JP2001021512A - Thermal conductivity measuring device - Google Patents

Thermal conductivity measuring device

Info

Publication number
JP2001021512A
JP2001021512A JP11194337A JP19433799A JP2001021512A JP 2001021512 A JP2001021512 A JP 2001021512A JP 11194337 A JP11194337 A JP 11194337A JP 19433799 A JP19433799 A JP 19433799A JP 2001021512 A JP2001021512 A JP 2001021512A
Authority
JP
Japan
Prior art keywords
heating element
heat
thermal conductivity
heat transfer
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11194337A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Warabino
光利 蕨野
Takashi Obara
小原  孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11194337A priority Critical patent/JP2001021512A/en
Publication of JP2001021512A publication Critical patent/JP2001021512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal conductivity measuring device capable of obtaining highly precisely the thermal conductivity value of a plate member in which a filler or the like is used. SOLUTION: This thermal conductivity measuring device 1 is equipped with an electric heating element 31, a heat transfer body 32 for a heating element part, the heating element part 3 having a mounting body 39 for a thermocouple 8A, a heat transfer body 41 for a radiator part, a mounting body 49 for a thermocouple 8D, the radiator part 4 having a water- cooling radiator 43, an intermediate mounting body 5 for thermocouples 8B, 8C, an adiabatic layer 6 having a heat insulating body 61 for covering the upper part of the electric heating element 31 and a heat insulator 62 for covering the side faces of the heating element part 3, the heat transfer body 41 or the like, and a presser plate 7 arranged on the upper surface of the heat insulating body 61. With this formation, a measuring object 19 whose thermal conductivity is required to be obtained is inserted between the mounting body 39 and the intermediate mounting body 5, and a known sample member 18 having a known thermal conductivity is inserted between the intermediate mounting body 5 and the mounting body 49, and the thermal conductivity of the measuring object 19 is obtained by using the thermal conductivity of the known sample member 18 and the ratio of the output difference between the thermocouples 8A, 8B with respect to the output difference between the thermocouples 8C, 8D.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は平板状の測定対象
体の熱伝導率を測定する熱伝導率測定装置に係わり、F
RP材などの局部熱伝導率値が面方向で不均一な測定対
象体であっても熱伝導率の高精度な測定を可能とするそ
の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal conductivity measuring device for measuring the thermal conductivity of a flat object to be measured.
The present invention relates to a configuration that enables high-precision measurement of thermal conductivity even for a measurement target such as an RP material having a local thermal conductivity value that is not uniform in a plane direction.

【0002】[0002]

【従来の技術】電気機械の電気絶縁用に電気絶縁フィル
ムなどの多くの種類の平板状の電気絶縁体が使用されて
いるが、これ等の平板状部材の熱伝導率を求めるために
平板状部材用の熱伝導率測定装置が用いられている。そ
うして、0.1〔mm〕以下の極めて薄い厚さを持つ平
板状部材の熱伝導率を求めることができる装置として特
開昭53−107382号公報により開示された装置が
知られている。以下にこの公報で公知となっている装置
の内容を基にして、従来例の平板状部材用の熱伝導率測
定装置を図8を用いて説明する。ここで図8は従来例の
平板状部材用の熱伝導率測定装置の要部を測定対象体と
共に示す縦断面図である。なお図8では熱伝導率測定装
置を構成する部材および測定対象体を展開した状態とし
て示している。
2. Description of the Related Art Many types of flat electrical insulators such as an electrical insulating film are used for electrical insulation of an electric machine. A thermal conductivity measuring device for members is used. An apparatus disclosed in JP-A-53-107382 is known as an apparatus capable of determining the thermal conductivity of a flat member having an extremely small thickness of 0.1 [mm] or less. . Hereinafter, a conventional thermal conductivity measuring device for a flat member will be described with reference to FIG. 8 based on the contents of a device known in this publication. FIG. 8 is a longitudinal sectional view showing a main part of a conventional thermal conductivity measuring device for a flat member together with a measurement object. Note that FIG. 8 shows a state in which the members constituting the thermal conductivity measuring device and the object to be measured are expanded.

【0003】図8において、9は、電気発熱体92,発
熱体92用の断熱層94,温度検出素子である熱電対9
5を有する測定具91と、伝熱体98とを備えた従来例
の平板状部材用の熱伝導率測定装置である。断熱層94
は断熱材であるアスベスト板を用いて直方体状に形成さ
れ、その1つの面に電気発熱体92が配設されている。
電気発熱体92は電気抵抗値Rを有し、矩形状断面を持
つニッケルクロム合金電熱線を用いて面積S9 を持つ平
板状に形成され、電流供給用の口出線93,93を備え
ており、熱伝導率測定のために測定対象体99に与える
熱流を生成する。
In FIG. 8, reference numeral 9 denotes an electric heating element 92, a heat insulating layer 94 for the heating element 92, and a thermocouple 9 as a temperature detecting element.
This is a conventional example of a thermal conductivity measuring device for a plate-shaped member provided with a measuring tool 91 having a fifth member 5 and a heat transfer member 98. Heat insulation layer 94
Is formed in a rectangular parallelepiped shape using an asbestos plate as a heat insulating material, and an electric heating element 92 is provided on one surface thereof.
Electrical heating element 92 has an electric resistance value R, are formed in a flat plate shape having an area S 9 using a nickel-chromium alloy heating wire having a rectangular cross-section, provided with a lead wire 93 and 93 for current supply This generates a heat flow to be applied to the measurement object 99 for measuring the thermal conductivity.

【0004】電気発熱体92の縦横寸法は断熱層94の
電気発熱体92が配設されている面,したがって測定具
91の面91aよりも小さい。熱電対95にはクロメル
・アルメルが用いられており、その温度検出部は電気発
熱体92の中央部分に測定対象体99に接することがで
きるようにして配設され、出力用のリード線96,97
を有している。伝熱体98は熱伝導性材であるアルミナ
を用いて直方体状に形成され、測定対象体99に接する
矩形状の平面98aに対する反対側の面98bには空気
冷却式や水冷式などの図示しない冷却用装置が装着され
ている。
The vertical and horizontal dimensions of the electric heating element 92 are smaller than the surface of the heat insulating layer 94 on which the electric heating element 92 is provided, and therefore the surface 91 a of the measuring tool 91. The thermocouple 95 is made of chromel or alumel, and its temperature detecting unit is disposed at the center of the electric heating element 92 so as to be able to contact the object 99 to be measured. 97
have. The heat transfer body 98 is formed in a rectangular parallelepiped shape using alumina as a heat conductive material, and an air-cooling type, a water-cooling type, or the like (not shown) is provided on a surface 98b opposite to the rectangular flat surface 98a in contact with the measurement object 99. A cooling device is installed.

【0005】平板状部材である測定対象体99は厚さd
方向の一方の平面99aを測定具91の電気発熱体92
が配設されている面91aに、厚さd方向の他方の平面
99bを伝熱体98の平面98aに密着されて、熱伝導
率測定装置9に装填される。この測定対象体99は矩形
状の面形状を有し、その縦横寸法は測定具91の面91
aよりも大きく、伝熱体98の平面98aよりも小さく
設定されている。そうして熱伝導率測定装置9は、測定
対象体99の平面99a,99bを測定具91の面91
aおよび伝熱体98の平面98aに確実に密着させるた
めに、測定具91を矢印F9 の方向から加圧する図示し
ない加圧用装置を備えている。
The object to be measured 99 which is a flat member has a thickness d.
One of the planes 99 a in the direction is connected to the electric heating element 92 of the measuring tool 91.
Is mounted on the thermal conductivity measuring device 9 with the other flat surface 99b in the thickness d direction being in close contact with the flat surface 98a of the heat transfer member 98. The measuring object 99 has a rectangular surface shape, and its vertical and horizontal dimensions are the surface 91 of the measuring tool 91.
a, and smaller than the plane 98 a of the heat transfer body 98. Then, the thermal conductivity measuring device 9 adjusts the planes 99a and 99b of the measurement object 99 to the surface 91 of the measuring tool 91.
in order to ensure close contact with the plane 98a of the a and the heat conductor 98, and the measurement instrument 91 includes a pressurization device (not shown) pressed in the direction of arrow F 9.

【0006】従来例の平板状部材用の熱伝導率測定装置
9は前記のように構成されており、測定対象体99の熱
伝導率λX は次記のようにして求められる。まず、測定
対象体99が熱伝導率測定装置9に装填された状態およ
び装填されていない状態のそれぞれで電気発熱体92に
定電流Iを通電する。熱電対95の出力が飽和するなど
各部の温度が一定状態になった時点で、熱電対95の出
力を測定対象体99の平面99aが電気発熱体92に接
する部位の温度上昇値であるとして、その温度上昇値t
91,t92を測定する。厚さdを持つ測定対象体99の熱
伝導率λX は、この温度上昇値t91,t92と、電気発熱
体92の面積S9 ,電気抵抗値Rと、電気発熱体92に
通電される定電流Iとを用い、式(1)を基にして得て
いる。
The conventional thermal conductivity measuring device 9 for a plate-like member is configured as described above, and the thermal conductivity λ X of the object to be measured 99 can be obtained as follows. First, a constant current I is applied to the electric heating element 92 in each of a state where the measurement object 99 is loaded on the thermal conductivity measuring device 9 and a state where it is not loaded. When the temperature of each part becomes constant, such as when the output of the thermocouple 95 is saturated, the output of the thermocouple 95 is defined as a temperature rise value of a portion where the plane 99a of the measurement object 99 is in contact with the electric heating element 92. The temperature rise value t
91, to measure the t 92. The thermal conductivity λ X of the measurement object 99 having the thickness d is supplied to the electric heating element 92 with the temperature rise values t 91 and t 92 , the area S 9 of the electric heating element 92, the electric resistance value R, and the like. The constant current I is obtained based on the equation (1).

【0007】[0007]

【数1】 λX =2I2 Rd/{(2t91−t92)S9 }…………………………(1)Λ X = 2I 2 Rd / {(2t 91 -t 92 ) S 9 }... (1)

【0008】[0008]

【発明が解決しようとする課題】前述した従来技術によ
る平板状部材用の熱伝導率測定装置9はポリエステルフ
ィルムなど充填材などを含まず、これにより熱伝導率値
が面方向で均一な測定対象体99に対しては適正な熱伝
導率値を求めることができる。しかしながら、電気機械
の電気絶縁に用いられる平板状の電気絶縁体には、ポリ
エステルフィルムなど充填材などを含まない材料の外
に、FRP材(例えば、エポキシガラス積層板)のよう
に充填材などを用いる材料も多用されている。このよう
な材料の熱伝導率を熱伝導率測定装置9によって求める
場合の問題点を、測定対象体99がFRP材である場合
に代表させて説明する。
The thermal conductivity measuring apparatus 9 for a flat member according to the prior art described above does not include a filler such as a polyester film, so that the thermal conductivity can be measured uniformly in the plane direction. An appropriate thermal conductivity value can be obtained for the body 99. However, a flat electrical insulator used for electrical insulation of an electric machine includes a filler such as an FRP material (for example, an epoxy glass laminate) in addition to a material that does not include a filler such as a polyester film. The materials used are also frequently used. A problem in the case where the thermal conductivity of such a material is obtained by the thermal conductivity measuring device 9 will be described by exemplifying a case where the measurement object 99 is an FRP material.

