JP2007005359A - Method of evaluating seebeck coefficient - Google Patents

Method of evaluating seebeck coefficient Download PDF

Info

Publication number
JP2007005359A
JP2007005359A JP2005180490A JP2005180490A JP2007005359A JP 2007005359 A JP2007005359 A JP 2007005359A JP 2005180490 A JP2005180490 A JP 2005180490A JP 2005180490 A JP2005180490 A JP 2005180490A JP 2007005359 A JP2007005359 A JP 2007005359A
Authority
JP
Japan
Prior art keywords
seebeck coefficient
measurement sample
temperature
dδt
seebeck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005180490A
Other languages
Japanese (ja)
Inventor
Masashi Kawasaki
雅司 川▼崎▲
Masaki Watanabe
真祈 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Toyota Motor Corp
Original Assignee
Tohoku University NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Toyota Motor Corp filed Critical Tohoku University NUC
Priority to JP2005180490A priority Critical patent/JP2007005359A/en
Publication of JP2007005359A publication Critical patent/JP2007005359A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of evaluating the Seebeck coefficient for solving the problems, wherein the shape of a sample is defined and that it takes time to stabilize a temperature difference in a conventional measurement of the Seebeck coefficient, because the Seebeck coefficient is calculated, based on the temperature difference generated by heating one end of a measurement sample and cooling the other end and thermal electromotive force. <P>SOLUTION: This method of evaluating the Seebeck coefficient has at least a process of applying a DC current to a portion between one end of a measurement sample and the other end, to obtain the temperature difference (dΔT/dt) generated between the one end and the other end in a unit time. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ゼーベック係数の評価方法に関し、特に、薄膜試料のゼーベック係数の評価に好適な方法に関する。   The present invention relates to a method for evaluating the Seebeck coefficient, and particularly relates to a method suitable for evaluating the Seebeck coefficient of a thin film sample.

ゼーベック効果を利用した熱電変換素子は、熱エネルギーを電気エネルギーに変換することを可能とする。その性質を利用し、産業・民生用プロセスや移動体から排出される排熱を有効な電力に変換することができるため、熱電変換素子は、環境問題に配慮した省エネルギー技術として注目されている。   Thermoelectric conversion elements using the Seebeck effect can convert thermal energy into electrical energy. Utilizing this property, it is possible to convert exhaust heat exhausted from industrial / consumer processes and mobile objects into effective electric power, and thermoelectric conversion elements are attracting attention as energy-saving technologies in consideration of environmental problems.

ゼーベック係数の評価は熱電変換素子に用いられる熱電変換材料の開発に不可欠であり、各種測定装置が提案されている(例えば、特許文献1乃至3参照。)。   Evaluation of the Seebeck coefficient is indispensable for the development of thermoelectric conversion materials used for thermoelectric conversion elements, and various measuring devices have been proposed (for example, see Patent Documents 1 to 3).

従来は、ヒーターとヒートシンクとの間に設置された測定サンプルの一端を加熱し、他端を冷却することにより生ずる温度差と熱起電力とに基づいてゼーベック係数を算出していた。
特開2004−165233号公報 特開平7−324991号公報 特開平9−222403号公報
Conventionally, the Seebeck coefficient has been calculated based on a temperature difference and a thermoelectromotive force generated by heating one end of a measurement sample installed between a heater and a heat sink and cooling the other end.
JP 2004-165233 A Japanese Patent Laid-Open No. 7-324991 JP 9-222403 A

従来のゼーベック係数の測定においては、測定サンプルをヒーターとヒートシンクとの間に設置しなければならず、測定サンプルのサイズが限定されてしまい、所定サイズの測定サンプルの形成が困難な材料のゼーベック係数の評価ができない場合があった。また、測定サンプルに温度差を付与する際に温度差が安定するまでに時間を要し、1サンプルを測定するのに時間がかかる場合があった。   In the conventional measurement of the Seebeck coefficient, the measurement sample must be placed between the heater and the heat sink, the size of the measurement sample is limited, and it is difficult to form a measurement sample of a predetermined size. In some cases, it was not possible to evaluate. In addition, when a temperature difference is applied to the measurement sample, it takes time for the temperature difference to stabilize, and it may take time to measure one sample.

本発明は、上記問題点に鑑みてなされたものであり、簡便なゼーベック係数の評価方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a simple method for evaluating the Seebeck coefficient.

