JP2011185697A - Thermoelectric material evaluation device and thermoelectric characteristic evaluation method - Google Patents

Thermoelectric material evaluation device and thermoelectric characteristic evaluation method Download PDF

Info

Publication number
JP2011185697A
JP2011185697A JP2010050320A JP2010050320A JP2011185697A JP 2011185697 A JP2011185697 A JP 2011185697A JP 2010050320 A JP2010050320 A JP 2010050320A JP 2010050320 A JP2010050320 A JP 2010050320A JP 2011185697 A JP2011185697 A JP 2011185697A
Authority
JP
Japan
Prior art keywords
measurement sample
measurement
thermoelectric
current
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010050320A
Other languages
Japanese (ja)
Inventor
Hideki Morimitsu
森光  英樹
Hiroyuki Ishiguro
石黒  裕之
Masaya Hotta
雅也 堀田
Tomohiro Aoki
知裕 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2010050320A priority Critical patent/JP2011185697A/en
Publication of JP2011185697A publication Critical patent/JP2011185697A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric material evaluation device having a simple and inexpensive device constitution and capable of obtaining a measuring result of high precision in a short time, and a thermoelectric characteristic evaluation method. <P>SOLUTION: The thermoelectric characteristic evaluation device 1 is constituted so that the edge faces Se of a measuring sample S are supported by a pair of blocks 11 so as to be nipped by first and second electrodes 14 and 15, a temperature gradient is formed in the measuring sample S, the thermoelectric capacity α of the measuring sample S is calculated on the basis of the thermoelectromotive force of the measuring sample S, which is measured by a voltmeter 16 in a state that a switch 18 is opened, and the temperature difference between the edge faces Se of the measuring sample S measured by thermocouples 21 and 22, the switch 18 is closed after the thermoelectromotive force of the measuring sample S is generated to perform discharge and the resistivity ρ of the measuring sample S is calculated on the basis of the voltage drop ΔV of the measuring sample S measured by the voltmeter 16 and the current value I measured by an ammeter 17. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱電材料の熱電能及び抵抗率を評価するための熱電材料評価装置及び熱電特性評価方法に関するものである。 The present invention relates to a thermoelectric material evaluation apparatus and a thermoelectric property evaluation method for evaluating the thermoelectric power and resistivity of a thermoelectric material.

従来より、熱電材料の熱電特性の評価方法として、図6に示す直流4端子法が一般的に用いられている。測定試料Sは、外部ヒータ131により一定温度に保たれた測定槽130内で上方の低温側電極ブロック111及びヒータ112が内蔵された下方の高温側電極ブロック111に端面Seを挟まれた状態でセットされる。高温側電極ブロック111の温度は、低温側電極ブロック111の温度より約10℃高く設定されており、測定試料Sには温度勾配の方向に熱起電力が発生している。測定試料Sの側面には熱電対121、122が距離Lを介して接触しており、この間の温度差ΔT(=T1−T2)と同熱電対を利用して電圧計116により電位差V1とが測定される。熱電能αは、これらの測定結果から次式により算出される。 Conventionally, the direct current four-terminal method shown in FIG. 6 is generally used as a method for evaluating the thermoelectric characteristics of thermoelectric materials. The measurement sample S is in a state where the end surface Se is sandwiched between the upper low temperature side electrode block 111 and the lower high temperature side electrode block 111 in which the heater 112 is built in the measurement tank 130 maintained at a constant temperature by the external heater 131. Set. The temperature of the high temperature side electrode block 111 is set to be about 10 ° C. higher than the temperature of the low temperature side electrode block 111, and the thermoelectromotive force is generated in the measurement sample S in the direction of the temperature gradient. Thermocouples 121 and 122 are in contact with the side surface of the measurement sample S via a distance L, and a temperature difference ΔT (= T1−T2) therebetween and a potential difference V1 by a voltmeter 116 using the same thermocouple. Measured. The thermoelectric power α is calculated by the following formula from these measurement results.

(数1)
α= V1/ΔT
(Equation 1)
α = V1 / ΔT

抵抗率ρは、低温側及び高温側電極ブロック111に接続された定電流電源140から供給された一定量の電流値Iと、距離Lを介して測定試料に接触する熱電対で検出された電位差V2に基づいて次式により算出される。ここで、Aは測定試料の断面積である。 Resistivity ρ is a constant amount of current value I supplied from a constant current power supply 140 connected to the low temperature side and high temperature side electrode block 111 and a potential difference detected by a thermocouple contacting the measurement sample via a distance L. Based on V2, it is calculated by the following equation. Here, A is a cross-sectional area of the measurement sample.

(数2)
ρ= V2・A/I/L
(Equation 2)
ρ = V2 · A / I / L

例えば特許文献1、2などに、直流4端子法による熱電特性評価方法が開示されている。 For example, Patent Documents 1 and 2 disclose thermoelectric characteristic evaluation methods based on a DC four-terminal method.

特開2003−57121号公報JP 2003-57121 A 特開平7−324991号公報Japanese Patent Laid-Open No. 7-324991

しかし、上述のような測定法には、以下に示す問題があった。
(1)抵抗率測定において、ペルチェ効果及びジュール熱による測定結果への影響を避けるために、短時間の通電を行う必要があり、例えば、パルス通電可能な高価な定電流電源などを使用しなければならならず、システムが複雑かつ高価となってしまう。
(2)熱電対による電圧測定において、熱電対と測定試料とは点接触であるため、測定試料表面の酸化膜の影響や材料組織の不均一性が測定結果に影響するおそれがある。
(3)温度変化による測定結果への影響を少なくするため、測定試料、電極ブロックを含む系内全体を均一加熱する必要があるが、温度が安定し測定を開始できるまでに時間がかかる。また、系内全体を均一加熱するため、熱容量が大きくなり、温度を変化させた測定を行う際に時間がかかる。
(4)温度測定、電圧測定では測定試料側面に熱電対を接触させるため、使用できる測定試料の長さは5mm程度が限界となる。近年、π型熱電発電モジュールの素子などの熱電特性評価の需要が増大しているが、これら材料の測定試料は寸法が小さく、例えば、2〜3mm長の測定試料を測定する必要があるため、直流4端子法では対応ができない。
However, the measurement methods as described above have the following problems.
(1) In the resistivity measurement, it is necessary to energize for a short time in order to avoid the influence on the measurement result due to the Peltier effect and Joule heat. For example, an expensive constant current power source capable of pulse energization must be used. The system must be complicated and expensive.
(2) In voltage measurement with a thermocouple, since the thermocouple and the measurement sample are in point contact, the influence of the oxide film on the surface of the measurement sample and the non-uniformity of the material structure may affect the measurement result.
(3) Although it is necessary to uniformly heat the entire system including the measurement sample and the electrode block in order to reduce the influence of the temperature change on the measurement result, it takes time until the temperature is stabilized and the measurement can be started. In addition, since the entire system is uniformly heated, the heat capacity is increased, and it takes time to perform measurement at different temperatures.
(4) In temperature measurement and voltage measurement, since the thermocouple is brought into contact with the side surface of the measurement sample, the length of the measurement sample that can be used is limited to about 5 mm. In recent years, demand for thermoelectric property evaluation such as elements of π-type thermoelectric power generation modules has increased, but measurement samples of these materials are small in size, for example, it is necessary to measure measurement samples having a length of 2 to 3 mm, The DC 4 terminal method cannot be used.

そこで、本発明は、簡単で安価な装置構成であって、短時間で精度の高い測定結果が得られる熱電材料評価装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a thermoelectric material evaluation apparatus that has a simple and inexpensive apparatus configuration and can obtain a highly accurate measurement result in a short time.

