JP7232513B2 - Seebeck coefficient measuring device and its measuring method - Google Patents

Seebeck coefficient measuring device and its measuring method Download PDF

Info

Publication number
JP7232513B2
JP7232513B2 JP2019025521A JP2019025521A JP7232513B2 JP 7232513 B2 JP7232513 B2 JP 7232513B2 JP 2019025521 A JP2019025521 A JP 2019025521A JP 2019025521 A JP2019025521 A JP 2019025521A JP 7232513 B2 JP7232513 B2 JP 7232513B2
Authority
JP
Japan
Prior art keywords
heat source
side variable
temperature
variable heat
seebeck coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019025521A
Other languages
Japanese (ja)
Other versions
JP2020134237A (en
Inventor
雅一 向田
慶碩 衛
敬雄 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019025521A priority Critical patent/JP7232513B2/en
Publication of JP2020134237A publication Critical patent/JP2020134237A/en
Application granted granted Critical
Publication of JP7232513B2 publication Critical patent/JP7232513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、熱電変換の性能指標であるゼーベック係数の測定装置及びその測定方法に関し、特に、板状試料の厚さ方向中央近傍におけるゼーベック係数を測定する測定装置及びその測定方法に関する。 The present invention relates to an apparatus and method for measuring the Seebeck coefficient, which is a performance index of thermoelectric conversion, and more particularly to an apparatus and method for measuring the Seebeck coefficient near the center in the thickness direction of a plate-shaped sample.

ゼーベック効果、ペルティエ効果、及びトムソン効果などを利用して熱エネルギーを電気エネルギーに変換する熱電素子が知られている。かかる熱電素子を用いることで、各種の未利用熱源、例えば、工場廃熱や自動車の燃焼機関の廃熱などから電力を得ることができ、動力なしに簡便に新たな電力源を得られる。かかる熱電素子に用いられる熱電材料の特性評価の1つにおいて、熱電変換の性能指標であるゼーベック係数の測定が行われる。一般的には、被測定試料の両端の温度ΔTを測定しながら、両端間に発生する起電力ΔVの測定を行って、ゼーベック係数S=ΔV/ΔTを算出するのである。 Thermoelectric elements are known that convert thermal energy into electrical energy using Seebeck effect, Peltier effect, Thomson effect, and the like. By using such a thermoelectric element, electric power can be obtained from various unused heat sources such as factory waste heat and automobile combustion engine waste heat, and a new electric power source can be easily obtained without power. In one of the property evaluations of thermoelectric materials used in such thermoelectric elements, the Seebeck coefficient, which is a performance index of thermoelectric conversion, is measured. In general, the Seebeck coefficient S=ΔV/ΔT is calculated by measuring the electromotive force ΔV generated between both ends of the sample to be measured while measuring the temperature ΔT at both ends.

特許文献1では、大型の被測定物から測定のための試料を切り出すことなく、2つのペルチェ素子を直接被測定物に取り付けて温度差を与えてゼーベック係数を求める方法を開示している。ここでは、インゴットとしての被測定物の両端面に銅電極を接触させ、その外側にペルチェ素子を接触させて固定し、被測定物の複数の測定点に熱電対の感温部を接触させている。その後、一方のペルチェ素子を発熱側、他方のペルチェ素子を吸熱側として被測定物に電流を流し、測定点の温度及び測定点間の熱起電力を測定し、ゼーベック係数を求めるとしている。 Patent Literature 1 discloses a method of determining the Seebeck coefficient by attaching two Peltier elements directly to an object to be measured to give a temperature difference without cutting out a sample for measurement from a large object to be measured. Here, copper electrodes are brought into contact with both end surfaces of an object to be measured as an ingot, Peltier elements are brought into contact with and fixed to the outside thereof, and temperature sensing parts of thermocouples are brought into contact with a plurality of measurement points of the object to be measured. there is Then, with one Peltier element on the heat-generating side and the other Peltier element on the heat-absorbing side, a current is passed through the object to be measured, and the temperature at the measurement point and the thermoelectromotive force between the measurement points are measured to obtain the Seebeck coefficient.

ところで、薄板形態の熱電素子が提案されている。かかる板状体についてゼーベック係数を求める場合、板状体の面内方向に温度差(熱勾配)を与えて起電力を測定することが可能である。一方、板状体が異方性を有するような場合、特に、厚さ方向に異方性を有し、かかる方向の熱的異方性に基づくゼーベック係数を求めようとする場合、温度勾配を板状体の厚さ方向に与えて起電力を測定することが必要となる。 Thermoelectric elements in the form of thin plates have been proposed. When obtaining the Seebeck coefficient of such a plate-like body, it is possible to give a temperature difference (thermal gradient) in the in-plane direction of the plate-like body and measure the electromotive force. On the other hand, when the plate-like body has anisotropy, especially in the thickness direction, and when trying to obtain the Seebeck coefficient based on the thermal anisotropy in this direction, the temperature gradient is It is necessary to measure the electromotive force by applying it in the thickness direction of the plate-like body.

例えば、特許文献2では、金属、半導体等の導電性薄膜についてその厚さ方向のゼーベック係数を求める方法を開示している。ここでは、交流加熱によってシリコンウェハからなる導電性薄膜に与えた熱量と、該導電性薄膜の熱伝導率と、から、その厚さ方向の温度差をまず計算する。そして、かかる温度差に対して測定された電位差からゼーベック係数を算出できるとしている。 For example, Patent Literature 2 discloses a method of determining the Seebeck coefficient in the thickness direction of a conductive thin film of metal, semiconductor, or the like. Here, the temperature difference in the thickness direction is first calculated from the amount of heat given to the conductive thin film made of a silicon wafer by AC heating and the thermal conductivity of the conductive thin film. Then, the Seebeck coefficient can be calculated from the potential difference measured with respect to the temperature difference.