【0009】測定対象体99がFRP材である場合、測
定対象体99の熱伝導率値はその面方向に関してはファ
イバー(エポキシガラス積層板の場合にはガラスファイ
バー)の存在によって一様ではない。そうして測定対象
体99の面方向の局部熱伝導率値はよく知られているよ
うに、ファイバーが多く存在する部位では樹脂材が多く
存在する部位よりも大きい。このような測定対象体99
を熱伝導率測定装置9で求める場合、熱電対95の温度
検出部の測定対象体99に接触する部位が、ファイバー
が多く存在する部位であるか、または樹脂材が多く存在
する部位であるかによって熱電対95の出力値は異な
る。すなわち、熱伝導率測定装置9では、充填材などが
用いられた平板状部材の熱伝導率値を高精度で求めるこ
とができなかった。
When the measurement object 99 is an FRP material, the thermal conductivity value of the measurement object 99 is not uniform in the plane direction due to the presence of a fiber (a glass fiber in the case of an epoxy glass laminate). Then, as is well known, the local thermal conductivity value of the measurement object 99 in the surface direction is larger in a portion where a large amount of fiber exists than in a portion where a large amount of resin material exists. Such an object to be measured 99
Is determined by the thermal conductivity measuring device 9, is the part of the temperature detection part of the thermocouple 95 in contact with the measurement object 99 a part with a large amount of fibers or a part with a large amount of resin material? The output value of the thermocouple 95 differs depending on the type. That is, the thermal conductivity measuring device 9 could not accurately determine the thermal conductivity value of the flat member using the filler or the like.

【0010】この発明は、前述の従来技術の問題点に鑑
みなされ、その目的は、充填材などが用いられた平板状
部材の熱伝導率値を高精度で求めることができる熱伝導
率測定装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a thermal conductivity measuring apparatus capable of accurately determining the thermal conductivity value of a flat member using a filler or the like. Is to provide.

【0011】[0011]

【課題を解決するための手段】この発明では前述の目的
は、 1)電気発熱体と,平面状端面を有して電気発熱体で発
生された熱を前記平面状端面から測定対象体に与えると
共に平面状端面側に発熱体部側用の温度検出部が配設さ
れた熱伝導性材製の発熱体部用の伝熱体を有する発熱体
部と、放熱体と,前記電気発熱体で発生された熱を測定
対象体を介して発熱体部用の伝熱体の平面状端面とほぼ
同一の面形状・寸法を持つ平面状端面で受け取って前記
放熱体に移送すると共に平面状端面側に発熱体部側用の
温度検出部にほぼ対向させて配設された放熱体部側用の
温度検出部を持つ熱伝導性材製の放熱体部用の伝熱体を
有する放熱体部と、放熱体部用の伝熱体,測定対象体お
よび発熱体部の周囲に配置された断熱層とを備え、発熱
体部と放熱体部のそれぞれの平面状端面の間に平板状で
発熱体部用の伝熱体の平面状端面とほぼ同一の面形状・
寸法を持つ前記測定対象体が介挿され,この測定対象体
の両側の平面のそれぞれが発熱体部,放熱体部の前記平
面状端面に密着されること、または、 2)前記1項に記載の手段において、前記発熱体部およ
び/または前記放熱体部は発熱体部側用の温度検出部,
放熱体部側用の温度検出部を取り付けるための温度検出
部用の取付体を測定対象体側に有し、この取付体は熱伝
導性材製で発熱体部用の伝熱体の測定対象体側の平面状
端面とほぼ同一の面形状・寸法を持つこと、または、 3)前記1項または2項に記載の手段において、前記電
気発熱体は発熱体部用の伝熱体の平面状端面とほぼ同等
の面形状・寸法の範囲にその発熱部が分布して配設さ
れ、発熱体部用の前記伝熱体は電気発熱体が接する端面
が測定対象体側の前記平面状端面とほぼ同一の面形状・
寸法を有する平面状に形成されること、さらにまたは、 4)前記1項から3項までのいずれかに記載の手段にお
いて、前記発熱体部と測定対象体との間または測定対象
体と前記放熱体部との間に、発熱体部用の温度検出部に
ほぼ対向する部位に温度検出部が配設された温度検出部
用の中間取付体と熱伝導率が既知の材料で作製された既
知サンプル部材とを備え、既知サンプル部材は測定対象
体とほぼ同一の面形状・寸法の平板状に形成され、中間
取付体は発熱体部用の前記伝熱体の測定対象体側の平面
状端面とほぼ同一の面形状・寸法を持つ平板状に形成さ
れると共に測定対象体に接して配設されることにより達
成される。
According to the present invention, there are provided the following objects: 1) having an electric heating element and a flat end face, and applying heat generated by the electric heating element to the object to be measured from the flat end face; A heating element having a heat transfer element for a heating element made of a heat conductive material and having a temperature detecting section for the heating element on the side of the planar end face; a radiator; and the electric heating element. The generated heat is received by the planar end face having substantially the same surface shape and dimensions as the planar end face of the heat transfer element for the heating element portion via the measurement object, transferred to the heat radiator, and is transferred to the flat end face side. A radiator having a heat conductor for a radiator made of a heat conductive material having a temperature detector for the radiator disposed substantially in opposition to the temperature detector for the heat generator; A heat transfer body for the heat radiator, a heat-insulating layer disposed around the object to be measured and the heat radiator, the heat radiator and the heat radiator Between the flat end faces of the heat transfer section and the heat transfer element for the heating element section.
2. The measurement object having dimensions is interposed, and respective flat surfaces on both sides of the measurement object are closely attached to the planar end surfaces of the heating element portion and the heat radiating portion; In the means of (1), the heating element and / or the radiator is a temperature detector for the heating element,
A mounting body for the temperature detecting unit for mounting the temperature detecting unit for the heat radiating unit side is provided on the measurement target body side, and this mounting body is made of a heat conductive material and is on the measurement target body side of the heat transfer body for the heating element unit. Or 3) In the means described in the above item 1 or 2, the electric heating element has a flat end face and a flat end face of a heat transfer element for a heating element portion. The heat generating portions are distributed and arranged in a range of substantially the same surface shape and dimensions, and the heat transfer body for the heat generating portion has an end surface which is in contact with the electric heat generating member substantially the same as the planar end surface on the measurement object side. Surface shape
4) In the means according to any one of the above items 1 to 3, furthermore, 4) in the means according to any one of the above items 1 to 3, between the heating element portion and the measurement object or between the measurement object and the heat radiation Between the body part, a temperature detection part is disposed at a position substantially opposite to the temperature detection part for the heating element part. An intermediate mounting body for the temperature detection part and a known heat conductivity made of a material having a known thermal conductivity. A sample member is provided, the known sample member is formed in a flat plate shape having substantially the same surface shape and dimensions as the object to be measured, and the intermediate mounting body is a flat end face on the object to be measured side of the heat transfer body for the heating element. This is achieved by being formed in a flat plate shape having substantially the same surface shape and dimensions and being disposed in contact with the measurement object.

【0012】[0012]

【発明の実施の形態】以下この発明の実施の形態を図面
を参照して詳細に説明する。図3はこの発明の実施の形
態の一例による平板状部材用の熱伝導率測定装置を測定
対象体と共に示す一部破断した側面図であり、図4は図
3に示した発熱体部用の伝熱体の図3におけるQ部の断
面図であり、図5は図3に示した放熱体の要部を示す図
で、(a)は上面図,(b)は図5(a)の側面図であ
る。図3〜図5において、2は、発熱体部3Aと、放熱
体部4Aと、断熱層6と、加圧板7とを備えたこの発明
による平板状部材用の熱伝導率測定装置であり、19は
測定対象体であり発熱体部3Aと放熱体部4Aとの間に
介挿される。この測定対象体19は「従来の技術」の項
で説明した測定対象体99と同様に厚さdの平板状部材
であり、用いられる材料にはFRP材なども含まれる。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 3 is a partially cutaway side view showing a thermal conductivity measuring apparatus for a flat plate member according to an embodiment of the present invention together with a measurement object, and FIG. 4 is a side view of the heating element section shown in FIG. FIG. 5 is a cross-sectional view of a heat transfer body taken along a line Q in FIG. 3, FIG. 5 is a view showing a main part of the heat radiator shown in FIG. 3, (a) is a top view, and (b) is FIG. It is a side view. 3 to 5, reference numeral 2 denotes a thermal conductivity measuring device for a flat member according to the present invention including a heating element 3A, a radiator 4A, a heat insulating layer 6, and a pressure plate 7, Reference numeral 19 denotes an object to be measured, which is interposed between the heat generator 3A and the heat radiator 4A. The measurement object 19 is a plate-shaped member having a thickness d, similarly to the measurement object 99 described in the section of “Prior Art”, and the material used includes an FRP material or the like.

