JP2006040989A - Thermoelectric characteristic measuring apparatus for semiconductor element - Google Patents

Thermoelectric characteristic measuring apparatus for semiconductor element Download PDF

Info

Publication number
JP2006040989A
JP2006040989A JP2004215160A JP2004215160A JP2006040989A JP 2006040989 A JP2006040989 A JP 2006040989A JP 2004215160 A JP2004215160 A JP 2004215160A JP 2004215160 A JP2004215160 A JP 2004215160A JP 2006040989 A JP2006040989 A JP 2006040989A
Authority
JP
Japan
Prior art keywords
temperature
sample
thermoelectric
thermoelectric element
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004215160A
Other languages
Japanese (ja)
Inventor
Shinichi Fujimoto
慎一 藤本
Toshitaka Kurosawa
利崇 黒沢
Hiromasa Umibe
宏昌 海部
Seijiro Sano
精二郎 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2004215160A priority Critical patent/JP2006040989A/en
Publication of JP2006040989A publication Critical patent/JP2006040989A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To allow measurements to be done in a temperature zone removed from the room temperature in a thermoelectric characteristic measuring apparatus which is so structured as to measure a plurality of thermoelectric characteristics including Seebeck coefficient, electric resistivity, and thermal conductivity by causing DC current to flow in a thermoelement. <P>SOLUTION: The thermoelectric characteristic measuring apparatus comprises: a heat reflector 18 which surrounds an internal space 19 wherein the thermoelement 16 is stored to which a current line 30 and a thermo-couple 36 are connected, and which reflects the radiant heat from the thermoelement 16 into the internal space 19; a means for controlling the heat reflector 18 to nearly the same temperature as that of the thermoelement 16; and a means for controlling the current line 30 and thermo-couple 36 to nearly the same temperature as that of the thermoelement 16. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,熱電発電などの熱電変換の用途に用いられる半導体素子(以下,熱電素子という)がもつ熱電特性を測定するための装置に関する。   The present invention relates to an apparatus for measuring thermoelectric properties of a semiconductor element (hereinafter referred to as a thermoelectric element) used for thermoelectric conversion such as thermoelectric power generation.

非特許文献1にあるように,熱電素子に電流を流したときの熱電素子の温度を測ることにより熱電素子の複数項目の熱電特性,例えばゼーベック係数,電気抵抗率及び熱伝導率を測定する方法が知られており,その一つとして,例えば「トランジェント(Transient)法」と呼ばれる方法が知られている。「トランジェント法」を用いた測定装置は,熱電素子に直流電流を流し,熱電素子の両端部にかかる電圧と素子両端の温度差を計測し,これに基づいて,ゼーベック係数,電気抵抗率及び熱伝導率といった複数項目の熱電特性を同時的に求める。この装置では,熱電素子の両端部又は一端部に,熱電対や電流印加のための電線又は電極が取り付けられ,そして,室温付近の温度領域で測定が行なわれる。
Richard J. Buist, CRC Handbook of Thermoelectrics,Ed. Rowe, 1995, CRC press, inc. Chapter 18
As described in Non-Patent Document 1, a method of measuring thermoelectric characteristics of a plurality of items of a thermoelectric element, such as Seebeck coefficient, electrical resistivity, and thermal conductivity, by measuring the temperature of the thermoelectric element when a current is passed through the thermoelectric element As one of them, for example, a method called “transient method” is known. A measuring device using the “transient method” applies a direct current to a thermoelectric element, measures the voltage applied to both ends of the thermoelectric element, and the temperature difference between both ends of the element, and based on this, the Seebeck coefficient, electrical resistivity, and thermal resistance are measured. The thermoelectric characteristics of multiple items such as conductivity are obtained simultaneously. In this device, thermocouples and electric wires or electrodes for applying current are attached to both ends or one end of the thermoelectric element, and measurement is performed in a temperature region near room temperature.
Richard J. Buist, CRC Handbook of Thermoelectrics, Ed. Rowe, 1995, CRC press, inc. Chapter 18

熱電素子が例えば熱電発電に用いられる場合,室温よりも高い温度領域での熱電特性が解析される必要がある。例えば,室温から摂氏300度程度までの温度領域の熱電特性が測定されることが要求される。   When a thermoelectric element is used for thermoelectric power generation, for example, it is necessary to analyze thermoelectric characteristics in a temperature region higher than room temperature. For example, it is required to measure thermoelectric characteristics in a temperature range from room temperature to about 300 degrees Celsius.

しかし,上述した,熱電素子に直流電流を流してゼーベック係数,電気抵抗率及び熱伝導率などの複数項目の熱電特性を測定するように構成された従来の熱電特性測定装置では,室温より離れた温度領域での熱電特性の測定が困難である。その理由は,熱電素子と周囲環境との間に余計な熱流が発生し,この熱流が特性測定を妨害するからである。測定温度が室温から離れるほど,熱電素子と周囲環境との間の温度差が大きくなるので,余計な熱流が大きくなり,正確な測定をますます困難にする。   However, in the conventional thermoelectric characteristic measuring apparatus configured to measure the thermoelectric characteristics of multiple items such as Seebeck coefficient, electrical resistivity, and thermal conductivity by passing a direct current through the thermoelectric element as described above, it is far from room temperature. It is difficult to measure thermoelectric properties in the temperature range. The reason is that an extra heat flow is generated between the thermoelectric element and the surrounding environment, and this heat flow interferes with the characteristic measurement. The farther the measurement temperature is from the room temperature, the greater the temperature difference between the thermoelectric element and the surrounding environment, which increases the excess heat flow and makes accurate measurement more and more difficult.

従って,本発明の目的は,熱電素子に直流電流を流してゼーベック係数,電気抵抗率及び熱伝導率などの複数項目の熱電特性を測定するように構成された熱電特性測定装置において,室温より離れた温度領域での熱電特性の測定を可能にすることにある。   Accordingly, an object of the present invention is to provide a thermoelectric characteristic measuring apparatus configured to measure a plurality of items of thermoelectric characteristics such as Seebeck coefficient, electrical resistivity, and thermal conductivity by passing a direct current through the thermoelectric element. It is to enable measurement of thermoelectric characteristics in a certain temperature range.