即ち、本発明は、
<1> 測定サンプルの一端と他端との間に一定の直流電流を印加して、単位時間あたりに前記一端と前記他端との間に生ずる温度差(dΔT/dt)を求める工程を少なくとも有するゼーベック係数の評価方法である。
That is, the present invention
<1> A step of applying a constant direct current between one end and the other end of the measurement sample to obtain a temperature difference (dΔT / dt) generated between the one end and the other end per unit time. This is a method for evaluating the Seebeck coefficient.

<2> 前記dΔT/dtを用いて下記式(1)からゼーベック係数の絶対値を算出する<1>に記載のゼーベック係数の評価方法である。   <2> The Seebeck coefficient evaluation method according to <1>, wherein an absolute value of the Seebeck coefficient is calculated from the following formula (1) using the dΔT / dt.

Figure 2007005359
Figure 2007005359

式(1)において、αはゼーベック係数を表し、Iは印加された電流値を表し、T(*)は直流電流を印加直前の前記一端の温度TAと前記他端の温度TBとの平均値を表し、Cは前記測定サンプルの熱容量の値を表す。 In the formula (1), alpha represents the Seebeck coefficient, I is represents the applied current value, T (*) is the temperature T B of the other end with a temperature T A of the end of the immediately preceding application of direct current An average value is represented, and C represents a heat capacity value of the measurement sample.

<3> 基体上に略同一形状となるように複数の前記測定サンプルを形成し、前記dΔT/dtを用いて下記式(2)に基づいて前記複数の測定サンプルのゼーベック係数を相対的に比較する<1>に記載のゼーベック係数の評価方法である。   <3> A plurality of the measurement samples are formed on the substrate so as to have substantially the same shape, and the Seebeck coefficients of the plurality of measurement samples are relatively compared based on the following formula (2) using the dΔT / dt. The evaluation method for the Seebeck coefficient according to <1>.

Figure 2007005359
Figure 2007005359

式(2)において、αはゼーベック係数を表し、Iは印加された電流値を表し、T(*)は直流電流を印加直前の前記一端の温度TAと前記他端の温度TBとの平均値を表す。 In the formula (2), alpha represents the Seebeck coefficient, I is represents the applied current value, T (*) is the temperature T B of the other end with a temperature T A of the end of the immediately preceding application of direct current Represents an average value.

本発明によれば、簡便なゼーベック係数の評価方法を提供することができる。   According to the present invention, a simple method for evaluating the Seebeck coefficient can be provided.

以下、本発明のゼーベック係数の評価方法について詳細に説明する。   Hereinafter, the evaluation method of the Seebeck coefficient of the present invention will be described in detail.

本発明のゼーベック係数の評価方法は、測定サンプルの一端と他端との間に一定の直流電流を印加して、単位時間あたりに前記一端と前記他端との間に生ずる温度差(dΔT/dt)を求める工程を少なくとも有するものであり、得られたdΔT/dt値に基づいてゼーベック係数の絶対値の算出や、複数の測定サンプルのゼーベック係数の相対的な比較をおこなうことができるものである。   In the evaluation method of the Seebeck coefficient according to the present invention, a constant direct current is applied between one end and the other end of a measurement sample, and a temperature difference (dΔT / dt) at least, and based on the obtained dΔT / dt value, the absolute value of the Seebeck coefficient can be calculated, and the relative comparison of the Seebeck coefficients of a plurality of measurement samples can be performed. is there.

まず、本発明のゼーベック係数の評価方法を用いて、ゼーベック係数の絶対値を算出する方法について図面を用いて説明する。本発明のゼーベック係数の評価方法は測定サンプルの両端に一定の直流電流を印加することにより生ずるペルチェ効果による吸熱・発熱現象を利用する。   First, a method for calculating the absolute value of the Seebeck coefficient using the method for evaluating the Seebeck coefficient of the present invention will be described with reference to the drawings. The method for evaluating the Seebeck coefficient of the present invention utilizes the endothermic and exothermic phenomenon due to the Peltier effect that occurs when a constant direct current is applied to both ends of a measurement sample.

図1は、本発明のゼーベック係数の評価方法を用いてゼーベック係数の絶対値を算出するための原理を説明するための図である。   FIG. 1 is a diagram for explaining the principle for calculating the absolute value of the Seebeck coefficient using the method for evaluating the Seebeck coefficient of the present invention.