【0013】発熱体部3Aは電気発熱体31と発熱体部
用の伝熱体33とを有し、電気発熱体31は、従来例の
電気発熱体92と同様に熱伝導率測定のために測定対象
体19に与える熱流を生成する。また伝熱体33は、測
定対象体19に熱伝導率値が面方向で不均一なFRP材
などが適用され、しかも電気発熱体31で発生される熱
の面積密度が均一ではなくても、電気発熱体31によっ
て発生した熱が下部端面33dを通過する部位での熱流
の密度をほぼ均等化する役目を担っている。このために
この事例の場合には、伝熱体33は良好な熱伝導性を持
つ素材である銅材を用いて直方体状に形成され、その厚
さH3 は伝熱体33の前記役目を果たすために必要な十
分に長い寸法〔この事例の場合には、下部端面33dの
面積をS 3 とした場合に、H3 ≒0.4(S3 1/2
に設定されている。
The heating element 3A comprises an electric heating element 31 and a heating element.
And a heat transfer body 33 for use in the electric heater.
Measurement target for thermal conductivity measurement similar to electric heating element 92
A heat flow to be applied to the body 19 is generated. The heat transfer body 33 is
FRP material whose thermal conductivity value is non-uniform in the plane direction
And the like, and the heat generated by the electric heating element 31
Even if the area density of the
Flow at the part where the heat generated passes through the lower end face 33d
Plays a role in almost equalizing the density. For this
In this case, the heat transfer body 33 has good thermal conductivity.
It is formed in a rectangular parallelepiped shape using copper material
HThreeAre sufficient for fulfilling the role of the heat transfer body 33.
Longer dimension [in this case, the lower end face 33d
Area is S ThreeAnd HThree$ 0.4 (SThree)1/2]
Is set to

【0014】この伝熱体33では上部端面33uおよび
下部端面33dは同一の形状・寸法を有して平面状に形
成され、その面形状・寸法は測定対象体19の面形状・
寸法と同一である。伝熱体33の下部端面33dの中央
部には小径の有底孔33aが、この有底孔33aに接続
させて伝熱体33の側面から小径の有底孔33cがそれ
ぞれ形成されている。この有底孔33a,33cには図
4に示すように発熱体部側用温度検出素子である熱電対
8Aが装填される。熱電対8Aには素線用絶縁被覆材お
よび外被絶縁材に共にふっ素樹脂材が用いられた耐熱性
熱電対が採用され、両素線の端部は公知の適宜の手法で
電気的に接続されて温度検出部が形成される。この熱電
対8Aは有底孔33cと有底孔33aとに順次挿入さ
れ、温度検出部を下部端面33dからやや突出させた状
態とされて充填材331により伝熱体33に固定され
る。
In this heat transfer body 33, the upper end face 33u and the lower end face 33d are formed in the same shape and dimensions and are flat, and the surface shape and dimensions are the same as those of the object 19 to be measured.
Same dimensions. A small diameter bottomed hole 33a is formed at the center of the lower end surface 33d of the heat transfer body 33, and a small diameter bottomed hole 33c is formed from the side surface of the heat transfer body 33 so as to be connected to the bottomed hole 33a. As shown in FIG. 4, a thermocouple 8A, which is a heating element side temperature detecting element, is loaded into the bottomed holes 33a and 33c. As the thermocouple 8A, a heat-resistant thermocouple in which a fluorine resin material is used for both the insulating coating material for the strand and the outer insulating material is adopted, and the ends of both strands are electrically connected by a known appropriate method. Thus, a temperature detecting section is formed. The thermocouple 8A is sequentially inserted into the bottomed hole 33c and the bottomed hole 33a, and the temperature detector is slightly protruded from the lower end surface 33d, and is fixed to the heat transfer body 33 by the filler 331.

【0015】そうして伝熱体33の有底孔33aに固定
された熱電対8Aの温度検出部は、下部端面33dと同
一面になるように先端部を加工される(図4を参照)。
電気発熱体31には電熱線を蛇行させて面状に配設した
発熱部をシリコーンゴム材で被覆することで、上部端面
33uと同一の面形状・寸法の外形を持つ平板状の外形
に形成されたフレキシブルな電気ヒーターを用いてい
る。この電気発熱体31は伝熱体33の上部端面33u
に載置される。したがって、電気発熱体31の発熱部で
発生される熱によって上部端面33uで得られる熱流の
密度の均一度は、従来例の電気発熱体92を用いる場合
と対比して向上される。なお、この電気発熱体31は、
電気発熱体31の温度を検出するための図示しない温度
センサを一体に装着している。
The temperature detecting portion of the thermocouple 8A fixed to the bottomed hole 33a of the heat transfer body 33 is processed at the tip so as to be flush with the lower end face 33d (see FIG. 4). .
The electric heating element 31 is formed into a flat external shape having the same external shape and dimensions as the upper end surface 33u by coating a heating portion arranged in a planar shape by meandering a heating wire with a silicone rubber material. Using a flexible electric heater. The electric heating element 31 is formed by an upper end face 33 u of the heat transfer element 33.
Placed on Therefore, the uniformity of the density of the heat flow obtained on the upper end face 33u by the heat generated in the heating portion of the electric heating element 31 is improved as compared with the case where the electric heating element 92 of the conventional example is used. In addition, this electric heating element 31
A temperature sensor (not shown) for detecting the temperature of the electric heating element 31 is integrally mounted.

【0016】放熱体部4Aは、放熱体部用の伝熱体42
と放熱体43とを有し、この伝熱体42は、測定対象体
19に熱伝導率値が面方向で不均一なFRP材などが適
用され、しかも放熱体43で除去される熱の面積密度が
均一ではなくても、測定対象体19から伝熱体42に伝
達される熱が上部端面42uを通過する部位での熱流の
密度をほぼ均等にする役目を担っている。このためにこ
の事例の場合には、伝熱体42は伝熱体33と同様に良
好な熱伝導性を持つ素材である銅材を用いて直方体状に
形成され、その厚さH4 は伝熱体42の前記役目を果た
すために必要な十分長い寸法に設定されている。
The radiator 4A is provided with a radiator 42 for the radiator.
And a heat radiator 43. The heat conductor 42 is formed by applying an FRP material or the like having a non-uniform thermal conductivity value in the plane direction to the measurement object 19, and furthermore, an area of heat removed by the heat radiator 43. Even if the density is not uniform, it plays the role of making the heat transmitted from the measurement object 19 to the heat transfer body 42 almost uniform in the density of the heat flow at the portion passing through the upper end surface 42u. If for this in this case, the heat conductor 42 is formed in a rectangular parallelepiped shape with a copper material which is a material having the same good thermal conductivity and the heat conductor 33, the thickness H 4 is Den The dimension is set to a sufficiently long dimension necessary to fulfill the role of the heat body 42.

【0017】そうしてこの事例の場合には、放熱体部用
の伝熱体42は発熱体部用の伝熱体33と全く同一の構
造・形状・寸法を持ち、伝熱体33との相異点は上下を
反転させて用いることだけである。したがって、伝熱体
42の厚さH4 は伝熱体33の厚さH3 と同一であり、
上部端面42uおよび下部端面42dは伝熱体33の下
部端面33dと同一の形状・寸法を有し、上部端面42
uには放熱体部側用温度検出素子である熱電対8Dの温
度検出部を装填するための有底孔が形成されている。熱
電対8Dの内容,有底孔の形成位置,伝熱体42への装
填方法などは熱電対8Aの場合と全く同一であるので、
重複を避けてその説明を省略する。
In this case, the heat transfer member 42 for the heat dissipating member has exactly the same structure, shape and dimensions as the heat transfer member 33 for the heat dissipating member. The only difference is that it is used upside down. Therefore, the thickness H 4 of the heat transfer body 42 is the same as the thickness H 3 of the heat transfer body 33,
The upper end surface 42u and the lower end surface 42d have the same shape and dimensions as the lower end surface 33d of the heat transfer body 33,
u has a bottomed hole for mounting the temperature detecting portion of the thermocouple 8D which is the temperature detecting element for the radiator portion side. Since the contents of the thermocouple 8D, the formation position of the bottomed hole, the method of loading the heat transfer body 42, and the like are exactly the same as those of the thermocouple 8A,
The description is omitted to avoid duplication.

【0018】放熱体43は冷却水49を用いて除熱する
水冷式の放熱器であり、図5に示すように銅材製で直方
体状の放熱器本体44、複数の配管部材45〜48を備
えている。放熱器本体44には互いに平行する3本の貫
通孔441が図示のように形成され、配管部材45〜4
8はこの貫通孔441に水密に接続され、全体として連
続する1本の冷却水49用の通流路を形成している。な
お、配管部材45は冷却水49を流入させる入口用部材
であり、配管部材48は冷却水49を排出させる出口用
部材である。伝熱体42は、下部端面42dに接して放
熱体43を取り付けることで、下部端面42dの温度を
低温に保持できる。
The radiator 43 is a water-cooled radiator for removing heat using cooling water 49. As shown in FIG. 5, a radiator body 44 made of copper and having a rectangular parallelepiped shape and a plurality of pipe members 45 to 48 are provided. Have. Three parallel through holes 441 are formed in the radiator body 44 as shown in FIG.
Numeral 8 is water-tightly connected to the through hole 441 to form a continuous flow path for one continuous cooling water 49 as a whole. Note that the pipe member 45 is an inlet member through which the cooling water 49 flows in, and the pipe member 48 is an outlet member through which the cooling water 49 is discharged. The heat transfer body 42 can maintain the temperature of the lower end face 42d at a low temperature by attaching the heat radiator 43 in contact with the lower end face 42d.

【0019】なお、伝熱体42の下部端面42dおよび
下部端面42dに接する放熱体43の端面43uは共に
平滑な面とされているが、両者間の接触熱抵抗を低減す
るために、両者の接合部にはグリスなどの塗布や軟質金
属(例えば、インジウム)製の箔などの介挿を行うこと
が好ましい。なおまた、測定対象体19と伝熱体33の
下部端面33d,伝熱体42の上部端面42uの間、あ
るいは、電気発熱体31と伝熱体33の上部端面33u
の間にも、それぞれの間の接触熱抵抗を低減するため
に、必要に応じてグリスなどの塗布を行うことができ
る。
Although the lower end face 42d of the heat transfer body 42 and the end face 43u of the heat radiator 43 which is in contact with the lower end face 42d are both smooth surfaces, in order to reduce the contact thermal resistance between them, the two end faces are formed. It is preferable to apply grease or a soft metal (for example, indium) foil or the like to the joint. Further, between the measurement object 19 and the lower end face 33d of the heat transfer body 33 and the upper end face 42u of the heat transfer body 42, or between the electric heating body 31 and the upper end face 33u of the heat transfer body 33.
During this time, grease or the like can be applied as necessary in order to reduce the contact thermal resistance between them.

【0020】断熱層6は、発熱体部3Aの電気発熱体3
1の上部を覆う断熱体61と、発熱体部3A,測定対象
体19および伝熱体42の周囲に配設される断熱体62
とで構成される。断熱体61,62にはこの事例の場合
には、断熱性能が優れると共に加工性が良好な断熱材と
してセラミックファイバー〔ニチアス(株)製のファイ
ンフレックス1300ペーパーなど〕が用いられてい
る。熱伝導率測定装置2に関する発明者らの検討によっ
て、ファインフレックス1300ペーパーを用いた断熱
層6は、従来例と同じアスベスト板を用いた場合と対比
して断熱性能が150〔%〕を越えて向上することが確
認されている。
The heat insulating layer 6 is formed of the electric heating element 3 of the heating element 3A.
A heat insulator 61 covering the upper portion of the heat generating member 1 and a heat insulator 62 disposed around the heating element portion 3A, the measurement object 19 and the heat transfer member 42;
It is composed of In this case, ceramic fibers [fineflex 1300 paper manufactured by Nichias Co., Ltd.] are used for the heat insulators 61 and 62 as a heat insulator having excellent heat insulation performance and good workability. According to the study of the thermal conductivity measuring device 2 by the inventors, the heat insulation layer 6 using Fineflex 1300 paper has a heat insulation performance exceeding 150 [%] as compared with the case of using the same asbestos plate as the conventional example. It has been confirmed to improve.