本発明に従う,熱電素子に直流電流を流したときの前記熱電素子の温度を測ることにより,前記熱電素子の熱電特性を測定する装置は,前記直流電流を流すための電流線及び前記温度を測るための熱電対が取り付けられた熱電素子が収容される内側空間を囲み,前記熱電素子からの輻射熱を前記内側空間へ反射する熱リフレクタを備えている。   According to the present invention, the apparatus for measuring the thermoelectric characteristics of the thermoelectric element by measuring the temperature of the thermoelectric element when a direct current is passed through the thermoelectric element measures the current line for passing the direct current and the temperature. And a thermal reflector that surrounds an inner space in which a thermoelectric element to which a thermocouple is attached is received and reflects radiant heat from the thermoelectric element to the inner space.

好適な実施形態では,前記熱リフレクタの温度を前記熱電素子とほぼ同等の温度になるように制御する熱リフレクタ温度制御手段が更に設けられる。   In a preferred embodiment, thermal reflector temperature control means is further provided for controlling the temperature of the thermal reflector so as to be substantially equal to the temperature of the thermoelectric element.

本発明の別の観点に従う,熱電素子に直流電流を流したときの前記熱電素子の温度を測ることにより,前記熱電素子の熱電特性を測定する装置は,前記熱電素子に直流電流を流すための電流線及び前記熱電素子の温度を測るための熱電対に結合され,前記電流線及び前記熱電対の温度を前記熱電素子とほぼ同等の温度になるように制御する電線温度制御手段を備える。   According to another aspect of the present invention, an apparatus for measuring the thermoelectric characteristics of the thermoelectric element by measuring the temperature of the thermoelectric element when a direct current is passed through the thermoelectric element is provided for passing a direct current through the thermoelectric element. Wire temperature control means is provided that is coupled to a thermocouple for measuring the temperature of the current line and the thermoelectric element, and controls the temperature of the current line and the thermocouple to be substantially equal to that of the thermoelectric element.

本発明の熱リフレクタを備えた熱電特性測定装置によれば,室温より離れた温度領域であっても,熱リフレクタが熱電素子からの輻射熱を反射して内部空間へ戻すため,熱電素子の実効輻射率が低減し,熱電素子と周囲環境との間の熱流が抑制されるので,測定の精度が向上する。   According to the thermoelectric characteristic measuring apparatus having the thermal reflector of the present invention, the thermal reflector reflects the radiant heat from the thermoelectric element and returns it to the internal space even in a temperature range away from room temperature. The rate is reduced and the heat flow between the thermoelectric element and the surrounding environment is suppressed, improving the accuracy of the measurement.

また,熱リフレクタ温度制御手段が更に設けられた場合には,熱電素子と周囲環境との間の熱流がさらに効果的に抑制されるので,測定の精度がより向上する。   Further, when the heat reflector temperature control means is further provided, the heat flow between the thermoelectric element and the surrounding environment is further effectively suppressed, so that the measurement accuracy is further improved.

本発明の電線温度制御手段を備えた熱電特性測定装置によれば,室温より離れた温度領域であっても,電線温度制御手段が熱電素子に接続された電流線や熱電対の温度を熱電素子の温度とほぼ同等になるように制御するので,電流線や熱電対を通じて流れる熱電素子と周囲環境との間の熱流が抑制されるので,測定の精度がより向上する。   According to the thermoelectric characteristic measuring apparatus having the electric wire temperature control means of the present invention, the temperature of the current line or thermocouple connected to the thermoelectric element by the electric wire temperature control means can be adjusted even in a temperature region away from room temperature. Since the temperature is controlled to be almost equal to the temperature of the current, the heat flow between the thermoelectric element flowing through the current line or thermocouple and the surrounding environment is suppressed, so that the measurement accuracy is further improved.

図1は,本発明の一実施形態に従う熱電特性測定装置の全体構造を示す。   FIG. 1 shows the overall structure of a thermoelectric characteristic measuring apparatus according to an embodiment of the present invention.

図1に示すように,ヒータブロック10上に,板状の熱アンカ12が置かれ,この熱アンカ12上に,板状の試料ホルダ14が置かれ,この試料ホルダ14の表面上の中央部に熱電素子の試料16が固定される。試料16は,例えばn型Bi2Te3のような熱電変換機能をもつ半導体のブロックである。ヒータブロック10と熱アンカ12と試料ホルダ14は,間に隙間ができないよう密着している。 As shown in FIG. 1, a plate-like thermal anchor 12 is placed on the heater block 10, and a plate-like sample holder 14 is placed on the thermal anchor 12, and a central portion on the surface of the sample holder 14 is placed. A thermoelectric element sample 16 is fixed to the surface. The sample 16 is a semiconductor block having a thermoelectric conversion function such as n-type Bi 2 Te 3 . The heater block 10, the thermal anchor 12, and the sample holder 14 are in close contact so that there is no gap between them.

ヒータブロック10は,図示しない制御装置により駆動され,試料ホルダ14が所定の設定温度になるように,その加熱量が制御される。熱アンカ12は,Al2O3又はAlNのような熱伝導性の良好な電気絶縁材料製の部品であって,試料16に接続された電流線30及び熱電対36の温度を試料16と同等にする役目をもつとともに,電流線30と熱電対36をそれぞれ電気的に絶縁し,かつ,試料ホルダ14と電流線30との間の電気的絶縁,及び試料ホルダ14と熱電対36との間の電気的絶縁を行う。ヒータブロック10と熱アンカ12と試料ホルダ14は,間に隙間ができないよう密着状態で結合されており,これらの部品間の熱伝達は良好である。 The heater block 10 is driven by a control device (not shown), and the amount of heating is controlled so that the sample holder 14 has a predetermined set temperature. The thermal anchor 12 is a part made of an electrically insulating material having good thermal conductivity such as Al 2 O 3 or AlN, and the temperature of the current wire 30 and the thermocouple 36 connected to the sample 16 is equal to that of the sample 16. The current line 30 and the thermocouple 36 are electrically insulated from each other, and the electrical insulation between the sample holder 14 and the current line 30 and between the sample holder 14 and the thermocouple 36 are performed. Electrical insulation is performed. The heater block 10, the thermal anchor 12 and the sample holder 14 are coupled in close contact so that there is no gap between them, and heat transfer between these components is good.