図1に示すように、測定サンプル1は、その端部A及び端部Bに導線2が接続されて直流電源3により直流電流が印加されるようになっている。測定サンプル1に印加される直流電流の大きさは電流計5によって測定される。スイッチ7をオンにして時刻t0より測定サンプル1に一定電流Iを印加すると、ペルチェ効果によって測定サンプル1の一端では熱の吸収が、測定サンプル1の他端では熱の放出が起こる。よって、測定サンプル1の端部Aと端部Bとの間には温度差ΔT(端部Aの温度をTA、端部Bの温度をTBとすると、ΔT=|TA−TB|)が発生する。 As shown in FIG. 1, a measurement sample 1 is configured such that a conducting wire 2 is connected to its end A and end B and a direct current is applied by a direct current power source 3. The magnitude of the direct current applied to the measurement sample 1 is measured by an ammeter 5. When the switch 7 is turned on and a constant current I is applied to the measurement sample 1 from time t 0 , heat absorption occurs at one end of the measurement sample 1 and heat release occurs at the other end of the measurement sample 1 due to the Peltier effect. Therefore, there is a temperature difference ΔT between the end A and the end B of the measurement sample 1 (assuming that the temperature of the end A is T A and the temperature of the end B is T B , ΔT = | T A −T B |) Occurs.

図2に、時刻t0からの経過時間に対する電流I(図2A)及びΔT(図2B)の関係を示す。図2Aに示すように測定サンプル1には時刻t0から一定電流Iが印加されている。また、図2Bに示すようにΔTは時刻t0から一定期間(t1)一次関数的に上昇するが、やがて一定値に達する。本発明においては、時刻t0からt1間の傾きから、単位時間あたりに端部A及び端部Bの間に生ずる温度差(dΔT/dt)を求めることができる。 FIG. 2 shows the relationship between the current I (FIG. 2A) and ΔT (FIG. 2B) with respect to the elapsed time from the time t 0 . Constant current I is applied from time t 0 to the measurement sample 1 as shown in Figure 2A. Further, as shown in FIG. 2B, ΔT rises linearly from a time t 0 for a certain period (t 1 ), but eventually reaches a certain value. In the present invention, the temperature difference (dΔT / dt) generated between the end A and the end B per unit time can be obtained from the slope between the times t 0 and t 1 .

測定サンプル1に一定電流Iを印加した際に端部Aで発熱が、端部Bで吸熱が起こるとした場合、単位時間あたりに端部Aで発生する熱量qA及び端部Bで吸収される熱量qBはそれぞれ下記式(3)及び式(4)で表される。 If heat is generated at the end A when the constant current I is applied to the measurement sample 1, and heat is absorbed at the end B, the heat quantity q A generated at the end A per unit time and the end B are absorbed. The quantity of heat q B is represented by the following formulas (3) and (4), respectively.

Figure 2007005359
Figure 2007005359

式(3)及び式(4)において、αはゼーベック係数を表し、Iは印加された電流値を表し、Rは端部Aと端部Bとの間の電気抵抗値を表し、Aは端部Aと端部Bとの間を流れる電流の方向に対する測定サンプル1の断面積を表し、lは端部Aと端部Bとの距離を表し、κは測定サンプル1の熱伝導率を表す。   In the equations (3) and (4), α represents the Seebeck coefficient, I represents the applied current value, R represents the electric resistance value between the end A and the end B, and A represents the end Represents the cross-sectional area of the measurement sample 1 with respect to the direction of the current flowing between the part A and the end part B, l represents the distance between the end part A and the end part B, and κ represents the thermal conductivity of the measurement sample 1. .

式(3)及び式(4)の右辺1項目はペルチェ効果の項、2項目はジュール発熱の項、3項目は温度勾配に起因する熱伝導の項に関する。なお、3項目は温度勾配に起因するため、時刻t0以前にサンプル1の温度が一様であった場合、通電後短時間は1項目及び2項目と比較して非常に小さく、0と見なすことができる。 The first item on the right side of the equations (3) and (4) is related to the Peltier effect, the second item is related to the Joule heat generation, and the third item is related to the heat conduction term caused by the temperature gradient. Since the three items are due to the temperature gradient, if the temperature of the sample 1 is uniform before the time t 0 , the short time after energization is very small compared to the first and second items and is regarded as zero. be able to.

時刻t0より単位時間あたりに生ずる温度差ΔTは、低温側の端部の温度降下と高温側の端部の温度上昇とを足し合わせたものなので、 The temperature difference ΔT generated per unit time from time t 0 is the sum of the temperature drop at the low temperature end and the temperature rise at the high temperature end.