【0021】加圧板7は鉄材を用いて直方体状に形成さ
れ、断熱体61の上面に配設される。加圧板7の上面の
四隅部には、測定対象体19の両平面(従来例による平
面99a,99bと同等)を発熱体部用の伝熱体33の
下部端面33d,放熱体部用の伝熱体42の上部端面4
2uのそれぞれに確実に密着させるために、加圧板7を
矢印F2 の方向に加圧するコイルばねなどで構成された
図示しない加圧用装置が装着されている。加圧板7に与
える加圧力は、例えば、測定対象体19が実機で使用さ
れる場合に受ける圧力値を勘案して設定される。そうし
てこの加圧力の印加は前記した各部の接触熱抵抗の低減
にも有効である。
The pressure plate 7 is formed in a rectangular parallelepiped shape using an iron material, and is disposed on the upper surface of the heat insulator 61. At the four corners of the upper surface of the pressure plate 7, both planes (equivalent to the planes 99a and 99b according to the conventional example) of the object to be measured 19 are connected to the lower end surface 33d of the heat transfer body 33 for the heating element and the transfer for the radiator. Upper end surface 4 of heat body 42
In order to ensure close contact with each 2u, not shown, which is constituted by a coil spring for pressurizing the pressure plate 7 in the direction of the arrow F 2 pressurization device is mounted. The pressure applied to the pressure plate 7 is set in consideration of, for example, a pressure value received when the measurement object 19 is used in an actual machine. Thus, the application of the pressing force is also effective in reducing the contact thermal resistance of each part described above.

【0022】図3〜図5に示すこの発明の実施の形態の
一例による平板状部材用の熱伝導率測定装置2では前述
の構成としたので、電気発熱体31で発生した熱の内の
多くの部分は、電気発熱体31→伝熱体33→下部端面
33d→測定対象体19→上部端面42u→伝熱体42
→放熱体43→冷却水49の経路で通流した後に冷却水
49に放出される。また電気発熱体31で発生した熱の
一部は、電気発熱体31の上面部,側面部および伝熱体
33,測定対象体19,伝熱体42の側面部などから周
囲空間に放出される。
Since the thermal conductivity measuring device 2 for a flat plate-like member according to an embodiment of the present invention shown in FIGS. 3 to 5 has the above-described configuration, most of the heat generated by the electric heating element 31 is used. Is the electric heating element 31 → the heat transfer element 33 → the lower end face 33d → the measuring object 19 → the upper end face 42u → the heat transfer element 42
The heat is released to the cooling water 49 after flowing through the path from the heat radiator 43 to the cooling water 49. Part of the heat generated by the electric heating element 31 is released to the surrounding space from the upper surface and side surfaces of the electric heating element 31 and the side surfaces of the heat transfer element 33, the measurement object 19, and the heat transfer element 42. .

【0023】ところが熱伝導率測定装置2では断熱層6
が配設されていることによって、周囲空間に放出される
この熱の量は抑制され、少量の熱が周囲空間に放散され
ることになるが、この放散熱を供給するために熱伝導率
測定装置2内に放散熱用の熱流が存在する。この放散熱
用の熱流が通流する部位は、熱伝導率測定装置2では伝
熱体33,測定対象体19,伝熱体42の側面部付近に
実質的に限定される。したがって、有底孔33aが形成
されている下部端面33d,上部端面42uの中心部分
(熱電対8A,熱電対8Dの温度検出部が取り付けられ
ている)では、放散熱用の熱流による影響を受けない。
However, in the thermal conductivity measuring device 2, the heat insulating layer 6
The amount of this heat released to the surrounding space is suppressed by the arrangement, and a small amount of heat is dissipated to the surrounding space. There is a heat flow for dissipated heat in the device 2. In the thermal conductivity measuring device 2, the portion through which the heat flow for dissipating heat flows is substantially limited to the vicinity of the side surfaces of the heat transfer body 33, the measurement object 19, and the heat transfer body. Therefore, the lower end surface 33d and the center portion of the upper end surface 42u where the bottomed holes 33a are formed (where the temperature detecting portions of the thermocouples 8A and 8D are attached) are affected by the heat flow for dissipating heat. Absent.

【0024】そうして熱伝導率測定装置2は銅材(良好
な熱伝導性を持つ素材)製の前記形状を持つ伝熱体33
および伝熱体42を備える。このことで、伝熱体33は
下部端面33dを通過する部位での熱流の密度を均等化
し、伝熱体42は上部端面42uを通過する部位での熱
流の密度を均等化する。これ等のことから熱伝導率測定
装置2では、電気発熱体31で発生されて、熱伝導率の
測定用として測定対象体19に与えられる熱流は、下部
端面33d,上部端面42uの熱電対8A,熱電対8D
の温度検出部が取り付けられている付近では、実質的に
均一な密度となる。このことにより、熱伝導率測定装置
2では測定対象体19がFRP材などの局部熱伝導率値
が面方向で不均一な測定対象体であっても、測定対象体
19に与える熱流の面積密度は少なくとも熱電対8Aお
よび熱電対8Dが取り付けられている付近では均一にな
る。
Then, the thermal conductivity measuring device 2 is provided with a heat transfer body 33 having the above-mentioned shape made of a copper material (a material having good thermal conductivity).
And a heat transfer body 42. Thus, the heat transfer body 33 equalizes the heat flow density at a portion passing through the lower end face 33d, and the heat transfer body 42 equalizes the heat flow density at a portion passing through the upper end face 42u. For these reasons, in the thermal conductivity measuring device 2, the heat flow generated by the electric heating element 31 and given to the measuring object 19 for measuring the thermal conductivity is the thermocouple 8A of the lower end face 33d and the upper end face 42u. , Thermocouple 8D
In the vicinity where the temperature detecting section is attached, the density becomes substantially uniform. Thus, in the thermal conductivity measuring apparatus 2, even if the measurement object 19 is a measurement object such as an FRP material whose local thermal conductivity value is not uniform in the plane direction, the area density of the heat flow applied to the measurement object 19 Is uniform at least in the vicinity where the thermocouples 8A and 8D are attached.

【0025】したがって、熱電対8Aおよび熱電対8D
の温度検出部は、測定対象体19の両平面(従来例によ
る平面99a,99bと同等)のそれぞれの平均温度を
A,tD として検出できる。また、熱電対8A,熱電
対8Dの温度検出部は、その先端部が下部端面33d,
上部端面42uと同一面になるように形成されているの
で(図4を参照)、測定対象体19の熱伝導率測定装置
2への装填位置が面方向にずれても、測定対象体19の
両平面の温度の検出に影響を受けることは無い。
Therefore, thermocouple 8A and thermocouple 8D
Can detect the average temperatures of both planes of the measurement object 19 (equivalent to the planes 99a and 99b according to the conventional example) as t A and t D , respectively. The temperature detectors of the thermocouples 8A and 8D have lower ends 33d at their distal ends.
Since it is formed so as to be flush with the upper end surface 42u (see FIG. 4), even if the position where the measurement target 19 is loaded in the thermal conductivity measuring device 2 is shifted in the plane direction, the measurement target 19 is not moved. It is not affected by the detection of the temperature of both planes.

【0026】そうして、熱伝導率測定装置2では測定対
象体19の熱伝導率λX は次記のようにして求める。ま
ず、測定対象体19を発熱体部用の伝熱体33の下部端
面33dと放熱体部用の伝熱体42の上部端面42uと
の間に必要に応じて両面にグリスなど塗布して介挿し、
放熱体43に冷却水49を通流させたうえで電気発熱体
31に通電する。熱電対8A,8Dの出力が飽和するな
ど各部の温度が一定状態になった時点で、熱電対8A,
8Dの出力を測定対象体19の両面の温度値であるとし
て、その温度値tA ,tD を測定する。厚さdを持つ平
板状の測定対象体19の熱伝導率λX は、この温度値t
A ,tD と、測定対象体19の面積S,電気発熱体31
に与えた電力Pを基にして式(2)により得られる。
Then, in the thermal conductivity measuring device 2, the thermal conductivity λ X of the measurement object 19 is obtained as follows. First, the measurement object 19 is applied between the lower end face 33d of the heat transfer body 33 for the heating element portion and the upper end face 42u of the heat transfer body 42 for the heat radiating section by applying grease or the like to both surfaces as necessary. Insert,
After the cooling water 49 is passed through the radiator 43, the electric heating element 31 is energized. When the temperature of each part becomes constant, such as when the outputs of the thermocouples 8A and 8D are saturated, the thermocouples 8A and 8D
Assuming that the output of 8D is the temperature value of both surfaces of the measurement object 19, the temperature values t A and t D are measured. The thermal conductivity λ X of the plate-shaped measurement object 19 having the thickness d is represented by the temperature value t
A, and t D, the area of the measured object 19 S, electrical heating element 31
(2) based on the power P given to

【0027】[0027]

【数2】 λX =βP・d/{S・(tA −tD )} …………………………(2) ただし、βは電気発熱体31に与える電力Pに対する熱
伝導率測定装置2の断熱層6からの放熱量に関する補正
係数である。
Λ X = βP · d / {S · (t A −t D )} (2) where β is heat conduction with respect to electric power P applied to the electric heating element 31. It is a correction coefficient relating to the amount of heat radiation from the heat insulating layer 6 of the rate measuring device 2.

【0028】この補正係数βは断熱層6から放散される
熱量を計算など適宜の方法で求めることで得られる。す
なわち、熱伝導率測定装置2は、平板状の測定対象体1
9がFRP材などの充填材などを用いたものであって
も、その熱伝導率値を高精度で求めることができる。
The correction coefficient β is obtained by calculating the amount of heat dissipated from the heat insulating layer 6 by an appropriate method such as calculation. That is, the thermal conductivity measuring device 2 is a flat plate-shaped measuring object 1.
Even if the material 9 uses a filler such as an FRP material, the thermal conductivity value can be obtained with high accuracy.