試料ホルダ14は,例えば銅又はアルミニウムのような熱伝導性と電気伝導性の良好な金属製の板である。試料ホルダ14の表面は,光沢が出るよう平坦に加工され,例えばニッケルのような赤外線の反射率の良い金属でめっきされる。試料ホルダ14のニッケルめっきされた表面に,試料16の下端面が半田付け,蝋付け又はその他の電気的及び熱的に界面抵抗の低い冶金的方法で接合される。試料ホルダ14と試料16は電気的及び熱的に良好な導通状態にある。試料ホルダ14の表面のニッケルでめっき層は,試料16からの輻射熱(赤外線)を高い反射率で反射して試料16の実効輻射率を低減する役目と,試料ホルダ14の基材(例えば銅)が試料16に拡散することを防止する役目とを持つ。   The sample holder 14 is a metal plate having good thermal conductivity and electrical conductivity, such as copper or aluminum. The surface of the sample holder 14 is processed so as to be glossy and is plated with a metal having a good infrared reflectance such as nickel. The lower end surface of the sample 16 is joined to the nickel-plated surface of the sample holder 14 by soldering, brazing, or other metallurgical method with low electrical and thermal interface resistance. The sample holder 14 and the sample 16 are in good electrical and thermal conduction. The nickel plating layer on the surface of the sample holder 14 serves to reduce the effective radiation rate of the sample 16 by reflecting the radiant heat (infrared rays) from the sample 16 with a high reflectance, and the base material (for example, copper) of the sample holder 14 Has a function of preventing the sample 16 from diffusing into the sample 16.

試料ホルダ14の表面上の試料16の近傍の2箇所に,測定用の直流電流を流すための電流線20と,試料ホルダ14の温度(実質的に試料16の下端温度)を測定するための熱電対24が,それぞれ半田22,26(又は蝋付けなどの電気的及び熱的に界面抵抗の低い冶金的方法)により接着される。   For measuring the temperature of the sample holder 14 (substantially the lower end temperature of the sample 16) and a current line 20 for passing a direct current for measurement at two locations in the vicinity of the sample 16 on the surface of the sample holder 14 Thermocouples 24 are bonded by solders 22 and 26 (or metallurgical methods with low electrical and thermal interface resistance such as brazing), respectively.

試料16の上端面には,電極片28が接合され,この電極片28も,試料ホルダ14と同様,例えばニッケルめっきされた銅又はアルミニウムの小板である。この電極片28の上面の2箇所に,測定電流を流すための電流線30と,電極板28の温度(実質的に試料16の上端温度)を測定するための熱電対36が,それぞれ半田32,38(又は蝋付けなどの電気的及び熱的に界面抵抗の低い冶金的方法)により接着される。   An electrode piece 28 is joined to the upper end surface of the sample 16, and the electrode piece 28 is a small plate of copper or aluminum plated with nickel, for example, like the sample holder 14. A current line 30 for passing a measurement current and a thermocouple 36 for measuring the temperature of the electrode plate 28 (substantially the upper end temperature of the sample 16) are soldered to two locations on the upper surface of the electrode piece 28, respectively. , 38 (or a metallurgical method having low interface resistance electrically and thermally such as brazing).

試料ホルダ14上に,箱型の熱リフレクタ18が被せられ,熱リフレクタ18によって囲まれた内部空間19内に,試料16やその周辺の熱電対や電流線20,30及び熱電対24,36が収容される。熱リフレクタ18は,例えば銅又はアルミニウムのような熱伝導性の良好な金属製の板である。熱リフレクタ18の表面(特に内部空間19に露呈する内面)は,光沢がでるよう平坦に加工され,例えばニッケルのような赤外線の反射率の良い材料でめっきされる。或いは,熱リフレクタ18は,例えばステンレス鋼のようにそれ自体が赤外線の反射率の高い材料で作られ,その内面は光沢が出るよう平坦に加工される。熱リフレクタ18の下端面は,試料ホルダ14の上面に間に隙間ができないよう密着状態で結合されており,両者間の熱伝導性は良好である。熱リフレクタ18は,試料16からの輻射熱(赤外線)を高い反射率で反射して内側空間19へ返し,それにより試料16の実効輻射率を低減する役目をもつ。熱リフレクタ18の内側空間19は,図示しない真空ポンプにより,10−2以下の真空状態にされる。また,熱リフレクタ18の一部分には貫通孔(図示せず)が設けられ,内部空間19内の電流線20,30及び熱電対24,36がその貫通孔を通って熱リフレクタ18の外部へ引き出されて,図示しない信号処理装置へ接続される。電流線20,30の通過孔は電気絶縁され,熱電対24,36の通過孔は極力小さくされる。 A box-shaped heat reflector 18 is placed on the sample holder 14, and the sample 16 and its surrounding thermocouples, current wires 20 and 30, and thermocouples 24 and 36 are placed in an internal space 19 surrounded by the heat reflector 18. Be contained. The heat reflector 18 is a metal plate having good thermal conductivity such as copper or aluminum. The surface of the heat reflector 18 (in particular, the inner surface exposed to the internal space 19) is processed to be glossy and is plated with a material having good infrared reflectance such as nickel. Alternatively, the heat reflector 18 is made of a material having high infrared reflectance, such as stainless steel, and the inner surface thereof is processed to be glossy. The lower end surface of the thermal reflector 18 is coupled in a close contact state so that there is no gap between the upper surface of the sample holder 14, and the thermal conductivity between the two is good. The thermal reflector 18 has a function of reflecting the radiant heat (infrared ray) from the sample 16 with a high reflectance and returning it to the inner space 19, thereby reducing the effective radiation rate of the sample 16. The inner space 19 of the heat reflector 18 is brought into a vacuum state of 10 −2 or less by a vacuum pump (not shown). In addition, a through hole (not shown) is provided in a part of the heat reflector 18, and the current lines 20 and 30 and the thermocouples 24 and 36 in the internal space 19 are drawn out of the heat reflector 18 through the through hole. And connected to a signal processing device (not shown). The passage holes of the current lines 20 and 30 are electrically insulated, and the passage holes of the thermocouples 24 and 36 are made as small as possible.

試料16の上端部の電極片28に接続されている電流線30と熱電対36は,その熱リフレクタ18外へ引き出された部分の途中箇所に,熱伝導性の良い材料で作られた熱アンカ圧着端子40,42,44を有している。この熱アンカ圧着端子40,42,44は,例えば螺子により,熱アンカ12に密着状態で結合されており,それにより,熱アンカ12と電流線30及び熱電対36との間の熱伝導性が良好になっている。   The current line 30 and the thermocouple 36 connected to the electrode piece 28 at the upper end of the sample 16 are a thermal anchor made of a material having a good thermal conductivity at the midpoint of the portion drawn out of the thermal reflector 18. Crimp terminals 40, 42, 44 are provided. The thermal anchor crimp terminals 40, 42, and 44 are connected to the thermal anchor 12 in close contact with, for example, screws, so that the thermal conductivity between the thermal anchor 12, the current line 30, and the thermocouple 36 is improved. It is getting better.