Figure 2007005359
Figure 2007005359

と表すことができる。   It can be expressed as.

式(5)を変形すると下記式(6)が導かれる。   When formula (5) is modified, the following formula (6) is derived.

Figure 2007005359
Figure 2007005359

式(6)においてT(*)は直流電流を印加直前(すなわち、図2におけるt0)の端部Aの温度TAと端部Bの温度TBとの平均値((TA+TB)/2)を表す。 In Equation (6), T (*) is an average value ((T A + T B ) of the temperature T A at the end A and the temperature T B at the end B immediately before application of a direct current (ie, t 0 in FIG. 2). ) / 2).

ここで、式(6)を変形すると、下記式(7)が成立する。   Here, when Expression (6) is modified, the following Expression (7) is established.

Figure 2007005359
Figure 2007005359

また、単位時間あたりの熱の発生量を考慮しているため、ΔTはdΔT/dtと表記することができる。従って、ゼーベック係数αの絶対値はdΔT/dtを用いて下記式(1)から算出される。   Further, ΔT can be expressed as dΔT / dt because the amount of heat generated per unit time is taken into consideration. Therefore, the absolute value of the Seebeck coefficient α is calculated from the following equation (1) using dΔT / dt.

Figure 2007005359
Figure 2007005359

測定サンプル1の形状は特に限定されるものではなく、直方体、円柱、薄膜状、任意の基板上に形成された薄膜状等のなかから適宜選択される。測定サンプル1内を流れる電流の電流密度は一様であることが望ましいことから、測定サンプル1の形状は直方体又は円柱が好ましい。   The shape of the measurement sample 1 is not particularly limited, and is appropriately selected from a rectangular parallelepiped, a cylinder, a thin film, a thin film formed on an arbitrary substrate, and the like. Since it is desirable that the current density of the current flowing through the measurement sample 1 is uniform, the shape of the measurement sample 1 is preferably a rectangular parallelepiped or a cylinder.

端部Aの温度TAと端部Bの温度TBとは、例えば熱電対又は赤外線カメラを用いて測定できる。熱電対又は赤外線カメラを用いて測定された温度はマイコン、パーソナルコンピュータ等に取り込まれてdΔT/dtが算出される。なお、本発明において、測定サンプルの熱容量等は公知の方法により測定することができる。 The temperature T B of the temperature T A and the end B of the end portion A, for example, can be measured using a thermocouple or an infrared camera. The temperature measured using a thermocouple or an infrared camera is taken into a microcomputer, personal computer, etc., and dΔT / dt is calculated. In the present invention, the heat capacity and the like of the measurement sample can be measured by a known method.

次に、本発明のゼーベック係数の評価方法を用いて、複数の測定サンプルのゼーベック係数を相対的に比較する方法について図面を用いて説明する。この方法は、基板上に成膜した薄膜状の測定サンプルのゼーベック係数を評価するのに有効である。   Next, a method of relatively comparing the Seebeck coefficients of a plurality of measurement samples using the Seebeck coefficient evaluation method of the present invention will be described with reference to the drawings. This method is effective for evaluating the Seebeck coefficient of a thin film-like measurement sample formed on a substrate.

図3は、複数の測定サンプルのゼーベック係数を相対的に比較するための原理を説明するための図である。図3に示すように、一対の電極11(11C、11D)の設けられた基板9上に、薄膜状の測定サンプル1は一対の電極11に接するようにして形成されている。測定サンプル1は、その端部Cと接する電極11C及び端部Dと接する電極11Dに導線2が接続されて直流電源3により直流電流が印加されるようになっている。測定サンプル1に印加される直流電流の大きさは電流計5によって測定される。スイッチ7をオンにして時刻t0より測定サンプル1に一定電流Iを印加することにより、図1の場合と同様に測定サンプル1の端部Cと端部Dとの間には温度差ΔT(端部Cの温度をTC、端部Dの温度をTDとすると、ΔT=|TC−TD|)が発生する。 FIG. 3 is a diagram for explaining the principle for relatively comparing the Seebeck coefficients of a plurality of measurement samples. As shown in FIG. 3, a thin film-like measurement sample 1 is formed on a substrate 9 provided with a pair of electrodes 11 (11 </ b> C, 11 </ b> D) so as to be in contact with the pair of electrodes 11. In the measurement sample 1, the lead wire 2 is connected to the electrode 11 </ b> C in contact with the end portion C and the electrode 11 </ b> D in contact with the end portion D, and a direct current is applied from the direct current power source 3. The magnitude of the direct current applied to the measurement sample 1 is measured by an ammeter 5. By turning on the switch 7 and applying a constant current I to the measurement sample 1 from time t 0 , the temperature difference ΔT (between the end C and the end D of the measurement sample 1 is the same as in FIG. If the temperature of the end C is T C and the temperature of the end D is T D , ΔT = | T C −T D |) is generated.