【0029】ところでこの発明による平板状部材用の熱
伝導率測定装置では、発熱体部用の伝熱体および放熱体
部用の伝熱体は、伝熱体33,伝熱体42のように良好
な熱伝導性を持つ素材を用いてマッシブな構造にするこ
とは、必ずしも必要ではない。すなわち発熱体部用の伝
熱体および放熱体部用の伝熱体は、良好な熱伝導性を持
つ素材を用いて測定対象体19の両面に接する部位が測
定対象体19とほぼ同一の面形状・寸法を持つ平面状端
面を持つように形成され、この平面状端面に温度検出部
が配設され、例えば電気発熱体(電気発熱体31のよう
に測定対象体19と同一の面形状・寸法を持つ平板状の
外形に形成される必要は必ずしも無い)で発生されて測
定対象体19に与えられる熱流の面積密度が測定対象体
19の面に接する部位で実質的に均一とされるならば、
発熱体部用の伝熱体および放熱体部用の伝熱体は適宜の
構造を持つものでよい。
In the thermal conductivity measuring apparatus for a flat plate member according to the present invention, the heat transfer body for the heating element and the heat transfer body for the heat radiating section are like the heat transfer bodies 33 and 42. It is not always necessary to form a massive structure using a material having good thermal conductivity. That is, the heat transfer body for the heating element portion and the heat transfer body for the heat radiator portion are made of a material having good thermal conductivity, and the portions in contact with both surfaces of the measurement object 19 are substantially the same as the surface of the measurement object 19. It is formed so as to have a planar end surface having a shape and dimensions, and a temperature detecting unit is disposed on the planar end surface. For example, an electric heating element (such as an electric heating element 31 having the same surface shape and If the area density of the heat flow generated and given to the measurement object 19 is substantially uniform at a portion in contact with the surface of the measurement object 19, it is not always necessary to form the plate into a flat external shape having dimensions. If
The heat transfer body for the heating element and the heat transfer body for the heat radiator may have an appropriate structure.

【0030】すなわち、発熱体部用の伝熱体および/ま
たは放熱体部用の伝熱体は、例えば、低沸点を持つ冷媒
を封入し、沸騰熱伝達および凝縮熱伝達を用いて熱流を
伝達するようにしてもよい。ただし、発熱体部用の伝熱
体33および放熱体部用の伝熱体42を前記した沸騰熱
伝達および凝縮熱伝達を利用するものと対比すると、真
空引き処理や真空封じ切り処理などの複雑な処理が不要
なことで、比較的に単純な構成によって目的を達成でき
ると言える。
That is, the heat transfer element for the heating element section and / or the heat transfer element for the heat radiating section encloses, for example, a refrigerant having a low boiling point, and transmits a heat flow using boiling heat transfer and condensation heat transfer. You may make it. However, when the heat transfer member 33 for the heating element portion and the heat transfer member 42 for the heat radiating portion are compared with those using the above-mentioned boiling heat transfer and condensation heat transfer, complicated processes such as vacuum evacuation processing and vacuum sealing processing are required. Since no complicated processing is required, it can be said that the object can be achieved with a relatively simple configuration.

【0031】次に、図6,図7を用いてこの発明の実施
の形態の異なる例による平板状部材用の熱伝導率測定装
置を説明する。ここで図6はこの発明の実施の形態の異
なる例による平板状部材用の熱伝導率測定装置を測定対
象体,既知サンプル部材と共に示す一部破断した側面図
であり、図7は図6に示した温度検出部用の中間取付体
の要部を示す側面断面図である。なお以下の説明におい
ては、図3〜図5に示したこの発明の熱伝導率測定装置
および測定対象体と同一部分には同じ符号を付しその説
明を省略する。また以後の説明に用いる図中には、図3
〜図5で付した符号については極力代表的な符号のみを
記すようにしている。
Next, a thermal conductivity measuring apparatus for a flat member according to another embodiment of the present invention will be described with reference to FIGS. Here, FIG. 6 is a partially cutaway side view showing a thermal conductivity measuring apparatus for a plate-like member according to a different example of the embodiment of the present invention together with a measurement object and a known sample member. FIG. It is a side sectional view showing the important section of the shown intermediate attachment for temperature detection parts. In the following description, the same parts as those of the thermal conductivity measuring device and the object to be measured shown in FIGS. 3 to 5 are denoted by the same reference numerals, and the description thereof will be omitted. In the drawings used in the following description, FIG.
5 are only described as representative as possible.

【0032】図6,図7において、2Aは、図3〜図5
に示したこの発明による熱伝導率測定装置2に対し、温
度検出部用の中間取付体5を追加して備えるようにした
平板状部材用の熱伝導率測定装置であり、18は既知サ
ンプル部材である。既知サンプル部材18は、その熱伝
導率λS が既知の平板状部材であり、測定対象体19と
同一の面形状・寸法を持つと共にこの事例の場合にはそ
の厚さも測定対象体19と同一の厚さdを持つ。中間取
付体5は、良好な熱伝導性を持つ素材である銅材を用い
て直方体状に形成され、その上部端面5uおよび下部端
面5dは同一の形状・寸法を有して平面状に形成され、
その面形状・寸法は測定対象体19の面形状・寸法と同
一である。
In FIGS. 6 and 7, 2A corresponds to FIGS.
Is a thermal conductivity measuring device for a plate-like member in which an intermediate mounting body 5 for a temperature detecting portion is added to the thermal conductivity measuring device 2 according to the present invention shown in FIG. It is. The known sample member 18 is a plate-like member having a known thermal conductivity λ S, has the same surface shape and dimensions as the measurement object 19, and in this case, has the same thickness as the measurement object 19. Having a thickness d of The intermediate mounting body 5 is formed in a rectangular parallelepiped shape using a copper material which is a material having good thermal conductivity, and the upper end surface 5u and the lower end surface 5d are formed in a planar shape having the same shape and dimensions. ,
The surface shape and dimensions are the same as the surface shape and dimensions of the measurement object 19.

【0033】中間取付体5の上部端面5uの中央部には
小径の有底孔5aが、下部端面5dの中央部には小径の
有底孔5bが、この両有底孔5a,5bに接続させて中
間取付体5の側面から小径の有底孔5cがそれぞれ形成
されている。なお両有底孔5a,5bの形成位置は、伝
熱体33に形成されている有底孔33aと対向する部位
である。この有底孔5a,5cには温度検出素子である
熱電対8Bが、また有底孔5b,5cには温度検出素子
である熱電対8Cが図7に示すように装填される。な
お、熱電対8B,8Cの内容,有底孔の形成位置,中間
取付体5への装填方法などは熱電対8Aの場合と同様で
あるので、重複を避けてその説明を省略する。
A small-diameter bottomed hole 5a is connected to the center of the upper end surface 5u of the intermediate mounting member 5, and a small-diameter bottomed hole 5b is connected to the center of the lower end surface 5d. Thus, small-diameter bottomed holes 5c are respectively formed from the side surfaces of the intermediate mounting body 5. The positions where the bottomed holes 5 a and 5 b are formed are portions facing the bottomed holes 33 a formed in the heat transfer body 33. The bottomed holes 5a and 5c are loaded with a thermocouple 8B as a temperature detecting element, and the bottomed holes 5b and 5c are loaded with a thermocouple 8C as a temperature detecting element as shown in FIG. Note that the contents of the thermocouples 8B and 8C, the formation positions of the bottomed holes, the method of loading the intermediate mounting member 5, and the like are the same as those of the thermocouple 8A.

【0034】そうして、中間取付体5と既知サンプル部
材18とは、中間取付体5の上部端面5uが測定対象体
19の発熱体部用の伝熱体33に接する面とは反対側の
面に接し、中間取付体5の下部端面5dが既知サンプル
部材18の一方の面に接し、また、既知サンプル部材1
8の他方の面が放熱体部用の伝熱体42の上部端面42
uに接するようにして、熱伝導率測定装置2Aに配設さ
れる。なお、中間取付体5の上部端面5uと測定対象体
19との間、中間取付体5の下部端面5dと既知サンプ
ル部材18との間、あるいは、既知サンプル部材18と
伝熱体42の上部端面42uとの間のそれぞれには、接
触熱抵抗を低減するために必要に応じてグリスなどの塗
布を行うことができる。
Thus, the intermediate mounting body 5 and the known sample member 18 are arranged such that the upper end surface 5u of the intermediate mounting body 5 is on the opposite side to the surface in contact with the heat transfer body 33 for the heating element portion of the measurement object 19. The lower end surface 5d of the intermediate mounting body 5 contacts one surface of the known sample member 18, and the known sample member 1
8 is the upper end surface 42 of the heat transfer body 42 for the heat dissipating part.
It is arranged in the thermal conductivity measuring device 2A so as to be in contact with u. In addition, between the upper end face 5u of the intermediate mounting body 5 and the measurement object 19, between the lower end face 5d of the intermediate mounting body 5 and the known sample member 18, or between the known sample member 18 and the heat transfer body 42. Grease or the like can be applied to each of the portions between 42u and 42u as needed to reduce the contact thermal resistance.

【0035】図6,図7に示すこの発明の実施の形態の
異なる例による平板状部材用の熱伝導率測定装置2Aで
は前述の構成としたので、電気発熱体31で発生した熱
の内の多くの部分は、電気発熱体31→伝熱体33→下
部端面33d→測定対象体19→上部端面5u→中間取
付体5→下部端面5d→既知サンプル部材18→上部端
面42u→伝熱体42→放熱体43→冷却水49の経路
で通流した後に冷却水49に放出される。そうして熱伝
導率測定装置2Aでは、前述熱伝導率測定装置2の場合
と同様な理由で、測定対象体19と既知サンプル部材1
8を通流する熱流の面積密度は、少なくとも熱電対8
A,熱電対8B,熱電対8Cおよび熱電対8Dが取り付
けられている付近で均一になると共に、測定対象体19
と既知サンプル部材18とでは同一値となる。
In the thermal conductivity measuring apparatus 2A for a plate-like member according to a different embodiment of the present invention shown in FIGS. 6 and 7, the above-described configuration is adopted. Many parts include the electric heating element 31 → the heat transfer element 33 → the lower end face 33 d → the measuring object 19 → the upper end face 5 u → the intermediate mounting body 5 → the lower end face 5 d → the known sample member 18 → the upper end face 42 u → the heat transfer element 42. The heat is released to the cooling water 49 after flowing through the path from the heat radiator 43 to the cooling water 49. Then, in the thermal conductivity measuring device 2A, for the same reason as in the case of the thermal conductivity measuring device 2, the measurement object 19 and the known sample
The area density of the heat flow flowing through at least the thermocouple 8
A, the thermocouple 8B, the thermocouple 8C, and the thermocouple 8D become uniform in the vicinity where the thermocouple 8D is attached.
And the known sample member 18 have the same value.

【0036】そうして、熱伝導率測定装置2Aでは測定
対象体19の熱伝導率λX は次記のようにして求める。
まず測定対象体19および既知サンプル部材18を、測
定対象体19は伝熱体33の下部端面33dと中間取付
体5の上部端面5uとの間に、また既知サンプル部材1
8は中間取付体5の下部端面5dと伝熱体42の上部端
面42uとの間にそれぞれ必要に応じて両面にグリスな
どを塗布して介挿し、放熱体43に冷却水49を通流さ
せたうえで電気発熱体31に通電する。
Then, in the thermal conductivity measuring device 2A, the thermal conductivity λ X of the measuring object 19 is obtained as follows.
First, the measurement object 19 and the known sample member 18 are measured. The measurement object 19 is located between the lower end surface 33 d of the heat transfer body 33 and the upper end surface 5 u of the intermediate mounting member 5.
Numeral 8 applies grease or the like to both surfaces between the lower end surface 5d of the intermediate mounting member 5 and the upper end surface 42u of the heat transfer member 42 as necessary, and allows the cooling water 49 to flow through the radiator 43. Then, the electric heating element 31 is energized.