以上の構成の測定装置において,試料16の熱電特性の測定は,図示しない信号処理装置により,熱電素子に直流電流を流して行う方法(例えばトランジェント法)を用いて概略次の処理手順で行なわれる。   In the measuring apparatus configured as described above, the thermoelectric characteristics of the sample 16 are measured by a signal processing apparatus (not shown) using a method in which a direct current is passed through the thermoelectric element (for example, a transient method) according to the following processing procedure. .

試料16の均熱を確保した状態で,試料16の上端部の電流印加前後の温度差が数度程度になるような大きさの直流電流を試料16に印加する。その後,試料16の温度分布が安定したところで電流を遮断する。電流遮断直前の試料16の上下端の温度,電流遮断直後の試料16上下端の電圧変化を観測し,最初に試料16の電気抵抗率,ゼーベック係数を算出する。その後,印加した電流,試料16の上下端の温度差,試料16の平均温度,ゼーベック係数の値から,熱伝導率と性能指数を求める。   In a state where the soaking of the sample 16 is ensured, a direct current of such a magnitude that the temperature difference before and after the current application at the upper end of the sample 16 is about several degrees is applied to the sample 16. Thereafter, the current is cut off when the temperature distribution of the sample 16 is stabilized. The temperature at the upper and lower ends of the sample 16 immediately before the current interruption and the voltage change at the upper and lower ends of the sample 16 immediately after the current interruption are observed. First, the electrical resistivity and Seebeck coefficient of the sample 16 are calculated. Thereafter, the thermal conductivity and the figure of merit are obtained from the applied current, the temperature difference between the upper and lower ends of the sample 16, the average temperature of the sample 16, and the value of the Seebeck coefficient.

試料16の外部環境に対する熱の流出,流入が全く無いときは,無次元性能指数は,ハーマン法による公知の方程式(後述)により求めることが出来る。しかし,試料16の温度を室温以上又は以下の温度に設定した場合,実際には外部環境に対する熱の流出,流入を零にすることは不可能である。そのため,無次元性能指数の方程式から求めた性能指数,更に,先の計算で求めた電気抵抗率とゼーベック係数を用いて逆算した熱伝導率を初期値として解析計算を行い,より正確な熱伝導率,性能指数を求める。その計算方法の詳細は後に説明する。以上の測定を,試料16の温度を各設定温度にした状態で行うことで,試料16の温度毎の熱電性能を評価することができる。   When there is no heat outflow or inflow to the external environment of the sample 16, the dimensionless figure of merit can be obtained by a well-known equation (described later) by the Herman method. However, when the temperature of the sample 16 is set to a temperature equal to or higher than room temperature, it is actually impossible to make the outflow and inflow of heat to the external environment zero. Therefore, the performance index obtained from the equation of dimensionless figure of merit, and the thermal conductivity calculated back using the electrical resistivity and Seebeck coefficient obtained in the previous calculation are used as the initial values for analytical calculation, and more accurate heat conduction Obtain the rate and performance index. Details of the calculation method will be described later. By performing the above measurement in a state where the temperature of the sample 16 is set to each set temperature, the thermoelectric performance for each temperature of the sample 16 can be evaluated.

上述した測定において,試料16の熱伝導率は,ペルチェ吸熱とジュール熱と外部から流出入した熱の総和を試料16の上下端の温度差で割れば求められる。試料16の外部環境に対して流出入する熱は,試料16の上端の温度だけの関数に書き直すことが出来る。外部環境に対して流出入する熱の主な要因は試料16の熱輻射,試料16の上端に付けた電流線30及び熱電対36による熱伝導,大気による熱伝導,大気の対流による熱流である。これらの値は小さければ小さいほどより正確な測定が出来る。   In the measurement described above, the thermal conductivity of the sample 16 can be obtained by dividing the sum of Peltier heat absorption, Joule heat, and heat flowing in / out from the outside by the temperature difference between the upper and lower ends of the sample 16. The heat flowing into and out of the external environment of the sample 16 can be rewritten as a function of only the temperature at the upper end of the sample 16. The main factors of heat flowing into and out of the external environment are heat radiation of the sample 16, heat conduction by the current line 30 and the thermocouple 36 attached to the upper end of the sample 16, heat conduction by the atmosphere, and heat flow by the convection of the atmosphere. . The smaller these values are, the more accurate measurement can be made.

この測定装置では,試料16が真空中に設置されるため,まず,大気による熱伝導と,大気の対流による熱流を無視できる。次に,電流線30及び熱電対36による熱伝導は,電流線30及び熱電対36を細長くすることにより低減できるが,電流線30及び熱電対36に発生するジュール熱やノイズの少ない温度測定をすることを考慮すると,電流線30及び熱電対36を細長くするには限度がある。そこで,この測定装置では,電流線30及び熱電対36の中継地点が,試料ホルダ14とヒータブロック10の間に挿入された熱伝導性の良い熱アンカに結合されて,試料16とほぼ同等の温度にまで加熱される。それにより,設定温度が室温以上であっても以下であっても,電流線30及び熱電対36からの熱の流出入が極力小さく抑制される。電流線30及び熱電対36の熱伝導率は,その材質とサイズから比較的正確に見積もることが出来るため,電流線30及び熱電対36に起因する測定誤差を大幅に低減させることができる。   In this measuring apparatus, since the sample 16 is placed in a vacuum, first, heat conduction by the atmosphere and heat flow by the convection of the atmosphere can be ignored. Next, although heat conduction by the current line 30 and the thermocouple 36 can be reduced by making the current line 30 and the thermocouple 36 elongated, temperature measurement with less Joule heat and noise generated in the current line 30 and the thermocouple 36 can be performed. Therefore, there is a limit to make the current line 30 and the thermocouple 36 elongated. Therefore, in this measuring apparatus, the relay point of the current line 30 and the thermocouple 36 is coupled to a thermal anchor having good thermal conductivity inserted between the sample holder 14 and the heater block 10, and is almost equivalent to the sample 16. Heated to temperature. As a result, the inflow and outflow of heat from the current line 30 and the thermocouple 36 is suppressed as much as possible regardless of whether the set temperature is room temperature or higher. Since the thermal conductivity of the current line 30 and the thermocouple 36 can be estimated relatively accurately from the material and size thereof, measurement errors caused by the current line 30 and the thermocouple 36 can be greatly reduced.