この発明は、上記目的を達成するために、請求項1に記載の発明では、熱電特性評価装置は、測定試料に温度勾配を形成するために温度差を形成可能に構成された一対のブロックと、前記ブロックと測定試料の端面との間に挟まれて配置される一対の第1電極と、前記一対の第1電極と接続され、測定試料に生じる電圧を測定するための電圧測定手段と、前記第1電極と絶縁された状態で、前記ブロックと測定試料の端面との間に挟まれて配置される一対の第2電極と、前記一対の第2電極と接続され、測定試料に流れる電流を測定するための電流測定手段と、測定試料、前記一対の第2電極及び前記電流測定手段とからなる電流測定回路の開放及び接続の切り替えを行う開閉器と、測定試料の端面近傍の温度測定を行う測温手段と、前記開閉器を開いた状態で前記電圧測定手段により測定された測定試料の熱起電力及び前記測温手段により測定された測定試料の端面の温度差に基づいて測定試料の熱電能を算出し、測定試料の熱起電力を発生させた後に前記開閉器を閉じて放電し前記電圧測定手段により測定された測定試料の電圧降下及び前記電流測定手段により測定された電流値に基づいて測定試料の抵抗率を算出する演算手段と、を備えた、という技術的手段を用いる。 In order to achieve the above object, according to the first aspect of the present invention, the thermoelectric property evaluation apparatus includes a pair of blocks configured to be capable of forming a temperature difference in order to form a temperature gradient in the measurement sample. A pair of first electrodes disposed between the block and an end surface of the measurement sample, and a voltage measurement unit connected to the pair of first electrodes and measuring a voltage generated in the measurement sample; A pair of second electrodes disposed between the block and an end surface of the measurement sample in a state of being insulated from the first electrode, and a current flowing through the measurement sample connected to the pair of second electrodes A current measuring means for measuring the current, a switch for opening and switching a current measuring circuit comprising the measurement sample, the pair of second electrodes and the current measurement means, and a temperature measurement in the vicinity of the end face of the measurement sample Temperature measuring means for performing The thermoelectric power of the measurement sample is calculated based on the thermoelectromotive force of the measurement sample measured by the voltage measurement means and the temperature difference of the end face of the measurement sample measured by the temperature measurement means with the chamber open. After the thermal electromotive force is generated, the switch is closed and discharged, the voltage drop of the measurement sample measured by the voltage measurement means, and the resistivity of the measurement sample based on the current value measured by the current measurement means And a technical means including a calculating means for calculating.

請求項1に記載の発明によれば、測定試料の端面を第1電極及び第2電極で挟んで一対のブロックで支持し、測定試料に温度勾配を形成し、開閉器を開いた状態で電圧測定手段により測定された測定試料の熱起電力及び測温手段により測定された測定試料の端面の温度差に基づいて測定試料の熱電能を算出し、測定試料の熱起電力を発生させた後に開閉器を閉じて放電し電圧測定手段により測定された測定試料の電圧降下及び電流測定手段により測定された電流値に基づいて測定試料の抵抗率を算出することができる。
抵抗率の測定では、測定試料の熱起電力を利用して開閉器を閉じることにより短時間で生じる放電を利用するため、パルス通電可能な定電流電源などを用いる必要がない。これにより、従来装置に比べ構成が簡単で安価な熱電特性評価装置により、精度の高い熱電能、抵抗率の測定を実現することができる。
According to the first aspect of the present invention, the end face of the measurement sample is sandwiched between the first electrode and the second electrode and supported by the pair of blocks, a temperature gradient is formed in the measurement sample, and the voltage is opened with the switch open. After calculating the thermoelectric power of the measurement sample based on the thermoelectromotive force of the measurement sample measured by the measurement means and the temperature difference of the end surface of the measurement sample measured by the temperature measurement means, and generating the thermoelectromotive force of the measurement sample The resistivity of the measurement sample can be calculated on the basis of the voltage drop of the measurement sample measured by the voltage measurement means and the current value measured by the current measurement means after the switch is closed and discharged.
In the measurement of resistivity, since a discharge generated in a short time by closing the switch using the thermoelectromotive force of the measurement sample is used, there is no need to use a constant current power source capable of pulse energization. Accordingly, it is possible to realize highly accurate measurement of thermoelectric power and resistivity with a thermoelectric characteristic evaluation apparatus that is simpler and less expensive than the conventional apparatus.

請求項2に記載の発明では、請求項1に記載の熱電特性評価装置において、前記電流測定回路は、抵抗値が可変である可変抵抗器を備えた、という技術的手段を用いる。 According to a second aspect of the present invention, in the thermoelectric characteristic evaluation apparatus according to the first aspect, the technical means that the current measuring circuit includes a variable resistor having a variable resistance value is used.

請求項2に記載の発明によれば、電流測定回路は、抵抗値が可変である可変抵抗器を備えているので、可変抵抗器において異なる抵抗値を設定し、それぞれの設定において電流値及び電圧降下を測定し、各抵抗値に応じた電流値及び電圧降下に基づいて抵抗率を算出することができる。これによれば、電流測定回路の抵抗の影響をキャンセルできるとともに、各抵抗値に応じた複数個の電流値及び電圧降下に基づいて抵抗率を算出するため、個々の測定値が有する誤差を小さくすることができるので、抵抗率の高精度の測定を行うことができる。
また、測定試料の抵抗値が小さいと電圧降下が微小となり精度よく測定することが難しいが、可変抵抗器を用いて適当な抵抗値を設定することにより高精度の測定を行うことができる。
According to the invention described in claim 2, since the current measuring circuit includes a variable resistor whose resistance value is variable, different resistance values are set in the variable resistor, and the current value and voltage are set in each setting. The drop can be measured, and the resistivity can be calculated based on the current value and voltage drop corresponding to each resistance value. According to this, the influence of the resistance of the current measurement circuit can be canceled and the resistivity is calculated based on a plurality of current values and voltage drops corresponding to each resistance value, so that the error of each measured value is reduced. Therefore, the resistivity can be measured with high accuracy.
In addition, if the resistance value of the measurement sample is small, the voltage drop is small and it is difficult to measure with high accuracy. However, high-precision measurement can be performed by setting an appropriate resistance value using a variable resistor.

請求項3に記載の発明では、請求項1または請求項2に記載の熱電特性評価装置において、前記測温手段は前記ブロックを貫通して測定試料の端面に接触して設けられている、という技術的手段を用いる。 According to a third aspect of the present invention, in the thermoelectric property evaluation apparatus according to the first or second aspect, the temperature measuring means is provided in contact with the end surface of the measurement sample through the block. Use technical means.

請求項3に記載の発明によれば、測温手段はブロックを貫通して測定試料の端面に接触して設けられているため、直流4端子法では困難であった長さが短い測定試料の熱電特性評価を行うことができる。 According to the invention described in claim 3, since the temperature measuring means is provided through the block and in contact with the end face of the measurement sample, the measurement sample having a short length, which is difficult in the DC four-terminal method, is provided. Thermoelectric property evaluation can be performed.

請求項4に記載の発明では、請求項1ないし請求項3のいずれか1つに記載の熱電特性評価装置において、前記一対のブロックは、温度制御が可能な温調手段をそれぞれ内蔵している、という技術的手段を用いる。 According to a fourth aspect of the present invention, in the thermoelectric characteristic evaluation apparatus according to any one of the first to third aspects, the pair of blocks each incorporate temperature control means capable of temperature control. The technical means is used.

請求項4に記載の発明によれば、一対のブロックは、温度制御が可能な温調手段をそれぞれ内蔵しているため、測定試料を短時間で測定温度に到達するように制御することができる。 According to the fourth aspect of the present invention, since the pair of blocks each include temperature control means capable of temperature control, the measurement sample can be controlled to reach the measurement temperature in a short time. .

請求項5に記載の発明では、請求項1ないし請求項4のいずれか1つに記載の熱電特性評価装置を用い、測定試料の端面を前記第1電極及び前記第2電極で挟んで前記一対のブロックで支持し、測定試料に温度勾配を形成する工程と、前記測温手段により測定試料の端面の温度差を測定する工程と、前記開閉器により前記電流測定回路が開放された状態で、前記電圧測定手段により測定試料の熱起電力を測定する工程と、前記演算手段により前記熱起電力及び前記測温手段により測定された測定試料の端面の温度差に基づいて熱電能を算出する工程と、前記開閉器により前記電流測定回路を開放された状態から接続された状態に切り替えて測定試料の熱起電力を放電し、前記電流測定手段により測定試料に流れる電流値を測定するとともに前記電圧測定手段により電圧降下を測定する工程と、前記演算手段により前記電流値及び電圧降下に基づいて抵抗率を算出する工程と、を備えた熱電特性評価方法、という技術的手段を用いる。 According to a fifth aspect of the present invention, the thermoelectric property evaluation apparatus according to any one of the first to fourth aspects is used, and the pair of the measurement sample is sandwiched between the first electrode and the second electrode. The step of forming a temperature gradient on the measurement sample, the step of measuring the temperature difference of the end face of the measurement sample by the temperature measuring means, and the current measuring circuit being opened by the switch, A step of measuring the thermoelectromotive force of the measurement sample by the voltage measuring means, and a step of calculating the thermoelectric power based on the temperature difference between the thermoelectromotive force and the end face of the measurement sample measured by the temperature measuring means by the computing means. And switching the current measurement circuit from the open state to the connected state by the switch to discharge the thermoelectromotive force of the measurement sample, and measuring the current value flowing through the measurement sample by the current measurement means Measuring a voltage drop by the voltage measuring means, thermoelectric characteristic evaluation method comprising the steps, a to calculate the resistivity based on the current value and the voltage drop by the calculating means, using the technical means of.