【0037】熱電対8A〜8Dの出力が飽和するなど各
部の温度が一定状態になった時点で、熱電対8A,8B
の出力を測定対象体19の両面の温度値であるとし、熱
電対8C,8Dの出力を既知サンプル部材18の両面の
温度値であるとして、それ等の温度値tA ,tB ,tC
およびtD を測定する。平板状の測定対象体19の熱伝
導率λX は、測定対象体19と既知サンプル部材18の
厚さが同一であることから、これ等の温度値tA 〜tD
と既知サンプル部材18の熱伝導率λS とを用い、式
(3)により得られる。
When the temperature of each part becomes constant, such as when the outputs of the thermocouples 8A to 8D are saturated, the thermocouples 8A and 8B
Are the temperature values on both surfaces of the measurement object 19, and the outputs of the thermocouples 8C and 8D are the temperature values on both surfaces of the known sample member 18, and the temperature values t A , t B , and t C are obtained.
And t D are measured. Thermal conductivity lambda X of a flat measurement object 19, since the thickness of the measurement object 19 and the known sample member 18 is the same, this temperature value, such as t A ~t D
And the thermal conductivity λ S of the known sample member 18, and is obtained by equation (3).

【0038】[0038]

【数3】 λX =λS (tC −tD )/(tA −tB ) …………………………(3) すなわち、熱伝導率測定装置2Aは平板状の測定対象体
19がFRP材などの充填材などを用いたものであって
も、熱伝導率λS が既知の平板状の既知サンプル部材1
8を用いることができることで、前述熱伝導率測定装置
2が持つ長所をそのまま保持しながら、前記補正係数β
を不要にできるという新たな長所が得られる。そうして
熱伝導率測定装置2Aを熱伝導率測定装置2と対比する
と、熱伝導率測定装置2の場合よりも測定項目を削減で
きると共に、測定精度をさらに向上できる。
Λ X = λ S (t C −t D ) / (t A −t B ) (3) That is, the thermal conductivity measuring device 2A is a flat-plate type measurement. Even if the target body 19 uses a filler such as an FRP material, the plate-like known sample member 1 having a known thermal conductivity λ S is used.
8 allows the correction coefficient β to be maintained while maintaining the advantages of the thermal conductivity measuring device 2.
A new advantage is obtained that can be eliminated. In this way, when the thermal conductivity measuring device 2A is compared with the thermal conductivity measuring device 2, the number of measurement items can be reduced as compared with the case of the thermal conductivity measuring device 2, and the measurement accuracy can be further improved.

【0039】最後に、図1,図2を用いてこの発明の実
施の形態のさらに異なる例による平板状部材用の熱伝導
率測定装置を説明する。ここで図1はこの発明の実施の
形態のさらに異なる例による平板状部材用の熱伝導率測
定装置を測定対象体,既知サンプル部材と共に示す一部
破断した側面図であり、図2は図1に示した発熱体部の
温度検出部用の取付体の要部を示す側面断面図である。
なお以下の説明においては、図6,図7に示したこの発
明の熱伝導率測定装置および既知サンプル部材と同一部
分には同じ符号を付しその説明を省略する。また以後の
説明に用いる図中には、図6,図7で付した符号につい
ては極力代表的な符号のみを記すようにしている。
Lastly, a thermal conductivity measuring apparatus for a plate-like member according to still another embodiment of the present invention will be described with reference to FIGS. Here, FIG. 1 is a partially cutaway side view showing a thermal conductivity measuring apparatus for a plate-like member according to still another example of the embodiment of the present invention together with an object to be measured and a known sample member. FIG. FIG. 4 is a side cross-sectional view illustrating a main part of a mounting body for a temperature detection unit of the heat generating unit illustrated in FIG.
In the following description, the same parts as those of the thermal conductivity measuring device and the known sample member of the present invention shown in FIGS. 6 and 7 are denoted by the same reference numerals, and description thereof will be omitted. In addition, in the drawings used in the following description, only reference numerals shown in FIGS. 6 and 7 are represented as representative as possible.

【0040】図1,図2において、1は、図6,図7に
示したこの発明による熱伝導率測定装置2Aに対し、発
熱体部3Aおよび放熱体部4Aに替えてそれぞれ発熱体
部3,放熱体部4を用いるようにした平板状部材用の熱
伝導率測定装置である。発熱体部3を発熱体部3Aと対
比すると、発熱体部3では発熱体部3Aが持つ発熱体部
用の伝熱体33に替えて、発熱体部用の伝熱体32およ
び温度検出部用の取付体39を用いることのみが異な
る。伝熱体32は伝熱体33から有底孔33a,33c
などの熱電対8Aの装填部を除去したものと言うことが
でき、銅材を用いて直方体状に形成されることおよび面
形状・寸法は伝熱体33と同一であるので、重複を避け
てその説明を省略する。
In FIGS. 1 and 2, reference numeral 1 denotes a heat-generating unit 3A in place of the heat-generating unit 3A and the heat-radiating unit 4A in the thermal conductivity measuring apparatus 2A according to the present invention shown in FIGS. , A thermal conductivity measuring device for a plate-like member using the radiator 4. When the heating element 3 is compared with the heating element 3A, the heating element 3 is replaced with the heating element 33 of the heating element 3A and the heat transfer element 32 for the heating element and the temperature detection section. The only difference is the use of a mounting body 39 for the vehicle. The heat transfer body 32 extends from the heat transfer body 33 to the bottomed holes 33a and 33c.
It can be said that the mounting portion of the thermocouple 8A is removed, and since it is formed in a rectangular parallelepiped shape using a copper material and has the same surface shape and dimensions as the heat transfer body 33, avoid duplication. The description is omitted.

【0041】取付体39は、良好な熱伝導性を持つ素材
である銅材を用いて直方体状に形成され、その上部端面
39uおよび下部端面39dは同一の形状・寸法を有し
て平面状に形成され、その面形状・寸法は測定対象体1
9の面形状・寸法と同一である。取付体39の下部端面
39dの中央部には小径の有底孔39aが、この有底孔
39aに接続させて取付体39の側面から小径の有底孔
39cがそれぞれ形成されている。なお有底孔39aの
形成位置は、前記伝熱体33に形成された有底孔33a
の場合と全く同一の部位である。
The mounting member 39 is formed in a rectangular parallelepiped shape using a copper material which is a material having good thermal conductivity, and its upper end surface 39u and lower end surface 39d have the same shape and dimensions and are flat. Formed and its surface shape and dimensions are measured object 1
9 are the same as those in FIG. A small-diameter bottomed hole 39a is formed in the center of the lower end surface 39d of the attachment body 39, and a small-diameter bottomed hole 39c is formed from the side surface of the attachment body 39 so as to be connected to the bottomed hole 39a. The position where the bottomed hole 39a is formed is the bottomed hole 33a formed in the heat transfer body 33.
This is exactly the same site as in the case of.

【0042】この有底孔39a,39cには熱電対8A
が図2に示すように装填される。なお、熱電対Aの取付
体39への装填方法は伝熱体33の場合と全く同一であ
るので、重複を避けてその説明を省略する。また取付体
39の構造は前記中間取付体5の構造とかなり類似して
おり、その相異点は熱電対を装填するために端面に形成
される有底孔として、一方の端面に有底孔39aだけが
形成されることのみである。このため、取付体39とし
て中間取付体5を用いることもできる。
The bottomed holes 39a and 39c have thermocouples 8A.
Are loaded as shown in FIG. Note that the method of loading the thermocouple A into the mounting body 39 is exactly the same as that of the heat transfer body 33, and thus the description is omitted to avoid duplication. The structure of the mounting body 39 is quite similar to the structure of the intermediate mounting body 5 except for a bottomed hole formed in an end face for loading a thermocouple, and a bottomed hole in one end face. It is only that 39a is formed. Therefore, the intermediate mounting body 5 can be used as the mounting body 39.

【0043】また、放熱体部4を前記放熱体部4Aと対
比すると、放熱体部4では放熱体部4Aが持つ放熱体部
用の伝熱体42に替えて、放熱体部用の伝熱体41およ
び温度検出部用の取付体49を用いることのみが異な
る。この伝熱体41は前記伝熱体42から有底孔などの
熱電対8Dの装填部を除去したものと言うことができる
が、この事例の場合には伝熱体41は発熱体部用の伝熱
体32と全く同一の構造・形状・寸法を持つ。そうして
取付体49は取付体39と全く同一の構造・形状・寸法
を持ち、取付体39との相異点は上下を反転させて用い
ることおよび,装填される熱電対が熱電対8Dであるこ
とだけである。
When the heat dissipator 4 is compared with the heat dissipator 4A, the heat dissipator 4 is replaced by the heat dissipator 42 for the heat dissipator included in the heat dissipator 4A. The only difference is the use of the body 41 and the mounting body 49 for the temperature detecting section. It can be said that the heat transfer member 41 is obtained by removing the thermocouple 8D from the heat transfer member 42, such as a bottomed hole, but in this case, the heat transfer member 41 is used for the heat generating member. It has exactly the same structure, shape, and dimensions as the heat transfer body 32. Thus, the mounting body 49 has exactly the same structure, shape and dimensions as the mounting body 39, and is different from the mounting body 39 in that it is used upside down, and the thermocouple to be loaded is a thermocouple 8D. There is only one thing.

【0044】そうして、取付体39,49は、取付体3
9の上部端面39uが発熱体部用伝熱体32の下部端面
に接し、取付体39の下部端面39dが測定対象体19
の上面に接し、また、取付体49の上部端面が既知サン
プル部材18の下面に接し、取付体49の下部端面が伝
熱体41の上部端面に接するようにして、熱伝導率測定
装置1に配設される。なお、伝熱体32の下部端面,取
付体39の上部端面39uおよび下部端面39d,取付
体49の上部および下部端面,さらには,伝熱体41の
上部端面は、いずれも平滑な面とされているが、伝熱体
32の下部端面と取付体39の上部端面39uとの間、
および取付体49の下部端面と伝熱体41の上部端面と
の間の接触熱抵抗を低減するために、これ等の接合部に
はグリスなどの塗布や軟質金属(例えば、インジウム)
製の箔などの介挿を行うことが好ましい。
Then, the attachments 39 and 49 are attached to the attachment 3
9 is in contact with the lower end surface of the heat-generating body heat conductor 32, and the lower end surface 39d of the mounting body 39 is
And the upper end surface of the mounting body 49 is in contact with the lower surface of the known sample member 18, and the lower end surface of the mounting body 49 is in contact with the upper end surface of the heat transfer body 41. Will be arranged. The lower end face of the heat transfer body 32, the upper end face 39u and the lower end face 39d of the mounting body 39, the upper and lower end faces of the mounting body 49, and the upper end face of the heat transfer body 41 are all smooth surfaces. However, between the lower end face of the heat transfer body 32 and the upper end face 39u of the mounting body 39,
In order to reduce the contact thermal resistance between the lower end surface of the mounting body 49 and the upper end surface of the heat transfer member 41, these joints are coated with grease or a soft metal (for example, indium).
It is preferable to insert a foil or the like.