この場合、端部Cで熱の放出、端部Dで熱の吸収が起こると仮定すると、単位時間あたりに端部Cで発生する熱量qC及び端部Dで吸収される熱量qDはそれぞれ下記式(8)及び式(9)で表される。 In this case, assuming that heat is released at the end C and heat absorption at the end D, the amount of heat q C generated at the end C and the amount of heat q D absorbed at the end D per unit time are respectively It is represented by the following formula (8) and formula (9).

Figure 2007005359
Figure 2007005359

式(8)及び式(9)において、κ’は基板9の熱伝導率を表し、A’は基板9中で、高温側から低温側へ熱流が移動する部分の断面積を表す。   In Equations (8) and (9), κ ′ represents the thermal conductivity of the substrate 9, and A ′ represents the cross-sectional area of the portion of the substrate 9 where the heat flow moves from the high temperature side to the low temperature side.

基板が測定サンプルよりも十分厚い場合、熱流の大部分が基板を通って高温側から低温側に流入することが考えられる。従って、それぞれの式の右辺3項目には基板の厚みも考慮した断面積A’、基板の熱伝導率κ’を適用する。   If the substrate is sufficiently thicker than the measurement sample, it can be considered that most of the heat flow flows from the high temperature side to the low temperature side through the substrate. Therefore, the cross-sectional area A ′ taking into account the thickness of the substrate and the thermal conductivity κ ′ of the substrate are applied to the three items on the right side of each equation.

式(5)の場合と同様に、時刻t0より単位時間あたりに生ずる温度差ΔTは、下記式(10)と表すことができる。 Similar to the case of the equation (5), the temperature difference ΔT generated per unit time from the time t 0 can be expressed by the following equation (10).

Figure 2007005359
Figure 2007005359

ただし、C'は発熱部、吸熱部それぞれの測定サンプル及び基板を含む周辺の熱容量を表す。   However, C ′ represents the heat capacity of the surroundings including the measurement sample and the substrate of each of the heat generating part and the heat absorbing part.

式(10)を変形すると下記式(11)が導かれる。   When the equation (10) is transformed, the following equation (11) is derived.

Figure 2007005359
Figure 2007005359

ΔTは単位時間あたりに発生する温度差、つまり測定サンプル両端に発生する温度差の時間変化なのでdΔT/dtと表記すると、下記式(12)が得られる。   Since ΔT is a temperature difference generated per unit time, that is, a time change of the temperature difference generated at both ends of the measurement sample, when expressed as dΔT / dt, the following formula (12) is obtained.

Figure 2007005359
Figure 2007005359

式(12)を用い、C’を実際に求めてゼーベック係数αを算出するのは困難である。ここで、図4に示すように同一基板上に略同一形状の複数の測定サンプル1を形成した場合を考える。基板9が測定サンプル1と比較して充分に厚い場合、C’への測定サンプル1の寄与が小さく、基板9の寄与分がほとんどであるため、各測定サンプルのC’は同一であるとみなすことができる。   It is difficult to calculate the Seebeck coefficient α by actually obtaining C ′ using the equation (12). Here, consider a case where a plurality of measurement samples 1 having substantially the same shape are formed on the same substrate as shown in FIG. When the substrate 9 is sufficiently thick as compared with the measurement sample 1, the contribution of the measurement sample 1 to C ′ is small and the contribution of the substrate 9 is almost the same, so that C ′ of each measurement sample is considered to be the same. be able to.

従って、同一基板上に形成された略同一形状の測定サンプル間でゼーベック係数を比較する場合、dΔT/dt、T(*)及びIのみで比較が可能である。すなわち、ゼーベック係数αは下記式(2)の関係を満たす。   Therefore, when comparing the Seebeck coefficients between measurement samples having substantially the same shape formed on the same substrate, comparison can be made using only dΔT / dt, T (*), and I. That is, the Seebeck coefficient α satisfies the relationship of the following formula (2).