請求項5に記載の発明によれば、測定試料の端面を第1電極及び第2電極で挟んで一対のブロックで支持し、測定試料に温度勾配を形成し、開閉器を開いた状態で電圧測定手段により測定された測定試料の熱起電力及び測温手段により測定された測定試料の端面の温度差に基づいて測定試料の熱電能を算出し、測定試料の熱起電力を発生させた後に開閉器を閉じて放電し電圧測定手段により測定された測定試料の電圧降下及び電流測定手段により測定された電流値に基づいて測定試料の抵抗率を算出することができる。
抵抗率の測定では、測定試料の熱起電力を利用して開閉器を閉じることにより短時間で生じる放電を利用するため、パルス通電可能な定電流電源などを用いる必要がない。これにより、従来装置に比べ構成が簡単で安価な熱電特性評価装置により、精度の高い熱電能、抵抗率の測定を実現することができる。
According to the invention described in claim 5, the end face of the measurement sample is supported by the pair of blocks sandwiched between the first electrode and the second electrode, a temperature gradient is formed in the measurement sample, and the voltage is applied with the switch open. After calculating the thermoelectric power of the measurement sample based on the thermoelectromotive force of the measurement sample measured by the measurement means and the temperature difference of the end surface of the measurement sample measured by the temperature measurement means, and generating the thermoelectromotive force of the measurement sample The resistivity of the measurement sample can be calculated on the basis of the voltage drop of the measurement sample measured by the voltage measurement means and the current value measured by the current measurement means after the switch is closed and discharged.
In the measurement of resistivity, since a discharge generated in a short time by closing the switch using the thermoelectromotive force of the measurement sample is used, there is no need to use a constant current power source capable of pulse energization. Accordingly, it is possible to realize highly accurate measurement of thermoelectric power and resistivity with a thermoelectric characteristic evaluation apparatus that is simpler and less expensive than the conventional apparatus.

請求項6に記載の発明では、請求項5に記載の熱電特性評価方法において、請求項2ないし請求項4のいずれか1つに記載の熱電特性評価装置であって、前記可変抵抗器を備えた熱電特性評価装置を用い、前記可変抵抗器において異なる抵抗値を設定し、それぞれの設定において電流値及び電圧降下を測定し、各抵抗値に応じた電流値及び電圧降下に基づいて抵抗率を算出する、という技術的手段を用いる。 According to a sixth aspect of the present invention, in the thermoelectric characteristic evaluation method according to the fifth aspect, the thermoelectric characteristic evaluation apparatus according to any one of the second to fourth aspects, wherein the variable resistor is provided. Using the thermoelectric characteristic evaluation apparatus, different resistance values are set in the variable resistor, current values and voltage drops are measured in the respective settings, and the resistivity is calculated based on the current value and voltage drop corresponding to each resistance value. The technical means of calculating is used.

請求項6に記載の発明によれば、可変抵抗器において異なる抵抗値を設定し、それぞれの設定において電流値及び電圧降下を測定し、各抵抗値に応じた電流値及び電圧降下に基づいて抵抗率を算出することができる。これによれば、電流測定回路の抵抗の影響をキャンセルすることができるとともに、各抵抗値に応じた複数個の電流値及び電圧降下に基づいて抵抗率を算出するため、個々の測定値が有する誤差を小さくすることができるので、抵抗率の高精度の測定を行うことができる。
また、測定試料の抵抗値が小さいと電圧降下が微小となり精度よく測定することが難しいが、可変抵抗器を用いて適当な抵抗値を設定することにより高精度の測定を行うことができる。
According to the sixth aspect of the present invention, different resistance values are set in the variable resistor, the current value and the voltage drop are measured in each setting, and the resistance is determined based on the current value and the voltage drop corresponding to each resistance value. The rate can be calculated. According to this, the influence of the resistance of the current measurement circuit can be canceled, and the resistivity is calculated based on a plurality of current values and voltage drops according to each resistance value. Since the error can be reduced, the resistivity can be measured with high accuracy.
In addition, if the resistance value of the measurement sample is small, the voltage drop is small and it is difficult to measure with high accuracy. However, high-precision measurement can be performed by setting an appropriate resistance value using a variable resistor.

本発明の熱電特性評価装置の構成図である。It is a block diagram of the thermoelectric property evaluation apparatus of this invention. 第1電極及び第2電極の配置を示す平面説明図である。It is a plane explanatory view showing arrangement of the 1st electrode and the 2nd electrode. 抵抗率の測定法の説明図である。It is explanatory drawing of the measuring method of a resistivity. 従来法と本発明の方法によりP型BiTeの熱電特性評価を行った結果を比較する説明図である。図4(A)は熱電能の測定結果、図4(B)は抵抗率の測定結果である。It is explanatory drawing which compares the result of having performed the thermoelectric characteristic evaluation of P-type BiTe by the method of this invention and the method of this invention. 4A shows the measurement result of thermoelectric power, and FIG. 4B shows the measurement result of resistivity. 従来法と本発明の方法によりN型BiTeの熱電特性評価を行った結果を比較する説明図である。図5(A)は熱電能の測定結果、図5(B)は抵抗率の測定結果である。It is explanatory drawing which compares the result of having performed the thermoelectric property evaluation of N type BiTe by the method of this invention and the method of this invention. FIG. 5A shows a measurement result of thermoelectric power, and FIG. 5B shows a measurement result of resistivity. 従来の熱電特性評価装置(直流4端子法)の構成図である。It is a block diagram of the conventional thermoelectric characteristic evaluation apparatus (DC 4 terminal method).

以下、本発明の熱電特性評価装置について、図を参照して説明する。なお、本発明は以下の実施形態に限定されるものではない。 Hereinafter, the thermoelectric property evaluation apparatus of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment.

図1に示すように、熱電特性評価装置1は、測定試料Sに温度勾配を形成するために温度差を形成可能に構成された一対のブロック11(11a、11b)と、ブロック11と測定試料Sの端面との間に挟まれて配置される一対の第1電極14、14及び一対の第2電極15、15と、測定試料Sに生じる電圧を測定するための電圧計16と、測定試料Sに流れる電流を測定するための電流計17と、電流測定回路Kの開閉の切り替えを行う開閉器18と、測定試料Sの端面の温度測定を行う熱電対21、22と、測定試料の熱電能及び抵抗率を算出する、例えば、パーソナルコンピュータなどの演算装置40と、を備えている。 As shown in FIG. 1, the thermoelectric characteristic evaluation apparatus 1 includes a pair of blocks 11 (11a and 11b) configured to be capable of forming a temperature difference in order to form a temperature gradient in the measurement sample S, and the block 11 and the measurement sample. A pair of first electrodes 14 and 14 and a pair of second electrodes 15 and 15 disposed between the end faces of S, a voltmeter 16 for measuring a voltage generated in the measurement sample S, and a measurement sample An ammeter 17 for measuring the current flowing through S, a switch 18 for switching between opening and closing of the current measurement circuit K, thermocouples 21 and 22 for measuring the temperature of the end face of the measurement sample S, and the thermoelectric of the measurement sample For example, a computing device 40 such as a personal computer.