【0045】図1,図2に示すこの発明の実施の形態の
さらに異なる例による平板状部材用の熱伝導率測定装置
1では前述の構成としたので、電気発熱体31で発生し
た熱の内の多くの部分は、電気発熱体31→伝熱体32
→取付体39→下部端面39d→測定対象体19→中間
取付体5→既知サンプル部材18→上部端面(端面39
dと同様)→取付体49→伝熱体41→放熱体43→冷
却水49の経路で通流した後に冷却水49に放出され
る。この熱伝導率測定装置1での熱流の経路は、前述熱
伝導率測定装置2Aの場合と基本的に同一であるので、
熱伝導率測定装置1の場合の平板状の測定対象体19の
熱伝導率λX は、熱伝導率測定装置2Aの場合と同様に
前記式(3)を用いて得ることができるので、重複を避
けてその説明を省略する。
The thermal conductivity measuring apparatus 1 for a flat plate member according to a further different embodiment of the present invention shown in FIGS. 1 and 2 has the above-described configuration. Many parts of the electric heating element 31 → heat transfer element 32
→ mounting body 39 → lower end face 39 d → measuring object 19 → intermediate mounting body 5 → known sample member 18 → upper end face (end face 39
(same as d) → the mounting body 49 → the heat transfer body 41 → the radiator 43 → the cooling water 49 and then discharged to the cooling water 49. The path of the heat flow in the thermal conductivity measuring device 1 is basically the same as in the case of the thermal conductivity measuring device 2A described above.
Since the thermal conductivity λ X of the plate-shaped measurement object 19 in the case of the thermal conductivity measuring device 1 can be obtained by using the above equation (3) in the same manner as in the case of the thermal conductivity measuring device 2A, the overlap is obtained. And its explanation is omitted.

【0046】そうして熱伝導率測定装置1は、前述熱伝
導率測定装置2Aが持つ長所をそのまま保持しながら、
熱電対8A,8Dの装着先を熱伝導率測定装置2Aの場
合の伝熱体33,伝熱体42からこれ等よりも薄くて軽
量な取付体39,49とすることで、熱電対8A,8D
の前記有底孔への装着作業が容易になる。すなわち熱伝
導率測定装置1は、熱伝導率測定装置2,2Aの場合と
比較して熱電対8A,8Dの装着作業に関する製造原価
を低減することができる。
Thus, the thermal conductivity measuring device 1 maintains the advantages of the thermal conductivity measuring device 2A,
By mounting the thermocouples 8A, 8D from the heat transfer bodies 33, 42 in the case of the thermal conductivity measuring device 2A to the thinner and lighter mounting bodies 39, 49, the thermocouples 8A, 8D can be mounted. 8D
Can be easily attached to the bottomed hole. That is, the thermal conductivity measuring device 1 can reduce the manufacturing cost related to the mounting work of the thermocouples 8A and 8D as compared with the case of the thermal conductivity measuring devices 2 and 2A.

【0047】前述の説明では、既知サンプル部材18は
電気発熱体31で発生される熱流に関し測定対象体19
の下流側に配設されるとしてきたが、これに限定される
ものではなく、測定対象体19の上流側に配設してもよ
いものである。また前述の説明では、既知サンプル部材
18の厚さは測定対象体19の厚さdと同一であるとし
てきたが、これに限定されるものではなく、既知サンプ
ル部材18の厚さは測定対象体19の厚さdと異なって
も何等差し支えは無い。しかしながら式(3)をこのこ
とに対応させて見直す必要がある。
In the above description, the known sample member 18 is related to the heat flow generated by the electric heating element 31 and the object 19 to be measured.
Is arranged downstream, but is not limited to this, and may be arranged upstream of the measurement object 19. Further, in the above description, the thickness of the known sample member 18 has been described as being the same as the thickness d of the measurement object 19; however, the present invention is not limited to this. There is no problem even if it is different from the thickness d of 19. However, it is necessary to review equation (3) in response to this.

【0048】[0048]

【発明の効果】この発明による平板状部材用の熱伝導率
測定装置においては、前記課題を解決するための手段の
項で述べた構成とすることで、次記する効果を得られ
る。 前記課題を解決するための手段の項の第(1)項,第
(2)項による構成とすることで、測定対象体,発熱体
部側用温度検出部,放熱体部側用温度検出部を通流する
熱流の面積密度を同一にすることができる。また、測定
対象体の熱伝導率測定装置への装填位置が面方向にずれ
たとしても、測定対象体の厚さ方向に生じる温度差には
実質的に変化を与えない。これ等のことにより、局部熱
伝導率値が面方向で不均一な測定対象体であっても測定
対象体の厚さ方向に生じる温度差の高精度での測定が可
能になり、平板状部材の熱伝導率を高精度で測定するこ
とが可能になる。また、
According to the thermal conductivity measuring apparatus for a flat member according to the present invention, the following effects can be obtained by adopting the structure described in the section of the means for solving the above problems. By adopting the configuration according to the first or second mode of the invention, the object to be measured, the temperature detector for the heating element, and the temperature detector for the heat radiator The area density of the heat flow passing through can be the same. Further, even if the position at which the object to be measured is loaded into the thermal conductivity measuring device shifts in the plane direction, the temperature difference occurring in the thickness direction of the object to be measured does not substantially change. Due to these facts, even if the local thermal conductivity value is non-uniform in the plane direction, it is possible to measure the temperature difference occurring in the thickness direction of the target object with high accuracy, and the flat plate-shaped member can be measured. Can be measured with high accuracy. Also,

【0049】前記課題を解決するための手段の項の第
(3)項による構成とすることで、測定対象体,発熱体
および発熱体部用の伝熱体の面形状・寸法を全てほぼ同
一とすることができて発熱体部用の伝熱体の構造の単純
化が可能になり、前記項による効果を保持しながら平
板状部材用の熱伝導率測定装置の製造原価の低減が可能
になる。さらにまた、 前記課題を解決するための手段の項の第(4)項によ
る構成とすることで、測定対象体および既知サンプル部
材のそれぞれの中央部分を通流する熱流の面積密度を同
一にすることができ、断熱層からの放熱量に関する補正
係数の配慮が不要になるので、平板状部材の熱伝導率の
測定精度のさらなる向上が可能になる。
By adopting the configuration according to the third aspect of the present invention, the surface shape and dimensions of the object to be measured, the heating element, and the heating element for the heating element portion are all substantially the same. It is possible to simplify the structure of the heat transfer body for the heating element portion, and it is possible to reduce the manufacturing cost of the thermal conductivity measurement device for the flat plate member while maintaining the effect according to the above item. Become. Still further, by adopting the configuration according to the mode (4) of the means for solving the above problems, the area density of the heat flow flowing through the respective central portions of the measurement object and the known sample member is made equal. Since it is not necessary to consider the correction coefficient regarding the amount of heat radiation from the heat insulating layer, the measurement accuracy of the thermal conductivity of the flat member can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態のさらに異なる例による
平板状部材用の熱伝導率測定装置を測定対象体,既知サ
ンプル部材と共に示す一部破断した側面図
FIG. 1 is a partially cut-away side view showing a thermal conductivity measuring apparatus for a plate-like member according to still another example of the embodiment of the present invention together with a measurement object and a known sample member.

【図2】図1に示した発熱体部の温度検出部用の取付体
の要部を示す側面断面図
FIG. 2 is a side sectional view showing a main part of a mounting body for a temperature detecting unit of the heating unit shown in FIG. 1;

【図3】この発明の実施の形態の一例による平板状部材
用の熱伝導率測定装置を測定対象体と共に示す一部破断
した側面図
FIG. 3 is a partially cutaway side view showing a thermal conductivity measuring apparatus for a plate-like member according to an embodiment of the present invention together with an object to be measured.

【図4】図3に示した発熱体部用の伝熱体の図3におけ
るQ部の断面図
FIG. 4 is a cross-sectional view of a portion Q in FIG. 3 of the heat transfer member for the heat generating portion shown in FIG. 3;

【図5】図3に示した放熱体の要部を示す図で、(a)
は上面図,(b)は図5(a)の側面図
FIG. 5 is a view showing a main part of the heat radiator shown in FIG. 3;
Is a top view, and (b) is a side view of FIG.

【図6】この発明の実施の形態の異なる例による平板状
部材用の熱伝導率測定装置を測定対象体,既知サンプル
部材と共に示す一部破断した側面図
FIG. 6 is a partially cutaway side view showing a thermal conductivity measuring apparatus for a plate-like member according to a different example of the embodiment of the present invention together with a measurement object and a known sample member.

【図7】図6に示した温度検出部用の中間取付体の要部
を示す側面断面図
FIG. 7 is a side sectional view showing a main part of the intermediate mounting body for the temperature detection unit shown in FIG. 6;

【図8】従来例の平板状部材用の熱伝導率測定装置の要
部を測定対象体と共に示す縦断面図
FIG. 8 is a longitudinal sectional view showing a main part of a conventional thermal conductivity measuring device for a plate-like member together with an object to be measured.