Figure 2007005359
Figure 2007005359

なお、本発明のゼーベック係数の評価方法を用いてゼーベック係数を相対的に比較する場合、上述のように複数の測定サンプルを同一基板上に略同一形状となるように複数形成するようにしてもよいし、前記C’が同一であると見なすことができる限りにおいて複数の基板上に略同一形状の測定サンプルを形成し、該測定サンプル間のゼーベック係数の比較を行うこともできる。   In the case where the Seebeck coefficients are relatively compared using the Seebeck coefficient evaluation method of the present invention, a plurality of measurement samples may be formed on the same substrate so as to have substantially the same shape as described above. Alternatively, as long as C ′ can be regarded as the same, measurement samples having substantially the same shape can be formed on a plurality of substrates, and the Seebeck coefficients can be compared between the measurement samples.

以下、本発明を実施例を用いてさらに詳細に説明するが、本発明は下記実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited by the following Example.

寸法が2.5×2.5×10mmの測定サンプル(Ba8Ga15Ge31)を用いてゼーベック係数の測定を行った。測定サンプルの長手方向両端にリード線を接続し、電流を印加するようにした。なお、測定サンプルの密度は5.8g/cm3、質量は0.36g、比熱は0.07cal/g/K、熱伝導率は2.0W/m/Kであった。また、測定サンプルに印加する電流は1.0Aとした。 The Seebeck coefficient was measured using a measurement sample (Ba 8 Ga 15 Ge 31 ) having dimensions of 2.5 × 2.5 × 10 mm. Lead wires were connected to both ends in the longitudinal direction of the measurement sample, and current was applied. The measurement sample had a density of 5.8 g / cm 3 , a mass of 0.36 g, a specific heat of 0.07 cal / g / K, and a thermal conductivity of 2.0 W / m / K. The current applied to the measurement sample was 1.0A.

測定サンプルに1.0A印加した際のΔTの経過時間に対する変化を図5に示す。なお、測定サンプルの温度は赤外線カメラ(日本アビオニクス株式会社製)により測定し、得られた画像をパーソナルコンピュータに取り込んで日本アビオニクス株式会社製PE PROFESSIONAL ver. 3.11を用いて処理し、図5を得た。   FIG. 5 shows the change of ΔT with respect to the elapsed time when 1.0 A is applied to the measurement sample. The temperature of the measurement sample was measured with an infrared camera (manufactured by Nippon Avionics Co., Ltd.), and the obtained image was taken into a personal computer, and PE PROFESSIONAL ver. Processing with 3.11 yielded FIG.

図5から明らかなように、電流印加後5秒程度はdΔT/dt=0.205K/secの一定値を示した。この値を用いてゼーベック係数を算出した。なお、印加後ある程度時間が経過すると、測定サンプル内の温度勾配に起因する熱伝導、リード線等への熱リークや大気中への熱放射と測定サンプルが発生する熱量とが釣り合い、dΔT/dtが0に近づいた(すなわち、ΔTが一定値をとる。)。   As is apparent from FIG. 5, a constant value of dΔT / dt = 0.205 K / sec was exhibited for about 5 seconds after the current application. The Seebeck coefficient was calculated using this value. When a certain amount of time elapses after application, heat conduction due to the temperature gradient in the measurement sample, heat leakage to the lead wire or the like, heat radiation to the atmosphere, and the amount of heat generated by the measurement sample balance, and dΔT / dt Approaches 0 (that is, ΔT takes a constant value).

Figure 2007005359
Figure 2007005359

また、T(*)=295(K)であった。これらの値を用い、式(1)からゼーベック係数α=40(μV/K)を得た。この値は、測定サンプルの一端を加熱し、他端を冷却することにより生ずる温度差と熱起電力とに基づいてゼーベック係数を算出する従来の方法を実施可能なアルバック理工製ZEM−2によって測定された値(約50μV/K)と略同等であった。   Moreover, it was T (*) = 295 (K). Using these values, the Seebeck coefficient α = 40 (μV / K) was obtained from the equation (1). This value is measured by ULVAC-RIKO ZEM-2, which can implement the conventional method of calculating the Seebeck coefficient based on the temperature difference and thermoelectromotive force generated by heating one end of the measurement sample and cooling the other end. Value (approximately 50 μV / K).