ブロック11(11a、11b)は、高熱伝導材料、例えば、銅などの金属材料や窒化アルミニウムなどのセラミックス材料により略直方体形状に形成されている。図2に示すように、ブロック11の測定試料Sを挟み込む面は、測定試料Sの端面Seよりも大きく形成されており、ブロック11aとブロック11bとに挟まれて測定試料Sが支持されるようになっている。これにより、測定試料Sの端面Seの面内温度分布を均一にすることができ、より正確な測定が可能となる。測定試料Sの端面Seとブロック11との間には、ブロック11側から順に、絶縁層13、同一平面上に設けられる第1電極14及び第2電極15が介装される。 The block 11 (11a, 11b) is formed in a substantially rectangular parallelepiped shape from a high heat conductive material, for example, a metal material such as copper or a ceramic material such as aluminum nitride. As shown in FIG. 2, the surface of the block 11 that sandwiches the measurement sample S is formed larger than the end surface Se of the measurement sample S, and the measurement sample S is supported by being sandwiched between the block 11a and the block 11b. It has become. Thereby, the in-plane temperature distribution of the end surface Se of the measurement sample S can be made uniform, and more accurate measurement can be performed. Between the end surface Se of the measurement sample S and the block 11, an insulating layer 13, a first electrode 14 and a second electrode 15 provided on the same plane are interposed in this order from the block 11 side.

ブロック11a、11bは、ヒータ、クーラーなどの温調手段12a、12bをそれぞれ備えており、所定の温度に制御可能に構成されている。これにより、測定試料Sを短時間で測定温度に到達するように制御することができる。本実施形態では、上方のブロック11aが高温側ブロック、下方のブロック11bが低温側ブロックとして使用される。 Each of the blocks 11a and 11b includes temperature control means 12a and 12b such as a heater and a cooler, and is configured to be controllable to a predetermined temperature. Thereby, it is possible to control the measurement sample S so as to reach the measurement temperature in a short time. In this embodiment, the upper block 11a is used as a high temperature side block, and the lower block 11b is used as a low temperature side block.

ブロック11の鉛直方向の中央部には貫通孔11cが形成されており、熱電対21、22を挿通して測定試料Sの端面Seに接触させて温度を測定できるように構成されている。熱電対21、22は、演算装置40と接続されており、演算装置40に対し測定試料Sの端面Seの温度情報を出力する。ここで、熱電対21、22による測定試料Sの端面Seの温度に基づいて、ブロック11a、11bをそれぞれ温度制御することもできる。 A through-hole 11c is formed in the central portion of the block 11 in the vertical direction, and is configured so that the temperature can be measured by inserting the thermocouples 21 and 22 into contact with the end surface Se of the measurement sample S. The thermocouples 21 and 22 are connected to the arithmetic device 40 and output temperature information of the end surface Se of the measurement sample S to the arithmetic device 40. Here, based on the temperature of the end surface Se of the measurement sample S by the thermocouples 21 and 22, the temperature of the blocks 11a and 11b can also be controlled.

絶縁層13は、金属製のブロックを用いる場合に、第1電極14、14及び第2電極15、15とブロック11とを絶縁するために設けられる。絶縁層13は、熱抵抗を小さくするために、熱伝導性が良い材質で形成することが好ましい。例えば、窒化アルミ、アルミナ、ジルコニア、窒化珪素などからなる。絶縁層13の厚みは熱抵抗を小さくするためにできる限り薄い方が好ましく、0.5mm以下であることがより好ましい。絶縁層13は、板状部材を用いても良いが、部材間の接触による熱抵抗を小さくするために、溶射、ペースト焼付けなど公知の方法によりブロック11と一体的に形成することがより好ましい。絶縁層13にも熱電対21、22を挿通可能な穴部が形成されている。絶縁層13は、ブロック11がセラミックス等の絶縁材料の場合は省略してもよい。 The insulating layer 13 is provided to insulate the first electrode 14, 14 and the second electrode 15, 15 from the block 11 when using a metal block. Insulating layer 13 is preferably formed of a material having good thermal conductivity in order to reduce thermal resistance. For example, it consists of aluminum nitride, alumina, zirconia, silicon nitride or the like. The thickness of the insulating layer 13 is preferably as thin as possible in order to reduce the thermal resistance, and more preferably 0.5 mm or less. The insulating layer 13 may be a plate-like member, but is preferably formed integrally with the block 11 by a known method such as thermal spraying or paste baking in order to reduce thermal resistance due to contact between the members. The insulating layer 13 is also formed with a hole through which the thermocouples 21 and 22 can be inserted. The insulating layer 13 may be omitted when the block 11 is an insulating material such as ceramics.

第1電極14と第2電極15とは、導電性材料により層状または板状に形成されており、同一平面上に互いに絶縁された状態で設けられる。本実施形態では、第1電極14及び第2電極15と、図2に示すように、それぞれ矩形状に形成されており、貫通孔11cを避けて離間して配置されている。ここで、第1電極14と第2電極15との間隙は、測定試料Sの端面Seとの接触面積を増大させるために、絶縁に必要最小限な幅にするとよい。第1電極14及び第2電極15は、自らが熱起電力を発生するため、金、銅、銀などのゼーベック係数の小さい材料で形成することが好ましい。 The first electrode 14 and the second electrode 15 are formed in a layer shape or a plate shape from a conductive material, and are provided in a state of being insulated from each other on the same plane. In the present embodiment, as shown in FIG. 2, the first electrode 14 and the second electrode 15 are each formed in a rectangular shape, and are spaced apart from each other while avoiding the through hole 11c. Here, in order to increase the contact area with the end surface Se of the measurement sample S, the gap between the first electrode 14 and the second electrode 15 may be set to a minimum width necessary for insulation. Since the 1st electrode 14 and the 2nd electrode 15 generate | occur | produce a thermoelectromotive force itself, it is preferable to form with a material with small Seebeck coefficients, such as gold | metal | money, copper, and silver.

第1電極14及び第2電極15は、板状部材を用いてもよく、絶縁層13と一体的に形成してもよい。絶縁層13と一体的に形成する場合には、ペースト焼付け、溶射、拡散接合、めっきなど公知の方法を用いることができる。
更に、第1電極14及び第2電極15は、測定試料Sの端面Seに直接形成することもできる。
また、絶縁層13が不要の場合には、ブロック11と一体的に形成することができる。
The first electrode 14 and the second electrode 15 may be plate-like members or may be formed integrally with the insulating layer 13. In the case where the insulating layer 13 is formed integrally, a known method such as paste baking, thermal spraying, diffusion bonding, or plating can be used.
Furthermore, the first electrode 14 and the second electrode 15 can also be directly formed on the end surface Se of the measurement sample S.
Further, when the insulating layer 13 is unnecessary, it can be formed integrally with the block 11.

第1電極14及び第2電極15の測定試料Sと接する面は、平滑面とすることにより測定試料と十分な面接触させることができるため、酸化膜や材料組織不均一性などが測定結果に与える影響を小さくすることができる。例えば、算術平均粗さRa0.8μm以下の表面粗さと5μm以下の平面度にすることが好ましい。 Since the surfaces of the first electrode 14 and the second electrode 15 that are in contact with the measurement sample S can be made to be smooth surfaces, sufficient contact with the measurement sample can be obtained. The influence given can be reduced. For example, the arithmetic average roughness Ra is preferably 0.8 μm or less and the flatness of 5 μm or less.

電圧計16は、第1電極14、14の間に設けられており、測定試料Sの端面Se間に生じる電圧を測定する。また、電圧計16は、演算装置40と接続されており、演算装置40に対し測定された電圧値を出力する。 The voltmeter 16 is provided between the first electrodes 14 and 14 and measures a voltage generated between the end surfaces Se of the measurement sample S. The voltmeter 16 is connected to the arithmetic device 40 and outputs a measured voltage value to the arithmetic device 40.

電流測定回路Kは、第2電極15、15により測定試料Sを挟み込み、電流計17及び可変抵抗器19が直列に接続されて構成されており、開閉器18により電流測定回路Kの開閉の切り替えを行うことができる。電流計17は、測定試料Sに流れる電流を測定する。電流計17は、演算装置40と接続されており、演算装置40に対し測定された電流値を出力する。 The current measurement circuit K is configured such that the measurement sample S is sandwiched between the second electrodes 15 and 15, the ammeter 17 and the variable resistor 19 are connected in series, and switching of the current measurement circuit K is switched by the switch 18. It can be performed. The ammeter 17 measures the current flowing through the measurement sample S. The ammeter 17 is connected to the arithmetic device 40 and outputs a measured current value to the arithmetic device 40.