【符号の説明】[Explanation of symbols]

1 熱伝導率測定装置 18 既知サンプル部材 19 測定対象体 3 発熱体部 31 電気発熱体 32 伝熱体 39 取付体 4 放熱体部 41 伝熱体 43 放熱体 49 取付体 5 中間取付体 6 断熱層 61 断熱体 62 断熱体 7 加圧板 8A 熱電対 8B 熱電対 8C 熱電対 8D 熱電対 DESCRIPTION OF SYMBOLS 1 Thermal conductivity measuring device 18 Known sample member 19 Measurement object 3 Heating element part 31 Electric heating element 32 Heat transfer body 39 Mounting body 4 Heat radiating part 41 Heat transfer body 43 Heat radiating body 49 Mounting body 5 Intermediate mounting body 6 Heat insulation layer 61 Insulator 62 Insulator 7 Press plate 8A Thermocouple 8B Thermocouple 8C Thermocouple 8D Thermocouple

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電気発熱体と,平面状端面を有して電気発
熱体で発生された熱を前記平面状端面から測定対象体に
与えると共に平面状端面側に発熱体部側用の温度検出部
が配設された熱伝導性材製の発熱体部用の伝熱体を有す
る発熱体部と、放熱体と,前記電気発熱体で発生された
熱を測定対象体を介して発熱体部用の伝熱体の平面状端
面とほぼ同一の面形状・寸法を持つ平面状端面で受け取
って前記放熱体に移送すると共に平面状端面側に発熱体
部側用の温度検出部にほぼ対向させて配設された放熱体
部側用の温度検出部を持つ熱伝導性材製の放熱体部用の
伝熱体を有する放熱体部と、放熱体部用の伝熱体,測定
対象体および発熱体部の周囲に配置された断熱層とを備
え、発熱体部と放熱体部のそれぞれの平面状端面の間に
平板状で発熱体部用の伝熱体の平面状端面とほぼ同一の
面形状・寸法を持つ前記測定対象体が介挿され,この測
定対象体の両側の平面のそれぞれが発熱体部,放熱体部
の前記平面状端面に密着されることを特徴とする熱伝導
率測定装置。
1. An electric heating element, having a planar end face, applying heat generated by the electric heating element to the object to be measured from the planar end face, and detecting a temperature for the heating element portion on the planar end face side. Heating element having a heat conductor for a heating element made of a heat conductive material, and a heat radiator, and a heating element configured to transfer heat generated by the electric heating element via a measurement object. And received by a flat end face having substantially the same surface shape and dimensions as the flat end face of the heat transfer element, and transferred to the heat dissipating body. A radiator having a heat conductor for the radiator made of a thermally conductive material having a temperature detector for the radiator disposed on the side of the radiator, a radiator for the radiator, a measuring object and A heat insulating layer disposed around the heating element, wherein the heating element has a flat plate shape between the planar end faces of the heating element and the radiator; The measurement object having substantially the same surface shape and dimensions as the planar end face of the heat transfer body is interposed, and each of the flat surfaces on both sides of the measurement object is a planar end face of a heating element portion and a heat radiating portion. A thermal conductivity measuring device, which is closely adhered to.
【請求項2】請求項1に記載の熱伝導率測定装置におい
て、 前記発熱体部および/または前記放熱体部は発熱
体部側用の温度検出部,放熱体部側用の温度検出部を取
り付けるための温度検出部用の取付体を測定対象体側に
有し、この取付体は熱伝導性材製で発熱体部用の伝熱体
の測定対象体側の平面状端面とほぼ同一の面形状・寸法
を持つことを特徴とする熱伝導率測定装置。
2. The thermal conductivity measuring device according to claim 1, wherein the heating element and / or the radiator include a temperature detector for the heat generator and a temperature detector for the radiator. A mounting body for the temperature detecting unit for mounting is provided on the measurement object side, and this mounting body is made of a heat conductive material and has substantially the same surface shape as the planar end surface of the heat transfer body for the heating element section on the measurement object side. A thermal conductivity measuring device characterized by having dimensions.
【請求項3】請求項1または2に記載の熱伝導率測定装
置において、 前記電気発熱体は発熱体部用の伝熱体の平面状端面とほ
ぼ同等の面形状・寸法の範囲にその発熱部が分布して配
設され、発熱体部用の前記伝熱体は電気発熱体が接する
端面が測定対象体側の前記平面状端面とほぼ同一の面形
状・寸法を有する平面状に形成されることを特徴とする
熱伝導率測定装置。
3. The thermal conductivity measuring device according to claim 1, wherein the electric heating element generates heat within a range of surface shape and dimensions substantially equal to a planar end face of the heat transfer element for the heating element portion. The heat transfer element for the heating element portion is formed in a flat shape having an end surface in contact with an electric heating element having substantially the same surface shape and dimensions as the flat end surface on the measurement object side. A thermal conductivity measuring device, characterized in that:
【請求項4】請求項1から3までのいずれかに記載の熱
伝導率測定装置において、 前記発熱体部と測定対象体との間または測定対象体と前
記放熱体部との間に、発熱体部用の温度検出部にほぼ対
向する部位に温度検出部が配設された温度検出部用の中
間取付体と熱伝導率が既知の材料で作製された既知サン
プル部材とを備え、既知サンプル部材は測定対象体とほ
ぼ同一の面形状・寸法の平板状に形成され、中間取付体
は発熱体部用の前記伝熱体の測定対象体側の平面状端面
とほぼ同一の面形状・寸法を持つ平板状に形成されると
共に測定対象体に接して配設されることを特徴とする熱
伝導率測定装置。
4. The thermal conductivity measuring device according to claim 1, wherein heat is generated between the heating element and the object to be measured or between the object to be measured and the radiator. A known sample member including an intermediate mounting body for the temperature detection unit in which the temperature detection unit is disposed at a position substantially opposite to the temperature detection unit for the body, and a known sample member made of a material having a known thermal conductivity; The member is formed in the shape of a flat plate having substantially the same surface shape and dimensions as the object to be measured, and the intermediate mounting body has the same surface shape and dimensions as the planar end face of the heat transfer element for the heating element on the object to be measured side. A thermal conductivity measuring device, wherein the thermal conductivity measuring device is formed in a flat plate shape and disposed in contact with an object to be measured.
JP11194337A 1999-07-08 1999-07-08 Thermal conductivity measuring device Pending JP2001021512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11194337A JP2001021512A (en) 1999-07-08 1999-07-08 Thermal conductivity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11194337A JP2001021512A (en) 1999-07-08 1999-07-08 Thermal conductivity measuring device

Publications (1)

Publication Number Publication Date
JP2001021512A true JP2001021512A (en) 2001-01-26

Family

ID=16322920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11194337A Pending JP2001021512A (en) 1999-07-08 1999-07-08 Thermal conductivity measuring device

Country Status (1)

Country Link
JP (1) JP2001021512A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078988A1 (en) 2002-03-20 2003-09-25 Ngk Insulators, Ltd. Method of measuring thermal conductivity of honeycomb structure
KR20030092971A (en) * 2002-05-31 2003-12-06 김광우 A testing method and equipment of thermal conduction for plate glass
CN100437098C (en) * 2005-02-04 2008-11-26 鸿富锦精密工业(深圳)有限公司 Heat-conductive characteristic detecting device and detecting method
WO2012021021A2 (en) * 2010-08-12 2012-02-16 한국에너지기술연구원 Device and method for measuring dynamic thermal conductivity of micro-structured fluid
JP2012032196A (en) * 2010-07-29 2012-02-16 Espec Corp Thermal conduction measuring apparatus and thermal conduction measuring method
KR101904775B1 (en) 2018-03-14 2018-10-05 (재)한국건설생활환경시험연구원 Method of determination proper pressure of heat flow meter
CN109100390A (en) * 2018-08-03 2018-12-28 北京北交新能科技有限公司 A kind of plane table thermo

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1486774A1 (en) * 2002-03-20 2004-12-15 Ngk Insulators, Ltd. Method of measuring thermal conductivity of honeycomb structure
EP1486774A4 (en) * 2002-03-20 2008-03-05 Ngk Insulators Ltd Method of measuring thermal conductivity of honeycomb structure
US7682072B2 (en) 2002-03-20 2010-03-23 Ngk Insulators, Ltd. Method of measuring thermal conductivity of honeycomb structure
WO2003078988A1 (en) 2002-03-20 2003-09-25 Ngk Insulators, Ltd. Method of measuring thermal conductivity of honeycomb structure
KR20030092971A (en) * 2002-05-31 2003-12-06 김광우 A testing method and equipment of thermal conduction for plate glass
CN100437098C (en) * 2005-02-04 2008-11-26 鸿富锦精密工业(深圳)有限公司 Heat-conductive characteristic detecting device and detecting method
JP2012032196A (en) * 2010-07-29 2012-02-16 Espec Corp Thermal conduction measuring apparatus and thermal conduction measuring method
WO2012021021A2 (en) * 2010-08-12 2012-02-16 한국에너지기술연구원 Device and method for measuring dynamic thermal conductivity of micro-structured fluid
KR101141261B1 (en) 2010-08-12 2012-05-04 한국에너지기술연구원 Apparatus and method for measuring dynamic thermal conductivity of micro-structured fluid
WO2012021021A3 (en) * 2010-08-12 2012-05-18 한국에너지기술연구원 Device and method for measuring dynamic thermal conductivity of micro-structured fluid
US9304093B2 (en) 2010-08-12 2016-04-05 Korea Institute Of Energy Research Device and method for measuring dynamic thermal conductivity of micro-structure fluid
KR101904775B1 (en) 2018-03-14 2018-10-05 (재)한국건설생활환경시험연구원 Method of determination proper pressure of heat flow meter
CN109100390A (en) * 2018-08-03 2018-12-28 北京北交新能科技有限公司 A kind of plane table thermo

Similar Documents

Publication Publication Date Title
KR0145027B1 (en) Measuring thermal conductivity and apparatus therefor
US6508585B2 (en) Differential scanning calorimeter
JP4502256B2 (en) Flow sensor
US8166813B2 (en) Temperature sensor and method for its manufacture
WO2010103784A1 (en) Heat conduction measuring device and heat conduction measuring method
JPWO2009107209A1 (en) Measuring apparatus and thermal conductivity estimation method
US6530686B1 (en) Differential scanning calorimeter having low drift and high response characteristics
CN110168356A (en) Pyroconductivity measurement device and pyroconductivity measuring method
JP2001021512A (en) Thermal conductivity measuring device
Nagai et al. Thermal conductivity measurement of molten silicon by a hot-disk method in short-duration microgravity environments
JP5078703B2 (en) Apparatus and method for measuring thermal conductivity of thermal bonding material
JP2003042985A (en) Differential scanning calorimeter
JP4083127B2 (en) Thermal conductivity measuring device and thermal conductivity measuring method
KR101261627B1 (en) Apparutus and system for measuring heat flux
JP2007178218A (en) Thermal resistance measuring instrument
JP2010122165A (en) Temperature measuring unit and surface temperature measuring apparatus therewith
US20240044723A1 (en) Noninvasive thermometer
JP2008051588A (en) Heat transfer performance measuring instrument
JPS60209158A (en) Sample cell for heat flux differential scanning calorimeter
JP2006040989A (en) Thermoelectric characteristic measuring apparatus for semiconductor element
EP1215484A2 (en) Differential scanning calorimeter
KR101152839B1 (en) Layered type micro heat flux sensor
JP2023171330A (en) Thermal resistance measuring device
JP7319165B2 (en) Welding equipment
JPH03237345A (en) Method for measuring thermal conductivity