ゼーベック係数の絶対値を算出するための原理を説明するための図である。It is a figure for demonstrating the principle for calculating the absolute value of a Seebeck coefficient. 時刻t0からの経過時間に対する電流I(図2A)及びΔT(図2B)の関係を示す図である。Current with respect to the elapsed time from the time t 0 I is a graph showing the relationship (FIG. 2A) and [Delta] T (Figure 2B). 複数の測定サンプルのゼーベック係数を相対的に比較するための原理を説明するための図である。It is a figure for demonstrating the principle for comparing the Seebeck coefficient of a some measurement sample relatively. 略同一形状の複数の測定サンプルが形成された基板を示す図である。It is a figure which shows the board | substrate with which the some measurement sample of substantially the same shape was formed. 測定サンプルに電流を印加した際のΔTの経過時間に対する変化を示す図である。It is a figure which shows the change with respect to the elapsed time of (DELTA) T when applying an electric current to a measurement sample.

符号の説明Explanation of symbols

1 測定サンプル
2 導線
3 直流電源
5 電流計
7 スイッチ
9 基板
11 電極
1 Measurement Sample 2 Conductor 3 DC Power Supply 5 Ammeter 7 Switch 9 Substrate 11 Electrode

Claims (3)

測定サンプルの一端と他端との間に一定の直流電流を印加して、単位時間あたりに前記一端と前記他端との間に生ずる温度差(dΔT/dt)を求める工程を少なくとも有するゼーベック係数の評価方法。   Seebeck coefficient having at least a step of applying a constant direct current between one end and the other end of the measurement sample to obtain a temperature difference (dΔT / dt) generated between the one end and the other end per unit time Evaluation method. 前記dΔT/dtを用いて下記式(1)からゼーベック係数の絶対値を算出する請求項1に記載のゼーベック係数の評価方法。
Figure 2007005359
式(1)において、αはゼーベック係数を表し、Iは印加された電流値を表し、T(*)は直流電流を印加直前の前記一端の温度TAと前記他端の温度TBとの平均値を表し、Cは前記測定サンプルの熱容量の値を表す。
The evaluation method of the Seebeck coefficient according to claim 1, wherein the absolute value of the Seebeck coefficient is calculated from the following formula (1) using the dΔT / dt.
Figure 2007005359
In the formula (1), alpha represents the Seebeck coefficient, I is represents the applied current value, T (*) is the temperature T B of the other end with a temperature T A of the end of the immediately preceding application of direct current An average value is represented, and C represents a heat capacity value of the measurement sample.
基体上に略同一形状となるように複数の前記測定サンプルを形成し、前記dΔT/dtを用いて下記式(2)に基づいて前記複数の測定サンプルのゼーベック係数を相対的に比較する請求項1に記載のゼーベック係数の評価方法。
Figure 2007005359
式(2)において、αはゼーベック係数を表し、Iは印加された電流値を表し、T(*)は直流電流を印加直前の前記一端の温度TAと前記他端の温度TBとの平均値を表す。
A plurality of the measurement samples are formed on the substrate so as to have substantially the same shape, and the Seebeck coefficients of the plurality of measurement samples are relatively compared based on the following formula (2) using the dΔT / dt. The evaluation method of Seebeck coefficient of 1.
Figure 2007005359
In the formula (2), alpha represents the Seebeck coefficient, I is represents the applied current value, T (*) is the temperature T B of the other end with a temperature T A of the end of the immediately preceding application of direct current Represents an average value.
JP2005180490A 2005-06-21 2005-06-21 Method of evaluating seebeck coefficient Pending JP2007005359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180490A JP2007005359A (en) 2005-06-21 2005-06-21 Method of evaluating seebeck coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180490A JP2007005359A (en) 2005-06-21 2005-06-21 Method of evaluating seebeck coefficient

Publications (1)

Publication Number Publication Date
JP2007005359A true JP2007005359A (en) 2007-01-11

Family

ID=37690721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180490A Pending JP2007005359A (en) 2005-06-21 2005-06-21 Method of evaluating seebeck coefficient

Country Status (1)

Country Link
JP (1) JP2007005359A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364432A (en) * 2012-04-10 2013-10-23 财团法人工业技术研究院 Measurement method, measurement apparatus, and computer program product
US20130276464A1 (en) * 2012-04-10 2013-10-24 Industrial Technology Research Institute Measurement method, measurement apparatus, and computer program product
KR101769094B1 (en) 2016-10-19 2017-08-17 에코피아 주식회사 Seebeck coefficient and hall effect measuring instrument