演算装置40は、例えば、パーソナルコンピュータなどの記憶手段を備え演算可能な装置であり、電圧計16及び電流計17の測定値を記憶し、これら測定値に基づいて、測定試料Sの熱電能及び抵抗率を算出する。 The arithmetic device 40 is a device that can be operated with storage means such as a personal computer, for example, stores the measured values of the voltmeter 16 and the ammeter 17, and based on these measured values, the thermoelectric power of the measurement sample S and Calculate resistivity.

測定試料S、ブロック11、各電極などは、測定槽30の内部に収容されている。測定槽30は、槽内温度、雰囲気などの測定雰囲気制御が可能に構成されている。例えば、測定槽30内部を真空状態にすると、空気等の対流に起因する熱伝導の影響が除去され、より正確な熱電特性の測定が可能となる。 The measurement sample S, the block 11, each electrode, and the like are accommodated in the measurement tank 30. The measurement tank 30 is configured to be able to control the measurement atmosphere such as the temperature in the tank and the atmosphere. For example, when the inside of the measurement tank 30 is in a vacuum state, the influence of heat conduction due to convection such as air is removed, and more accurate thermoelectric characteristics can be measured.

以下に、上述の熱電特性評価装置1を用いた熱電特性評価方法について説明する。測定試料Sは、角柱や円柱などの柱状に形成されている。 Below, the thermoelectric characteristic evaluation method using the above-mentioned thermoelectric characteristic evaluation apparatus 1 is demonstrated. The measurement sample S is formed in a columnar shape such as a prism or cylinder.

まず、ブロック11a、11bにより、測定試料Sの端面Seとの間に絶縁層13、第1電極14及び第2電極15を介装して、測定試料Sを支持する。そして、ブロック11a、11bの貫通孔11cに熱電対21、22をそれぞれ挿通して測定試料Sの端面Seに接触させる。熱電対21、22の先端の周辺は、ブロック11a、11bからの熱により一定温度に保たれるため、熱電対21、22による伝熱に起因する温度変化が小さく、測定試料Sの端面Seの温度を精度良く測定することができる。また、熱電対21、22を測定試料Sの端面Seに配置することにより直流4端子法では困難であった5mm以下の長さの測定試料Sの熱電特性評価が可能となる。 First, the measurement sample S is supported by the blocks 11a and 11b with the insulating layer 13, the first electrode 14, and the second electrode 15 interposed between the end surface Se of the measurement sample S. Then, the thermocouples 21 and 22 are inserted into the through holes 11c of the blocks 11a and 11b, respectively, and are brought into contact with the end surface Se of the measurement sample S. Since the periphery of the tips of the thermocouples 21 and 22 is maintained at a constant temperature by the heat from the blocks 11a and 11b, the temperature change due to heat transfer by the thermocouples 21 and 22 is small, and the end surface Se of the measurement sample S is reduced. The temperature can be measured with high accuracy. Further, by arranging the thermocouples 21 and 22 on the end surface Se of the measurement sample S, it is possible to evaluate the thermoelectric characteristics of the measurement sample S having a length of 5 mm or less, which is difficult with the direct current four-terminal method.

このとき、開閉器18は開いており、電流測定回路Kは開放された状態である。 At this time, the switch 18 is open, and the current measurement circuit K is open.

次に、ブロック11a、11bをそれぞれ所定の温度に制御し、測定試料Sに温度勾配を生じさせる。ここで、高温側のブロック11bは、低温側のブロック11aより5〜30℃程度高く設定する。ここで、測定された熱電能、抵抗率は、低温側温度T1及び高温側温度T2の平均値(T1+T2)/2
での値とするため、ブロック11a、11bの温度差は小さい方が真値に近くなるが、温度差が小さい程、電圧、電流の出力値が小さくなり測定誤差への影響が大きくなるため、測定試料Sの熱電特性に応じて適宜設定する。
Next, each of the blocks 11a and 11b is controlled to a predetermined temperature, and a temperature gradient is generated in the measurement sample S. Here, the block 11b on the high temperature side is set higher by about 5 to 30 ° C. than the block 11a on the low temperature side. Here, the measured thermoelectric power and resistivity are average values (T1 + T2) / 2 of the low temperature side temperature T1 and the high temperature side temperature T2.
Therefore, the smaller the temperature difference between the blocks 11a and 11b, the closer to the true value. However, the smaller the temperature difference, the smaller the voltage and current output values and the greater the influence on measurement errors. It sets suitably according to the thermoelectric characteristic of the measurement sample S.

続いて、測定試料Sの端面Se間の熱起電力Vを第1電極14に接続された電圧計16により測定する。
測定された熱起電力Vは、演算装置40に出力され、演算装置40は、測定された電圧値Vに基づいて次式により熱電能αを算出する。
Subsequently, the thermoelectromotive force V between the end surfaces Se of the measurement sample S is measured by the voltmeter 16 connected to the first electrode 14.
The measured thermoelectromotive force V is output to the computing device 40, and the computing device 40 calculates the thermoelectric power α by the following equation based on the measured voltage value V.

(数3)
α= V/(T2−T1)
(Equation 3)
α = V / (T2-T1)

続いて、可変抵抗器19により抵抗値を所定の値(例えば、Re:推定抵抗値)に設定した後に、開閉器18を閉じて電流測定回路Kを接続する。測定試料Sには熱起電力が発生しているので、電流測定回路Kに可変抵抗器19及び測定試料Sの抵抗値Rに見合った電流が流れる。電流測定回路Kに流れる電流値及び測定試料Sの電圧値の変化の一例を図4に示す。開閉器18を閉じると、測定試料Sから放電され電流測定回路Kに流れる電流値が急激に上昇し、可変抵抗器19及び測定試料Sの抵抗値に応じた電圧降下が生じる。電圧降下ΔVは、第1電極14に接続された電圧計16により測定され、そのときに測定試料Sに流れる電流値Iは、第2電極15に接続された電流計17により測定され、測定値はそれぞれ演算装置40に出力される。演算装置40では、抵抗値Rを算出するための電流値I及び電圧降下ΔVを算出する。電流値I及び電圧降下ΔVは、図4に示すように、時間変化が小さくなった状態の値を用い、電流及び電圧の時間変化の曲線より変曲点を外挿して求めると再現性が高く精度よく求めることができる。算出された電流値I及び電圧降下ΔVは、演算装置40の記憶手段に記憶される。 Subsequently, after the resistance value is set to a predetermined value (for example, Re: estimated resistance value) by the variable resistor 19, the switch 18 is closed and the current measurement circuit K is connected. Since a thermoelectromotive force is generated in the measurement sample S, a current corresponding to the resistance value R of the variable resistor 19 and the measurement sample S flows through the current measurement circuit K. An example of changes in the current value flowing through the current measurement circuit K and the voltage value of the measurement sample S is shown in FIG. When the switch 18 is closed, the current value discharged from the measurement sample S and flowing through the current measurement circuit K rapidly increases, and a voltage drop corresponding to the resistance values of the variable resistor 19 and the measurement sample S occurs. The voltage drop ΔV is measured by the voltmeter 16 connected to the first electrode 14, and the current value I flowing through the measurement sample S at that time is measured by the ammeter 17 connected to the second electrode 15, and the measured value Are respectively output to the arithmetic unit 40. The arithmetic device 40 calculates a current value I and a voltage drop ΔV for calculating the resistance value R. As shown in FIG. 4, the current value I and the voltage drop ΔV are highly reproducible when they are obtained by extrapolating the inflection points from the time change curves of the current and voltage, using values in a state where the time change is small. It can be obtained with high accuracy. The calculated current value I and voltage drop ΔV are stored in the storage means of the arithmetic device 40.

測定試料Sの抵抗値測定の誤差要因として、測定試料Sが発生する電流によるペルチェ効果及びジュール熱による誤差が含まれる。これらの影響は測定試料Sの温度の時間変化に起因するが、本実施形態では、図4に示すように、短時間のデータ、例えば、500msec以内に測定される測定値に基づいて抵抗値を算出することができるので、これらの影響を最小限にすることができる。 Error factors for measuring the resistance value of the measurement sample S include the Peltier effect due to the current generated by the measurement sample S and the error due to Joule heat. Although these influences are caused by the time change of the temperature of the measurement sample S, in the present embodiment, as shown in FIG. 4, the resistance value is set based on short-time data, for example, a measurement value measured within 500 msec. These effects can be minimized because they can be calculated.

