVs(V)とし、下記式(3)により熱抵抗Zを求める請求項4記載の熱電素子の特性評価方法。
After the step of superimposing a direct current between the two contacts to make the temperature difference between the two contacts zero, the current value of the alternating current is made zero, the absolute temperature in the thermoelectric element is T (K), and the steady state the thermoelectromotive force in the state as .DELTA.Vs (V), characteristic evaluation method of the thermoelectric device according to claim 4, wherein determining the thermal resistance Z T by the following equation (3).
JP2005239958A 2005-08-22 2005-08-22 Thermoelectric element characteristic evaluation method Active JP4474550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239958A JP4474550B2 (en) 2005-08-22 2005-08-22 Thermoelectric element characteristic evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239958A JP4474550B2 (en) 2005-08-22 2005-08-22 Thermoelectric element characteristic evaluation method

Publications (3)

Publication Number Publication Date
JP2007059462A JP2007059462A (en) 2007-03-08
JP2007059462A5 JP2007059462A5 (en) 2007-04-19
JP4474550B2 true JP4474550B2 (en) 2010-06-09

Family

ID=37922714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239958A Active JP4474550B2 (en) 2005-08-22 2005-08-22 Thermoelectric element characteristic evaluation method

Country Status (1)

Country Link
JP (1) JP4474550B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467407B (en) * 2011-06-30 2015-01-01 Nat Univ Chin Yi Technology Method of computing coefficient of performance, refrigerating capacity and error of thermoelectric cooling chip
KR101230492B1 (en) * 2011-09-09 2013-02-06 한국표준과학연구원 System and method for controlling temperature in thermoelectric element evaluation apparatus
CN103871792B (en) * 2012-12-10 2017-05-17 施耐德电器工业公司 Direct current thermomagnetic release device and method for reducing temperature rise of terminal of the device
US10088439B2 (en) 2013-08-22 2018-10-02 National Institute Of Advanced Industrial Science And Technology Thermophysical property measurement method and thermophysical property measurement apparatus
US10247685B2 (en) * 2016-01-28 2019-04-02 Korea Institute Of Energy Research High-temperature structure for measuring properties of curved thermoelectric device, and system and method for measuring properties of curved thermoelectric device using the same

Also Published As

Publication number Publication date
JP2007059462A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
Wilson et al. Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3 ω mode and novel calibration strategies
JP5062753B2 (en) Method and apparatus for measuring the Seebeck coefficient and thermal conductivity of thin film samples
CN103105412B (en) Gas sensor and method for determining a concentration of gas in a two-component mixture
De Boor et al. Complete characterization of thermoelectric materials by a combined van der Pauw approach
JP4474550B2 (en) Thermoelectric element characteristic evaluation method
Rauscher et al. Efficiency determination and general characterization of thermoelectric generators using an absolute measurement of the heat flow
KR20150053488A (en) thermoelectric conductivity measurement instrument of thermoelectric device and measuring method of the same
JP2011185697A (en) Thermoelectric material evaluation device and thermoelectric characteristic evaluation method
US10088439B2 (en) Thermophysical property measurement method and thermophysical property measurement apparatus
Barako et al. A reliability study with infrared imaging of thermoelectric modules under thermal cycling
CN109613051B (en) Device and method for measuring Seebeck coefficient of material by using contrast method
RU2577389C1 (en) Method of calibrating thermoelectric heat flux sensors
JP4982766B2 (en) Sensor for thermoelectric property measurement
JP7046099B2 (en) A device for measuring the velocity or flow rate of gas
CN105785102B (en) Thermoelectrical potential measuring circuit, platform and the method for minute yardstick sample
WO1996018871A1 (en) Temperature sensor system using thin film of microcrystalline semiconductor
US6727709B2 (en) Vacuum gauge using peltier tip
JP2007178218A (en) Thermal resistance measuring instrument
Iwasaki et al. Evaluation of the figure of merit of thermoelectric modules by harman method
JP3468300B2 (en) Method and apparatus for measuring thermal and electrical properties of thin film thermoelectric materials
Garrido Peltier’s and Thomson’s coefficients of thermoelectric phenomena in the observable formulation
CN102455224B (en) Thermocouples with two tabs spaced apart along a transverse axis and methods
CN110375870A (en) Surface temperature measurement method based on thermoelectric effect
JP2006040989A (en) Thermoelectric characteristic measuring apparatus for semiconductor element
JPH09222403A (en) Measuring apparatus for physical property value

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150