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074862A (en) * 1998-08-28 2000-03-14 Sharp Corp Method for measuring seebeck coefficient by alternating current heating, and structure of measuring sample used therefor
JP2003218411A (en) * 2002-01-21 2003-07-31 Matsushita Electric Ind Co Ltd Thermoelectric conversion material, its manufacturing method, and thin film thermoelectric conversion device
JP2004146586A (en) * 2002-10-24 2004-05-20 Murata Mfg Co Ltd ZnO-BASED THIN FILM, THERMOELECTRIC CONVERTER ELEMENT AND INFRARED SENSOR USING THE SAME
JP2006040989A (en) * 2004-07-23 2006-02-09 Komatsu Ltd Thermoelectric characteristic measuring apparatus for semiconductor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074862A (en) * 1998-08-28 2000-03-14 Sharp Corp Method for measuring seebeck coefficient by alternating current heating, and structure of measuring sample used therefor
JP2003218411A (en) * 2002-01-21 2003-07-31 Matsushita Electric Ind Co Ltd Thermoelectric conversion material, its manufacturing method, and thin film thermoelectric conversion device
JP2004146586A (en) * 2002-10-24 2004-05-20 Murata Mfg Co Ltd ZnO-BASED THIN FILM, THERMOELECTRIC CONVERTER ELEMENT AND INFRARED SENSOR USING THE SAME
JP2006040989A (en) * 2004-07-23 2006-02-09 Komatsu Ltd Thermoelectric characteristic measuring apparatus for semiconductor element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364432A (en) * 2012-04-10 2013-10-23 财团法人工业技术研究院 Measurement method, measurement apparatus, and computer program product
US20130276464A1 (en) * 2012-04-10 2013-10-24 Industrial Technology Research Institute Measurement method, measurement apparatus, and computer program product
US9448121B2 (en) 2012-04-10 2016-09-20 Industrial Technology Research Institute Measurement method, measurement apparatus, and computer program product
KR101769094B1 (en) 2016-10-19 2017-08-17 에코피아 주식회사 Seebeck coefficient and hall effect measuring instrument

Similar Documents

Publication Publication Date Title
Muto et al. Skutterudite unicouple characterization for energy harvesting applications
Casano et al. Experimental investigation of the performance of a thermoelectric generator based on Peltier cells
Du et al. Experimental investigation and numerical analysis for one-stage thermoelectric cooler considering Thomson effect
JP5062753B2 (en) Method and apparatus for measuring the Seebeck coefficient and thermal conductivity of thin film samples
Massaguer et al. Development and validation of a new TRNSYS type for the simulation of thermoelectric generators
Haras et al. Thermoelectric energy conversion: How good can silicon be?
JPWO2018174173A1 (en) Thermoelectric generator module, thermoelectric generator using the same, and temperature measuring method
Orr et al. Validating an alternative method to predict thermoelectric generator performance
Min ZT measurements under large temperature differences
JP2007005359A (en) Method of evaluating seebeck coefficient
Alvarez-Quintana Impact of the substrate on the efficiency of thin film thermoelectric technology
Wojciechowski et al. Performance characterization of high-efficiency segmented Bi2Te3/CoSb3 unicouples for thermoelectric generators
Zabrocki et al. Performance optimization of a thermoelectric generator element with linear, spatial material profiles in a one-dimensional setup
KR101684327B1 (en) Complex Specifics Testing Apparatus for Thermoelectric Element
Zybała et al. Method and apparatus for determining operational parameters of thermoelectric modules
Oh et al. Estimation of power generation from thermoelectric devices: model analysis and performance measurements
TWI495868B (en) System and method for measuring properties of thermoelectric module
JP2020134237A (en) Device and method for measuring seebeck coefficient
Zhang et al. Measurement of Seebeck coefficient perpendicular to SiGe superlattice
Hu et al. Characterization of thermoelectric conversion for a stacked leg with parasitic heat radiation
Popov et al. The influence of thermophysical substrate properties of an anisotropic thermoelement on thermopower in the nonstationary thermal regime
Fujiki et al. Development on measurement method for Thomson coefficient of thin film
Kim et al. Method for evaluating interfacial resistances of thermoelectric devices using IV measurement
Mirhosseini et al. Effect of heat loss on performance of thin film thermoelectric; a mathematical model
KR101980217B1 (en) Reliability Assessment Apparatus for Thermoelectric Devices and Assessment Method of the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726