続いて、開閉器18を開いて電流測定回路Kを開放し、測定試料Sに起電力を発生させ、可変抵抗器19により抵抗値をReと異なる値、例えば、2Reに設定した後に、開閉器18を閉じて電流測定回路Kを接続し、前述と同様に電圧降下ΔV及び電流値Iを測定する。可変抵抗器19における抵抗値は、測定試料Sの熱電特性にあわせて適宜設定することができる。例えば、測定条件を5条件とする場合には、可変抵抗器19における抵抗値は、4Re、3Re、2Re、Re、0(短絡) に設定することができる。 Subsequently, the switch 18 is opened to open the current measurement circuit K, an electromotive force is generated in the measurement sample S, and the resistance value is set to a value different from Re by the variable resistor 19, for example, 2Re. 18 is closed and the current measurement circuit K is connected, and the voltage drop ΔV and the current value I are measured in the same manner as described above. The resistance value in the variable resistor 19 can be appropriately set according to the thermoelectric characteristics of the measurement sample S. For example, when the measurement conditions are five, the resistance value in the variable resistor 19 can be set to 4Re, 3Re, 2Re, Re, 0 (short circuit).

可変抵抗器19における抵抗値を変化させることにより、測定される電圧降下ΔV及び電流値Iが変化する。これらの値は比例関係にあり、その傾きが測定試料Sの抵抗値Rとなる。測定試料の抵抗値Rは、演算装置40により、電圧降下ΔVと電流値Iとを最小自乗法にて直線近似した場合の傾きの値を用い、次式により算出する。 By changing the resistance value in the variable resistor 19, the measured voltage drop ΔV and the current value I change. These values are in a proportional relationship, and the slope is the resistance value R of the measurement sample S. The resistance value R of the measurement sample is calculated by the following equation using the slope value when the voltage drop ΔV and the current value I are linearly approximated by the method of least squares.

Figure 2011185697
Figure 2011185697

抵抗率ρは、上式で計算された抵抗値Rと測定試料の断面積A、長さLから演算装置40において次式により算出される。 The resistivity ρ is calculated from the resistance value R calculated by the above equation, the cross-sectional area A and the length L of the measurement sample by the calculation device 40 according to the following equation.

(数5)
ρ= R・A/L
(Equation 5)
ρ = R · A / L

可変抵抗器19を用いた測定では、電流測定回路Kの抵抗の影響をキャンセルし、また、個々の測定値が有する誤差を最小自乗法により小さくすることができるので、抵抗率ρの高精度の測定を行うことができる。
また、測定試料Sの抵抗値Rが小さいと電圧降下ΔVが微小となり精度よく測定することが難しいが、可変抵抗器19を用いて適当な抵抗値を設定することにより高精度の測定を行うことができる。
In the measurement using the variable resistor 19, the influence of the resistance of the current measurement circuit K can be canceled, and the error of each measurement value can be reduced by the least square method. Measurements can be made.
In addition, if the resistance value R of the measurement sample S is small, the voltage drop ΔV is very small and difficult to measure with high accuracy. However, high-precision measurement can be performed by setting an appropriate resistance value using the variable resistor 19. Can do.

(実施例)
本発明の熱電特性評価装置1による熱電材料の熱電特性評価結果を、従来の直流4端子法を比較法とした熱電特性評価結果と比較した。
(Example)
The thermoelectric property evaluation result of the thermoelectric material by the thermoelectric property evaluation apparatus 1 of the present invention was compared with the thermoelectric property evaluation result using the conventional DC four-terminal method as a comparison method.

測定試料は、端面形状が4mm×4mmの正方形、高さが6mmの角柱状試験片に形成されたP型BiTe及びN型BiTeを用いた。
比較法としては、直流4端子法を用い、熱電対の距離は3mm、測定試料の端面の温度差ΔTは10℃とした。
本発明による測定では、ΔTは5〜30℃とし、可変抵抗器19はレンジオーダー10mΩとし、測定水準を3水準とした。
As the measurement sample, P-type BiTe and N-type BiTe formed on a square columnar test piece having a square end face shape of 4 mm × 4 mm and a height of 6 mm were used.
As a comparison method, a direct current four-terminal method was used, the thermocouple distance was 3 mm, and the temperature difference ΔT of the end face of the measurement sample was 10 ° C.
In the measurement according to the invention, [Delta] T is set to 5 to 30 ° C., the variable resistor 19 is set to range order 10 0 milliohms, were measured levels and 3 levels.

P型BiTeの熱電特性測定結果を図4に、N型BiTeの熱電特性測定結果を図5にそれぞれ示す。熱電能、抵抗率ともに本発明による測定値は、比較法による測定値とよい一致を示し、本発明の熱電測定評価方法によっても、精度のよい測定が可能であることが確認された。 The thermoelectric property measurement result of P-type BiTe is shown in FIG. 4, and the thermoelectric property measurement result of N-type BiTe is shown in FIG. The measured values according to the present invention for both the thermoelectric power and the resistivity are in good agreement with the measured values by the comparative method, and it was confirmed that accurate measurement is possible even by the thermoelectric measurement evaluation method of the present invention.

[実施形態の効果]
(1)上述のように、本発明の熱電特性評価装置1によれば、測定試料Sの端面Seを第1電極14及び第2電極15で挟んで一対のブロック11で支持し、測定試料Sに温度勾配を形成し、開閉器18を開いた状態で電圧計16により測定された測定試料Sの熱起電力及び熱電対21、22により測定された測定試料Sの端面Seの温度差に基づいて測定試料Sの熱電能αを算出し、測定試料Sの熱起電力を発生させた後に開閉器18を閉じて放電し電圧計16により測定された測定試料Sの電圧降下ΔV及び電流計17により測定された電流値Iに基づいて測定試料Sの抵抗率ρを算出することができる。
抵抗率ρの測定では、測定試料Sの熱起電力を利用して開閉器18を閉じることにより短時間で生じる放電を利用するため、パルス通電可能な定電流電源などを用いる必要がない。これにより、従来装置に比べ構成が簡単で安価な熱電特性評価装置1により、精度の高い熱電能、抵抗率の測定を実現することができる。
また、第1電極14及び第2電極15は測定試料Sの端面Seと面接触させることができるため、酸化膜や材料組織不均一性などが測定結果に与える影響を小さくすることができる。
[Effect of the embodiment]
(1) As described above, according to the thermoelectric property evaluation apparatus 1 of the present invention, the end surface Se of the measurement sample S is sandwiched between the first electrode 14 and the second electrode 15 and supported by the pair of blocks 11. Is formed on the basis of the thermoelectromotive force of the measurement sample S measured by the voltmeter 16 and the temperature difference of the end surface Se of the measurement sample S measured by the thermocouples 21 and 22 with the switch 18 opened. The thermoelectric power α of the measurement sample S is calculated, and after the thermoelectromotive force of the measurement sample S is generated, the switch 18 is closed and discharged, and the voltage drop ΔV of the measurement sample S measured by the voltmeter 16 and the ammeter 17 are measured. Based on the current value I measured by the above, the resistivity ρ of the measurement sample S can be calculated.
In the measurement of the resistivity ρ, since the discharge generated in a short time by closing the switch 18 using the thermoelectromotive force of the measurement sample S is used, there is no need to use a constant current power source capable of pulse energization. Thereby, the thermoelectric characteristic evaluation apparatus 1 having a simpler configuration and lower cost than the conventional apparatus can realize highly accurate measurement of thermoelectric power and resistivity.
In addition, since the first electrode 14 and the second electrode 15 can be brought into surface contact with the end surface Se of the measurement sample S, the influence of the oxide film and the material structure non-uniformity on the measurement result can be reduced.

(2)可変抵抗器19を用いた測定では、電流測定回路Kの抵抗の影響をキャンセルし、また、個々の測定値が有する誤差を最小自乗法により小さくすることができるので、抵抗率ρの高精度の測定を行うことができる。
また、測定試料Sの抵抗値Rが小さいと電圧降下ΔVが微小となり精度よく測定することが難しいが、可変抵抗器19を用いて適当な抵抗値を設定することにより高精度の測定を行うことができる。
(2) In the measurement using the variable resistor 19, the influence of the resistance of the current measurement circuit K can be canceled, and the error of each measurement value can be reduced by the least square method. High-precision measurement can be performed.
In addition, if the resistance value R of the measurement sample S is small, the voltage drop ΔV is very small and difficult to measure with high accuracy. However, high-precision measurement can be performed by setting an appropriate resistance value using the variable resistor 19. Can do.