最後に,最も大きな不確定要因になるのは試料16の実効輻射率であり,この値を出来るだけ小さく抑え,且つ正確に求めることにより,より正確な熱伝導率を見積もることが出来る。そこで,この測定装置では,試料16の周りにこれを包囲するように輻射熱を内方へ反射する熱リフレクタ18が配置され,熱リフレクタ18が試料16下部の試料ホルダ14に密着して試料16とほぼ同じ温度に保持されて,試料16からの輻射熱を反射して試料16の側へ戻す。それにより,設定温度が室温以上であっても以下であっても,試料16の実効的な輻射率が低減される。   Finally, the largest uncertain factor is the effective emissivity of the sample 16, and it is possible to estimate the heat conductivity more accurately by keeping this value as small as possible and obtaining it accurately. Therefore, in this measuring apparatus, a heat reflector 18 that reflects radiant heat inward is disposed around the sample 16 so as to surround the sample 16, and the heat reflector 18 is in close contact with the sample holder 14 below the sample 16 and While being held at substantially the same temperature, the radiant heat from the sample 16 is reflected and returned to the sample 16 side. Thereby, the effective emissivity of the sample 16 is reduced regardless of whether the set temperature is room temperature or higher.

実際,この測定装置における試料16の実効的な輻射率を算出してみたところ,図2に示すように摂氏100度から300度程度の室温よりかなり高い温度領域においてさえ,実効輻射率は0.15程度の非常に低いものであることが確認された。   Actually, when the effective emissivity of the sample 16 in this measuring apparatus was calculated, as shown in FIG. 2, even in a temperature range considerably higher than room temperature of about 100 to 300 degrees Celsius, the effective emissivity is 0. It was confirmed that it was very low of about 15.

従って,この測定装置によれば,室温から大きく外れた温度範囲において熱電素子の性能をより精度良く評価することが可能である。また,単体の熱電素子のみでなく,複数の熱電素子から構成される熱電モジュールの性能評価も可能である。   Therefore, according to this measuring apparatus, it is possible to evaluate the performance of the thermoelectric element with higher accuracy in a temperature range far from room temperature. Moreover, not only a single thermoelectric element but also a performance evaluation of a thermoelectric module composed of a plurality of thermoelectric elements is possible.

なお,上述した実施形態では,熱リフレクタ18の温度を試料16とほぼ同等の温度にするために,熱リフレクタ18の下端面を試料ホルダ14に結合させている。変形例として,この構成に加えて,熱リフレクタ18の上面へヒータを導入し,熱リフレクタ18の均熱性を向上させるようにしてもよい。また,別の変形例として,電流線30及び熱電対36の温度を試料16とほぼ同等の温度にするための熱アンカ12は,ヒータブロック10と試料ホルダ14との間に配置される必要は必ずしもなく,別の場所に配置されてもよい。   In the embodiment described above, the lower end surface of the heat reflector 18 is coupled to the sample holder 14 in order to make the temperature of the heat reflector 18 substantially equal to that of the sample 16. As a modified example, in addition to this configuration, a heater may be introduced on the upper surface of the heat reflector 18 to improve the thermal uniformity of the heat reflector 18. As another modification, the thermal anchor 12 for setting the temperature of the current line 30 and the thermocouple 36 to substantially the same temperature as that of the sample 16 needs to be arranged between the heater block 10 and the sample holder 14. Not necessarily, but may be arranged in another location.

最後に,この測定装置で採用され得る,トランジェント法による熱電特性の測定処理の具体的な計算を説明する。   Finally, the specific calculation of the measurement process of thermoelectric characteristics by the transient method that can be employed in this measuring apparatus will be described.

図3は,試料を流れる熱流の模式図である。   FIG. 3 is a schematic diagram of the heat flow flowing through the sample.

図3Aにおいて,試料16の上部(低温Tc側) の吸熱量(Qc)と,試料16の下部(高温Th側)の放熱量(Qh)は,それぞれ次の式で表される。 In FIG. 3A, the heat absorption amount (Q c ) at the upper part (low temperature T c side) of the sample 16 and the heat dissipation amount (Q h ) at the lower part (high temperature T h side) of the sample 16 are respectively expressed by the following equations. .

Qc=αTcI−RI2/2−K(Th−Tc) ・・・式1
Qh=αThI+RI2/2−K(Th−Tc) ・・・式2
ここに,Kは熱コンダクタンス,
Iは試料16を流れる電流であり,
式1+式2より
Qc+Qh=α(Tc+ Th)I−2K(Th−Tc) ・・・式3
となる。
Q c = αT c I−RI 2 / 2−K (T h −T c ) Equation 1
Q h = αT h I + RI 2 / 2−K (T h −T c ) Equation 2
Where K is the thermal conductance,
I is the current flowing through the sample 16,
From Formula 1 + Formula 2
Q c + Q h = α (T c + T h ) I−2K (T h −T c ) Equation 3
It becomes.

次に,電流の方向を図3Bのように反転した場合を考えると,試料16の下部(低温Tc’側) の吸熱量(Qc’)と,試料16の上部(高温Th’側)の放熱量(Qh’)は,それぞれ次の式で表される。 Next, considering the case where the direction of the current is reversed as shown in FIG. 3B, the endothermic amount (Q c ') of the lower part of the sample 16 (low temperature T c ' side) and the upper part of the sample 16 (high temperature T h 'side). ) (Q h ') is expressed by the following formula.

Qc’=αTc’I’−RI’2/2−K(Th’−Tc’) ・・・式4
Qh’=αTh’I’+RI’2/2−K(Th’−Tc’) ・・・式5
ここに,I’は試料16を流れる電流であり,
式4+式5より
Qc’+Qh’=α(Tc’+Th’)I’−2K(Th’−Tc’) ・・・式6
となる。
Q c '= αT c 'I'-RI' 2 / 2−K (T h ' -T c ') Equation 4
Q h '= αT h ' I '+ RI' 2 / 2−K (T h '−T c ') Equation 5
Where I ′ is the current flowing through the sample 16,
From Equation 4 + Equation 5
Q c ′ + Q h ′ = α (T c ′ + T h ′) I′−2K (T h ′ −T c ′) Equation 6
It becomes.