(3)熱電対21、22は、それぞれブロック11a、11bの貫通孔11cに挿通されて測定試料Sの端面Seに接触して設けられているため、直流4端子法では困難であった長さが短い測定試料の熱電特性評価を行うことができる。 (3) Since the thermocouples 21 and 22 are inserted through the through holes 11c of the blocks 11a and 11b and are in contact with the end surface Se of the measurement sample S, the lengths that are difficult with the DC four-terminal method are provided. It is possible to evaluate the thermoelectric characteristics of a measurement sample having a short period.

(4)ブロック11a、11bが温調手段12a、12bをそれぞれ備えているので、測定試料Sを短時間で測定温度に到達するように制御することができる。 (4) Since the blocks 11a and 11b are provided with the temperature control means 12a and 12b, respectively, the measurement sample S can be controlled to reach the measurement temperature in a short time.

[その他の実施形態]
上述の実施形態では、可変抵抗器19を備えた構成を採用したが、これに限定されるものではない。電流測定回路Kの抵抗が電圧降下ΔV及び電流値Iの測定精度に大きな影響を及ぼさない程度であれば、可変抵抗器19を用いずに電圧降下ΔV及び電流値Iを測定し、直接抵抗値Rを算出してもよい。また、測温手段として、熱電対21、22を用いたが、貫通孔11cを利用して放射温度計などの非接触温度計を用いることもできる。
[Other Embodiments]
In the above-described embodiment, the configuration including the variable resistor 19 is adopted, but the present invention is not limited to this. If the resistance of the current measurement circuit K does not significantly affect the measurement accuracy of the voltage drop ΔV and the current value I, the voltage drop ΔV and the current value I are measured without using the variable resistor 19, and the resistance value is directly measured. R may be calculated. Further, although thermocouples 21 and 22 are used as temperature measuring means, a non-contact thermometer such as a radiation thermometer can also be used using the through hole 11c.

1 熱電特性評価装置
11、11a、11b ブロック
11c 貫通孔
12a 温調手段
13 絶縁層
14 第1電極、
15 第2電極
16 電圧計(電圧測定手段)
17 電流計(電流測定手段)
18 開閉器
19 可変抵抗器
21、22 熱電対(測温手段)
30 測定槽
40 演算装置(演算手段)
K 電流測定回路
S 測定試料
Se 端面
DESCRIPTION OF SYMBOLS 1 Thermoelectric characteristic evaluation apparatus 11, 11a, 11b Block 11c Through-hole 12a Temperature control means 13 Insulating layer 14 1st electrode,
15 Second electrode 16 Voltmeter (Voltage measuring means)
17 Ammeter (Current measurement means)
18 Switch 19 Variable resistor 21, 22 Thermocouple (temperature measuring means)
30 measuring tank 40 arithmetic device (calculation means)
K current measurement circuit S measurement sample Se end face

Claims (6)

測定試料に温度勾配を形成するために温度差を形成可能に構成された一対のブロックと、
前記ブロックと測定試料の端面との間に挟まれて配置される一対の第1電極と、
前記一対の第1電極と接続され、測定試料に生じる電圧を測定するための電圧測定手段と、
前記第1電極と絶縁された状態で、前記ブロックと測定試料の端面との間に挟まれて配置される一対の第2電極と、
前記一対の第2電極と接続され、測定試料に流れる電流を測定するための電流測定手段と、
測定試料、前記一対の第2電極及び前記電流測定手段とからなる電流測定回路の開放及び接続の切り替えを行う開閉器と、
測定試料の端面近傍の温度測定を行う測温手段と、
前記開閉器を開いた状態で前記電圧測定手段により測定された測定試料の熱起電力及び前記測温手段により測定された測定試料の端面の温度差に基づいて測定試料の熱電能を算出し、測定試料の熱起電力を発生させた後に前記開閉器を閉じて放電し前記電圧測定手段により測定された測定試料の電圧降下及び前記電流測定手段により測定された電流値に基づいて測定試料の抵抗率を算出する演算手段と、
を備えたことを特徴とする請求項1に記載の熱電特性評価装置。
A pair of blocks configured to form a temperature difference to form a temperature gradient in the measurement sample;
A pair of first electrodes disposed between the block and an end surface of the measurement sample;
Voltage measuring means connected to the pair of first electrodes for measuring a voltage generated in the measurement sample;
A pair of second electrodes disposed between the block and an end surface of the measurement sample in a state of being insulated from the first electrode;
Current measuring means connected to the pair of second electrodes for measuring a current flowing through the measurement sample;
A switch for opening and switching a connection of a current measurement circuit comprising a measurement sample, the pair of second electrodes and the current measurement means;
A temperature measuring means for measuring the temperature near the end face of the measurement sample,
The thermoelectric power of the measurement sample is calculated based on the thermoelectromotive force of the measurement sample measured by the voltage measurement unit and the temperature difference of the end surface of the measurement sample measured by the temperature measurement unit with the switch open. After generating the thermoelectromotive force of the measurement sample, the switch is closed and discharged, and the resistance of the measurement sample is measured based on the voltage drop of the measurement sample measured by the voltage measurement means and the current value measured by the current measurement means. Computing means for calculating the rate;
The thermoelectric property evaluation apparatus according to claim 1, comprising:
前記電流測定回路は、抵抗値が可変である可変抵抗器を備えたことを特徴とする請求項1に記載の熱電特性評価装置。 The thermoelectric characteristic evaluation apparatus according to claim 1, wherein the current measurement circuit includes a variable resistor having a variable resistance value. 前記測温手段は前記ブロックを貫通して測定試料の端面に接触して設けられていることを特徴とする請求項1または請求項2に記載の熱電特性評価装置。 The thermoelectric property evaluation apparatus according to claim 1 or 2, wherein the temperature measuring means is provided so as to pass through the block and come into contact with an end face of a measurement sample. 前記一対のブロックは、温度制御が可能な温調手段をそれぞれ内蔵していることを特徴とする請求項1ないし請求項3のいずれか1つに記載の熱電特性評価装置。 The thermoelectric property evaluation apparatus according to any one of claims 1 to 3, wherein the pair of blocks each incorporate temperature control means capable of temperature control. 請求項1ないし請求項4のいずれか1つに記載の熱電特性評価装置を用い、
測定試料の端面を前記第1電極及び前記第2電極で挟んで前記一対のブロックで支持し、測定試料に温度勾配を形成する工程と、
前記測温手段により測定試料の端面の温度差を測定する工程と、
前記開閉器により前記電流測定回路が開放された状態で、前記電圧測定手段により測定試料の熱起電力を測定する工程と、
前記演算手段により前記熱起電力及び前記測温手段により測定された測定試料の端面の温度差に基づいて熱電能を算出する工程と、
前記開閉器により前記電流測定回路を開放された状態から接続された状態に切り替えて測定試料の熱起電力を放電し、前記電流測定手段により測定試料に流れる電流値を測定するとともに前記電圧測定手段により電圧降下を測定する工程と、
前記演算手段により前記電流値及び電圧降下に基づいて抵抗率を算出する工程と、
を備えたことを特徴とする熱電特性評価方法。
Using the thermoelectric property evaluation apparatus according to any one of claims 1 to 4,
A step of sandwiching an end face of the measurement sample between the first electrode and the second electrode and supporting the pair of blocks to form a temperature gradient on the measurement sample;
Measuring the temperature difference of the end face of the measurement sample by the temperature measuring means;
A step of measuring a thermoelectromotive force of a measurement sample by the voltage measuring means in a state where the current measuring circuit is opened by the switch; and
Calculating thermoelectric power based on the thermoelectromotive force by the computing means and the temperature difference of the end face of the measurement sample measured by the temperature measuring means;
The current measurement circuit is switched from an open state to a connected state by the switch to discharge the thermoelectromotive force of the measurement sample, and the current measurement unit measures the current value flowing through the measurement sample and the voltage measurement unit. Measuring the voltage drop by
Calculating a resistivity based on the current value and voltage drop by the computing means;
A thermoelectric property evaluation method comprising:
請求項2ないし請求項4のいずれか1つに記載の熱電特性評価装置であって、前記可変抵抗器を備えた熱電特性評価装置を用い、
前記可変抵抗器において異なる抵抗値を設定し、それぞれの設定において電流値及び電圧降下を測定し、各抵抗値に応じた電流値及び電圧降下に基づいて抵抗率を算出することを特徴とする請求項5に記載の熱電特性評価方法。
The thermoelectric characteristic evaluation apparatus according to any one of claims 2 to 4, wherein the thermoelectric characteristic evaluation apparatus including the variable resistor is used.
A different resistance value is set in the variable resistor, a current value and a voltage drop are measured in each setting, and a resistivity is calculated based on the current value and the voltage drop corresponding to each resistance value. Item 6. The thermoelectric property evaluation method according to Item 5.
JP2010050320A 2010-03-08 2010-03-08 Thermoelectric material evaluation device and thermoelectric characteristic evaluation method Pending JP2011185697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010050320A JP2011185697A (en) 2010-03-08 2010-03-08 Thermoelectric material evaluation device and thermoelectric characteristic evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010050320A JP2011185697A (en) 2010-03-08 2010-03-08 Thermoelectric material evaluation device and thermoelectric characteristic evaluation method