式3+式6より
Qc+Qh+Qc’+Qh’=α{(Tc+ Th)I+(Tc’+ Th’)I’}−2K{(Th−Tc)+(Th’−Tc’)}・・・式7
が得られる。式7の右辺第1項を−Qp,第2項をQκとすると,式7は次のように書きかえられる。
From Equation 3 + Equation 6
Q c + Q h + Q c '+ Q h ' = α {(T c + T h ) I + (T c '+ T h ') I '}-2K {(T h -T c ) + (T h ' -T c ')} ・ ・ ・ Formula 7
Is obtained. If the first term on the right side of Equation 7 is −Q p and the second term is Q κ , Equation 7 can be rewritten as follows.

−Qp=Qκ+(Qc+Qh+Qc’+Qh’) ・・・式8
式8の括弧内の吸熱および放熱の原因が,輻射(Qri+Qre),大気の対流(Qc),大気による熱伝導(Qa)であるとすると,次式になる。
−Q p = Q κ + (Q c + Q h + Q c '+ Q h ') Equation 8
If the cause of heat absorption and heat dissipation in parentheses in Equation 8 is radiation (Q ri + Q re ), atmospheric convection (Q c ), and thermal conduction (Q a ) by the atmosphere, the following equation is obtained.

−Qp=Qκ+Qri+Qre+Qc+Qa ・・・式9
ここで,試料16の上端部の電流線30及び熱電対36からの吸熱(Qw)と,試料16の下端部の試料ホルダ14への放熱(Qpl)を考えると,式9は次のように表すことができる。
-Q p = Q κ + Q ri + Q re + Q c + Q a ··· formula 9
Here, considering the heat absorption (Q w ) from the current line 30 and the thermocouple 36 at the upper end of the sample 16 and the heat dissipation (Q pl ) to the sample holder 14 at the lower end of the sample 16, Equation 9 is Can be expressed as:

−Qp=Qpl+Qw+(Qκ+Qri+Qre+Qc+Qa)
ここで,外部の温度をTrt,電流線30及び熱電対36の熱コンダクタンスをKw,試料ホルダ14の熱コンダクタンスをKplとすると
Qpl+Qw=Kpl{(Th−Trt)+(Trt−Tc’)}+ Kw{(Trt−Tc)+(Th’−Trt)}
であるから,
Qpl+Qw=Kpl(Th−Tc’) + Kw(Th’−Tc) ・・・式10
が得られる。
−Q p = Q pl + Q w + (Q κ + Q ri + Q re + Q c + Q a )
Here, assuming that the external temperature is T rt , the thermal conductance of the current line 30 and the thermocouple 36 is K w , and the thermal conductance of the sample holder 14 is K pl.
Q pl + Q w = K pl {(T h −T rt ) + (T rt −T c ′)} + K w {(T rt −T c ) + (T h ′ −T rt )}
Because
Q pl + Q w = K pl (T h −T c ′) + K w (T h ′ −T c ) Equation 10
Is obtained.

ここで,試料16の下端部の温度(Tbot)を一定にして,電流の向きを反転することにより上端部の温度(Ttop)の温度を下端部の温度(Tbot)の上下の温度に振っている。従って,Th=Tc’となり,Qpl=Kpl(Th−Tc’)=0となる。このとき,式9は次の様になる。 Here, the temperature of the lower end portion (T bot ) of the sample 16 is made constant, and the temperature of the upper end portion (T top ) is changed above and below the temperature of the lower end portion (T bot ) by reversing the direction of the current. Waving. Therefore, T h = T c ′, and Q pl = K pl (T h −T c ′) = 0. At this time, Equation 9 becomes as follows.

−Qp=Qκ+Qw+Qri+Qre+Qc+Qa ・・・式11
式11に式7の第1項,第2項を代入すると,
α{(Tc+Th)I+(Tc’+Th’)I’}=2K{(Th−Tc)+(Th’−Tc’)}+Qw+Qri+Qre+Qc+Qa
よって,
α/K=[2{(Th−Tc)+(Th’−Tc’)}+{(Qw+Qri+Qre+Qc+Qa)/K}]/{(Tc+Th)I+(Tc’+Th’)I’}
である。
-Q p = Q κ + Q w + Q ri + Q re + Q c + Q a ··· formula 11
Substituting the first and second terms of Equation 7 into Equation 11,
α {(T c + T h ) I + (T c '+ T h ') I '} = 2K {(T h −T c ) + (T h ' −T c ')} + Q w + Q ri + Q re + Q c + Q a
Therefore,
α / K = [2 {(T h −T c ) + (T h ′ −T c ′)} + {(Q w + Q ri + Q re + Q c + Q a ) / K}] / {(T c + T h ) I + (T c '+ T h ') I '}
It is.

ここで,Da=(Th−Tc)+(Th’−Tc’),ITa=(Tc+Th)I/2+(Tc’+Th’)I’/2,K=κ/L(L=l/s)とすると,
α/κ=[2Da+{(Qw+Qri+Qre+Qc+Qa)L/κ}]/(2LITa)
よって,
α/κ=Da[1+{(Qw+Qri+Qre+Qc+Qa)L/(2Daκ)}]/(LITa)
よって,
α/κ=CDa/(LITa) ・・・式12
C=[1+{(Qw+Qri+Qre+Qc+Qa)L/(2Daκ)}=1+ QwL/(2Daκ)+Radi+Rade+Conv+Cair
・・・式13
ここに,Cは,補正因子(理想的な熱損の無い場合には1)であり,
Radi=4T3RiL/2κ Ri=σ×ε×Internal_surface_area
Rade=4T3ReL/2κ Re=σ×ε×External_surface_area
Conv=HL/2κ H=Convection_coefficient×External_surface_area
Conv=KaL/κ Ka=Air_conductivity×Internal_ surface_area
ここに,σはステファン−ボルツマン定数,
εは輻射率,
Internal_surface_areaは試料16を囲む環境の表面積,
External_surface_areaは試料16及び電極の表面積,
Convection_coefficientは対流係数,
Air_conductivityは空気の熱伝導率である,
となる。
Here, D a = (T h −T c ) + (T h ′ −T c ′), IT a = (T c + T h ) I / 2 + (T c ′ + T h ′) I ′ / 2 , K = κ / L (L = l / s),
α / κ = [2D a + {(Q w + Q ri + Q re + Q c + Q a ) L / κ}] / (2LIT a )
Therefore,
α / κ = D a [1 + {(Q w + Q ri + Q re + Q c + Q a ) L / (2Daκ)}] / (LIT a )
Therefore,
α / κ = CD a / (LIT a ) (12)
C = [1 + {(Q w + Q ri + Q re + Q c + Q a ) L / (2Daκ)} = 1 + Q w L / (2Daκ) + R adi + R ade + C onv + C air
... Formula 13
Where C is a correction factor (1 if there is no ideal heat loss),
R adi = 4T 3 R i L / 2κ R i = σ × ε × Internal_surface_area
R ade = 4T 3 R e L / 2κ R e = σ × ε × External_surface_area
C onv = HL / 2κ H = Convection_coefficient × External_surface_area
C onv = K a L / κ Ka = Air_conductivity × Internal_surface_area
Where σ is the Stefan-Boltzmann constant,
ε is the emissivity,
Internal_surface_area is the surface area of the environment surrounding the sample 16,
External_surface_area is the surface area of sample 16 and electrode,
Convection_coefficient is the convection coefficient,
Air_conductivity is the thermal conductivity of air,
It becomes.