Publications (1)

Publication Number Publication Date
JP2011185697A true JP2011185697A (en) 2011-09-22

Family

ID=44792179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010050320A Pending JP2011185697A (en) 2010-03-08 2010-03-08 Thermoelectric material evaluation device and thermoelectric characteristic evaluation method

Country Status (1)

Country Link
JP (1) JP2011185697A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214642A (en) * 2012-04-03 2013-10-17 Ulvac-Riko Inc Thermoelectric material measurement device
TWI481862B (en) * 2013-05-24 2015-04-21 Univ Nat Taiwan Ocean Chip inspecting apparatus
JP2017040556A (en) * 2015-08-20 2017-02-23 国立研究開発法人物質・材料研究機構 Sample support, electrothermal characteristic evaluation device, method of evaluating electrothermal characteristic, and method of evaluating electrode
JP2018057270A (en) * 2017-12-22 2018-04-05 株式会社Kelk Thermoelectric power generation device and thermoelectric power generation method
KR20180043718A (en) * 2016-10-19 2018-04-30 한국전자통신연구원 Device for measuring thermoelectric performance
US10088439B2 (en) 2013-08-22 2018-10-02 National Institute Of Advanced Industrial Science And Technology Thermophysical property measurement method and thermophysical property measurement apparatus
KR20180125314A (en) * 2017-05-15 2018-11-23 주식회사 엘지화학 Apparatus and system for evaluating performance of thermoelectric modules
US10193046B2 (en) 2014-03-26 2019-01-29 Kelk Ltd. Thermoelectric generating device and thermoelectric generating method
JP2019024044A (en) * 2017-07-24 2019-02-14 学校法人東京理科大学 Device and method for measuring thermoelectric physical property
JP2019056644A (en) * 2017-09-21 2019-04-11 国立研究開発法人産業技術総合研究所 Thermophysical property measurement device and thermophysical property measurement method
WO2020204231A1 (en) * 2019-04-04 2020-10-08 임태영 Method and apparatus for measuring seebeck coefficient in order to identify alloy
CN113777404A (en) * 2021-09-10 2021-12-10 吉林大学 Device and method for accurately measuring electric heat transport properties at high temperature and high pressure in situ

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214642A (en) * 2012-04-03 2013-10-17 Ulvac-Riko Inc Thermoelectric material measurement device
TWI481862B (en) * 2013-05-24 2015-04-21 Univ Nat Taiwan Ocean Chip inspecting apparatus
US10088439B2 (en) 2013-08-22 2018-10-02 National Institute Of Advanced Industrial Science And Technology Thermophysical property measurement method and thermophysical property measurement apparatus
US10193046B2 (en) 2014-03-26 2019-01-29 Kelk Ltd. Thermoelectric generating device and thermoelectric generating method
JP2017040556A (en) * 2015-08-20 2017-02-23 国立研究開発法人物質・材料研究機構 Sample support, electrothermal characteristic evaluation device, method of evaluating electrothermal characteristic, and method of evaluating electrode
KR102662386B1 (en) * 2016-10-19 2024-05-03 한국전자통신연구원 Device for measuring thermoelectric performance
KR20180043718A (en) * 2016-10-19 2018-04-30 한국전자통신연구원 Device for measuring thermoelectric performance
KR102042753B1 (en) * 2017-05-15 2019-11-08 주식회사 엘지화학 Apparatus and system for evaluating performance of thermoelectric modules
KR20180125314A (en) * 2017-05-15 2018-11-23 주식회사 엘지화학 Apparatus and system for evaluating performance of thermoelectric modules
JP2019024044A (en) * 2017-07-24 2019-02-14 学校法人東京理科大学 Device and method for measuring thermoelectric physical property
JP7033292B2 (en) 2017-07-24 2022-03-10 学校法人東京理科大学 Thermoelectric property measuring device and thermoelectric property measuring method
JP2019056644A (en) * 2017-09-21 2019-04-11 国立研究開発法人産業技術総合研究所 Thermophysical property measurement device and thermophysical property measurement method
JP7016141B2 (en) 2017-09-21 2022-02-04 国立研究開発法人産業技術総合研究所 Thermophysical property measuring device and thermophysical property measuring method
JP2018057270A (en) * 2017-12-22 2018-04-05 株式会社Kelk Thermoelectric power generation device and thermoelectric power generation method
WO2020204231A1 (en) * 2019-04-04 2020-10-08 임태영 Method and apparatus for measuring seebeck coefficient in order to identify alloy
CN113777404A (en) * 2021-09-10 2021-12-10 吉林大学 Device and method for accurately measuring electric heat transport properties at high temperature and high pressure in situ

Similar Documents

Publication Publication Date Title
JP2011185697A (en) Thermoelectric material evaluation device and thermoelectric characteristic evaluation method
KR101302750B1 (en) Apparatus for evaluating a thermoelectric device
KR101276659B1 (en) Method for evaluating a thermoelectric figure-of-merit of thermoelectric device
CN102608153B (en) On-line test structure for Seebeck coefficient of polysilicon-metal thermocouple
McCluskey et al. Nano-thermal transport array: An instrument for combinatorial measurements of heat transfer in nanoscale films
JP2016024174A (en) Substance thermal diffusivity measurement method and substance thermoelectric characteristic evaluation device using the method
KR20150007686A (en) Thermoelectric property measurement system
JP5511941B2 (en) Thermoelectric conversion element evaluation apparatus and evaluation method
US9448121B2 (en) Measurement method, measurement apparatus, and computer program product
Mulla et al. A simple and portable setup for thermopower measurements
Lowhorn et al. Development of a seebeck coefficient standard reference material
JP7232513B2 (en) Seebeck coefficient measuring device and its measuring method
CN202403836U (en) Structure for testing seebeck coefficient of polycrystalline silicon-metal thermocouple on line
KR101662713B1 (en) Thermal properties measurement sensors for thermoelectric thin film in cross-plane direction
Chien et al. Evaluation of temperature-dependent effective material properties and performance of a thermoelectric module
Nishimura et al. Measurement of in-plane thermal and electrical conductivities of thin film using a micro-beam sensor: A feasibility study using gold film
WO2010101006A1 (en) Method and device for determining specific heat capacity and semispherical total emissivity of conductive sample
CN105785102B (en) Thermoelectrical potential measuring circuit, platform and the method for minute yardstick sample
Garrido et al. New method for evaluating the Peltier coefficient based on temperature measurements in a thermoelectric module
RU166138U1 (en) DEVICE FOR CONTROL OF SURFACE RESISTANCE OF METAL FILMS
Edler et al. Reference material for Seebeck coefficients
JPWO2017164104A1 (en) Thermoelectric module power generation evaluation device
Schwyter et al. Fully automated measurement setup for non-destructive characterization of thermoelectric materials near room temperature
JP5414068B2 (en) Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples
CN201229316Y (en) Pyroelectric material performance test furnace