ここで計測中の試料16の電位の関係式は以下のようになる。   Here, the relational expression of the potential of the sample 16 being measured is as follows.

Vo=α(Th−Tc)+αw(Th−Tc)
Vo’=α(Th’−Tc’)+αw(Th’−Tc’)
Vi=ρLI+Vo
Vi’=ρLI’+Vo
αw=電圧電線の絶対熱電能
上式からゼーベック係数αと電気抵抗率ρは以下
α=2Voa/Da−αw・・・式14
ρ=(Via−Voa)/(LIa)・・・式15
Voa=(Vo+Vo’)/2
Via=(Vi+Vi’)/2
Ia=(I+I’)/2
のように表せる。
V o = α (T h −T c ) + α w (T h −T c )
V o '= α (T h ' −T c ') + α w (T h ' −T c ')
V i = ρLI + V o
V i '= ρLI' + V o '
α w = See the following formula for the Seebeck coefficient α and the electrical resistivity ρ from the absolute thermoelectric power equation of the voltage wire: α = 2V oa / D a −α w Equation 14
ρ = (V ia −V oa ) / (LI a )...
V oa = (V o + V o ') / 2
V ia = (V i + V i ') / 2
I a = (I + I ') / 2
It can be expressed as

式14÷式12より,熱伝導率κは,
κ=2LITaVoa/(CDa 2)+LITaαw/(CDa) ・・・式16
となり,式12×式14÷式15より,性能指数Zは,
Z=2CIaVoa/{ITa(Via−Voa)}−(CIaαw/Da)/{ITa(Via−Voa)} ・・・式17
となる。
From Equation 14 ÷ Equation 12, the thermal conductivity κ is
κ = 2 LIT a V oa / (CD a 2 ) + LIT a α w / (CD a ) Equation 16
From Equation 12 × Equation 14 ÷ Equation 15, the figure of merit Z is
Z = 2CI a V oa / { IT a (V ia -V oa)} - (CI a α w / D a) / {IT a (V ia -V oa)} ··· Equation 17
It becomes.

本測定装置では,はハーマン法で無次元性能指数を求める式
ZT=Voa/(Via−Voa)
よりZとκの初期値を求め,式16より繰り返し計算することにより,最終的なZとκとCを決定する。
In this measurement device, is the formula for calculating the dimensionless figure of merit by the Herman method.
ZT = V oa / (V ia −V oa )
Thus, the initial values of Z and κ are obtained, and the final Z, κ and C are determined by repeatedly calculating from Equation 16.

以上,本発明の実施形態を説明したが,この実施形態は本発明の説明のための例示にすぎず,本発明の範囲をこの実施形態にのみ限定する趣旨ではない。本発明は,その要旨を逸脱することなく,その他の様々な態様でも実施することができる。   As mentioned above, although embodiment of this invention was described, this embodiment is only the illustration for description of this invention, and is not the meaning which limits the scope of the present invention only to this embodiment. The present invention can be implemented in various other modes without departing from the gist thereof.

本発明の一実施形態にかかる熱電特性測定装置の斜視図。The perspective view of the thermoelectric characteristic measuring apparatus concerning one Embodiment of this invention. 同実施形態における測定温度と輻射率との関係を示す図。The figure which shows the relationship between the measurement temperature and the radiation rate in the same embodiment. 試料を流れる熱流の模式図。The schematic diagram of the heat flow which flows through a sample.

符号の説明Explanation of symbols

10 ヒータブロック
12 熱アンカ
14 試料ホルダ
16 試料
18 熱リフレクタ
20,30 電流線
24,36 熱電対
40,42,44 熱アンカ圧着端子
DESCRIPTION OF SYMBOLS 10 Heater block 12 Thermal anchor 14 Sample holder 16 Sample 18 Thermal reflector 20, 30 Current line 24, 36 Thermocouple 40, 42, 44 Thermal anchor crimp terminal

Claims (3)

熱電素子(16)に直流電流を流したときの前記熱電素子(16)の温度を測ることにより,前記熱電素子(16)の熱電特性を測定する装置において,
前記直流電流を流すための電流線(20,30)及び前記温度を測るための熱電対(24,36)が取り付けられた前記熱電素子(16)が収容される内側空間(19)を囲み,前記熱電素子(16)からの輻射熱を前記内側空間へ反射する熱リフレクタ(18)を備えた熱電特性測定装置。
In an apparatus for measuring the thermoelectric characteristics of the thermoelectric element (16) by measuring the temperature of the thermoelectric element (16) when a direct current is passed through the thermoelectric element (16),
Enclosing an inner space (19) in which the thermoelectric element (16) to which the current lines (20, 30) for passing the direct current and the thermocouple (24, 36) for measuring the temperature are attached is accommodated; A thermoelectric characteristic measuring apparatus comprising a heat reflector (18) for reflecting radiant heat from the thermoelectric element (16) to the inner space.
前記熱リフレクタ(18)の温度を前記熱電素子(16)とほぼ同等の温度になるように制御する熱リフレクタ温度制御手段を更に備えた請求項1記載の熱電特性測定装置。 The thermoelectric characteristic measuring apparatus according to claim 1, further comprising thermal reflector temperature control means for controlling the temperature of the thermal reflector (18) to be substantially equal to the temperature of the thermoelectric element (16). 熱電素子(16)に直流電流を流したときの前記熱電素子(16)の温度を測ることにより,前記熱電素子(16)の熱電特性を測定する装置において,
前記熱電素子(16)に直流電流を流すための電流線(30)及び前記熱電素子(16)の温度を測るための熱電対(36)に結合され,前記電流線(30)及び前記熱電対(36)の温度を前記熱電素子(16)とほぼ同等の温度になるように制御する電線温度制御手段を備えた熱電特性測定装置。
In an apparatus for measuring the thermoelectric characteristics of the thermoelectric element (16) by measuring the temperature of the thermoelectric element (16) when a direct current is passed through the thermoelectric element (16),
The current line (30) and the thermocouple are coupled to a current line (30) for passing a direct current through the thermoelectric element (16) and a thermocouple (36) for measuring the temperature of the thermoelectric element (16). A thermoelectric characteristic measuring apparatus comprising electric wire temperature control means for controlling the temperature of (36) so as to be substantially equal to the temperature of the thermoelectric element (16).
JP2004215160A 2004-07-23 2004-07-23 Thermoelectric characteristic measuring apparatus for semiconductor element Withdrawn JP2006040989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215160A JP2006040989A (en) 2004-07-23 2004-07-23 Thermoelectric characteristic measuring apparatus for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215160A JP2006040989A (en) 2004-07-23 2004-07-23 Thermoelectric characteristic measuring apparatus for semiconductor element

Publications (1)

Publication Number Publication Date
JP2006040989A true JP2006040989A (en) 2006-02-09

Family

ID=35905698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215160A Withdrawn JP2006040989A (en) 2004-07-23 2004-07-23 Thermoelectric characteristic measuring apparatus for semiconductor element

Country Status (1)

Country Link
JP (1) JP2006040989A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005359A (en) * 2005-06-21 2007-01-11 Toyota Motor Corp Method of evaluating seebeck coefficient
KR20110014786A (en) * 2009-08-06 2011-02-14 한국전자통신연구원 The thermoelectric device having improved thermoelectric efficiency and manufacturing method thereof
CN102053100A (en) * 2010-12-06 2011-05-11 中山大学 Automatic measuring instrument for parameter of thermoelectric material
KR101302747B1 (en) 2009-05-21 2013-08-30 한국전자통신연구원 The thermoelectric element using radiant heat as a heat source and manufacturing method thereof
CN104635058A (en) * 2015-02-12 2015-05-20 武汉嘉仪通科技有限公司 Testing method and system for automatically measuring semiconductor resistivity and Seebeck coefficient
CN107037264A (en) * 2017-05-02 2017-08-11 国家纳米科学中心 Pyroelectric material performance parameter measuring apparatus and measuring method
CN117074894A (en) * 2023-07-07 2023-11-17 西安电子科技大学 Transient working condition thermoelectric characteristic characterization system and method based on thermal reflection imaging technology

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005359A (en) * 2005-06-21 2007-01-11 Toyota Motor Corp Method of evaluating seebeck coefficient
KR101302747B1 (en) 2009-05-21 2013-08-30 한국전자통신연구원 The thermoelectric element using radiant heat as a heat source and manufacturing method thereof
KR20110014786A (en) * 2009-08-06 2011-02-14 한국전자통신연구원 The thermoelectric device having improved thermoelectric efficiency and manufacturing method thereof
KR101596286B1 (en) 2009-08-06 2016-02-23 한국전자통신연구원 The thermoelectric device having improved thermoelectric efficiency and manufacturing method thereof
CN102053100A (en) * 2010-12-06 2011-05-11 中山大学 Automatic measuring instrument for parameter of thermoelectric material
CN104635058A (en) * 2015-02-12 2015-05-20 武汉嘉仪通科技有限公司 Testing method and system for automatically measuring semiconductor resistivity and Seebeck coefficient
CN107037264A (en) * 2017-05-02 2017-08-11 国家纳米科学中心 Pyroelectric material performance parameter measuring apparatus and measuring method
CN117074894A (en) * 2023-07-07 2023-11-17 西安电子科技大学 Transient working condition thermoelectric characteristic characterization system and method based on thermal reflection imaging technology
CN117074894B (en) * 2023-07-07 2024-04-16 西安电子科技大学 Transient working condition thermoelectric characteristic characterization system and method based on thermal reflection imaging technology

Similar Documents

Publication Publication Date Title
JP4579993B2 (en) Differential scanning calorimeter (DSC) with temperature controlled furnace
US6508585B2 (en) Differential scanning calorimeter
CN110907490B (en) Device and method for testing heat conductivity of high-heat-conductivity material
US10247685B2 (en) High-temperature structure for measuring properties of curved thermoelectric device, and system and method for measuring properties of curved thermoelectric device using the same
JP2011185697A (en) Thermoelectric material evaluation device and thermoelectric characteristic evaluation method
US9448121B2 (en) Measurement method, measurement apparatus, and computer program product
Amatya et al. High temperature Z-meter setup for characterizing thermoelectric material under large temperature gradient
Rouleau et al. Measurement system of the Seebeck coefficient or of the electrical resistivity at high temperature
JP5511941B2 (en) Thermoelectric conversion element evaluation apparatus and evaluation method
JP2006040989A (en) Thermoelectric characteristic measuring apparatus for semiconductor element
TWI467165B (en) Measurement method, measurement apparatus, and computer program product
Bowley et al. Measurement of the figure of merit of a thermoelectric material
JP4474550B2 (en) Thermoelectric element characteristic evaluation method
JP2003042985A (en) Differential scanning calorimeter
JP2832334B2 (en) Thermoelectric conversion performance evaluation method and apparatus
KR101082353B1 (en) Apparatus for evaluating thermoelectric element and Thermoelectric element evaluation system using the same
Zybała et al. Method and apparatus for determining operational parameters of thermoelectric modules
US10928255B2 (en) Device for measuring thermoelectric performance
JP2007178218A (en) Thermal resistance measuring instrument
TW201510519A (en) System and method for measuring properties of thermoelectric module
JP2001021512A (en) Thermal conductivity measuring device
Naithani et al. Apparatus for measurement of thermoelectric properties of a single leg under large temperature differences
US20120106594A1 (en) Thermocouples with two tabs spaced apart along a transverse axis and methods
EP1215484A2 (en) Differential scanning calorimeter
CN216899327U (en) Temperature detection module and semiconductor laser

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002