特開2004-22912号公報Japanese Patent Application Laid-Open No. 2004-22912 特開2000-74862号公報JP-A-2000-74862

上記したように、板状試料の厚さ方向についてのゼーベック係数を求めようとする場合、温度勾配を板状試料の厚さ方向に与えて起電力を測定することが必要となる。しかしながら、かかる温度勾配を制御することは難しく、特に、より厚さの小さい薄板、例えば、厚さを100μm程度以下とするような板状(薄膜状)試料にあっては、厚さ方向に必要十分な温度差を安定的に形成することは難しい。一方、近時注目されているPEDOT/PSSのような導電性高分子においては、厚さの小さい膜状に形成されることが多く、このような材料の異方性評価に対して上記同様の問題が生じている。 As described above, when trying to obtain the Seebeck coefficient in the thickness direction of a plate-like sample, it is necessary to apply a temperature gradient in the thickness direction of the plate-like sample and measure the electromotive force. However, it is difficult to control such a temperature gradient, and in particular, for a thin plate with a smaller thickness, for example, a plate-like (thin-film) sample with a thickness of about 100 μm or less, it is necessary to It is difficult to stably form a sufficient temperature difference. On the other hand, conductive polymers such as PEDOT/PSS, which have been attracting attention in recent years, are often formed into films with a small thickness. I have a problem.

本発明は、かかる状況に鑑みてなされたものであって、その目的とするところは、板状試料の厚さ方向中央近傍におけるゼーベック係数を精度良く測定可能な測定装置及びその測定方法を提供することにある。 The present invention has been made in view of such circumstances, and its object is to provide a measuring apparatus and a measuring method capable of accurately measuring the Seebeck coefficient near the center in the thickness direction of a plate-shaped sample. That's what it is.

本発明による板状試料の厚さ方向中央近傍におけるゼーベック係数の測定方法であって、対向配置されそれぞれ独立して温度制御可能な高温側可変熱源及び低温側可変熱源の間に前記板状試料を挟み込み、前記高温側可変熱源及び前記低温側可変熱源の温度を等温度だけそれぞれ上昇及び下降させて前記板状試料の前記厚さ方向に温度差を得た上で起電力を測定し、これを繰り返して前記温度差に対する前記起電力との関係からゼーベック係数の算出を行うことを特徴とする。 In the method for measuring the Seebeck coefficient near the center in the thickness direction of a plate-shaped sample according to the present invention, the plate-shaped sample is placed between a high temperature side variable heat source and a low temperature side variable heat source that are arranged opposite to each other and can be independently temperature-controlled. The temperature of the high-temperature side variable heat source and the low-temperature side variable heat source is increased and decreased by the same temperature to obtain the temperature difference in the thickness direction of the plate-shaped sample, and then the electromotive force is measured. The Seebeck coefficient is repeatedly calculated from the relationship between the temperature difference and the electromotive force.

また、本発明による板状試料の厚さ方向中央近傍におけるゼーベック係数の測定装置は、対向配置されそれぞれ独立して温度制御可能な高温側可変熱源及び低温側可変熱源と、前記高温側可変熱源及び低温側可変熱源の間に前記板状試料を挟み込み、前記板状試料の前記厚さ方向の起電力を測定する測定部と、を含み、前記測定部は、前記高温側可変熱源及び前記低温側可変熱源の温度を等温度だけそれぞれ上昇及び下降させて前記板状試料の前記厚さ方向に温度差を得た上で起電力を測定し、これを繰り返して前記温度差に対する前記起電力との関係からゼーベック係数の算出を行うことを特徴とする。 Further, the apparatus for measuring the Seebeck coefficient near the center in the thickness direction of a plate-shaped sample according to the present invention comprises a high temperature side variable heat source and a low temperature side variable heat source which are arranged opposite to each other and whose temperatures can be independently controlled; a measurement unit that sandwiches the plate-shaped sample between the low-temperature side variable heat source and measures the electromotive force of the plate-shaped sample in the thickness direction, wherein the measurement unit includes the high temperature side variable heat source and the low temperature side. The temperature of the variable heat source is increased and decreased by the same temperature to obtain the temperature difference in the thickness direction of the plate-shaped sample, and then the electromotive force is measured. It is characterized by calculating the Seebeck coefficient from the relationship.

かかる発明によれば、高温側可変熱源及び低温側可変熱源の温度を等温度だけそれぞれ上昇及び下降させて板状試料の厚さ方向に温度差を与えた上で起電力測定を順次行って、板状試料の1/2厚さ面における温度を一定としつつ起電力測定を行うことができて、換言すれば、板状試料の厚さ方向中央近傍での温度を変化させずその温度勾配のみを変化させて測定を行うことができて、薄い板状試料であっても厚さ方向中央近傍におけるゼーベック係数を精度良く測定可能となるのである。 According to this invention, the temperatures of the high temperature side variable heat source and the low temperature side variable heat source are increased and decreased by equal temperatures to give a temperature difference in the thickness direction of the plate-shaped sample, and then the electromotive force is measured sequentially, It is possible to measure the electromotive force while keeping the temperature constant on the half-thickness surface of the plate-shaped sample. can be changed to measure the Seebeck coefficient in the vicinity of the center in the thickness direction even for a thin plate-shaped sample.

上記した発明において、前記温度差がゼロのときに前記起電力をゼロとして前記算出を行うことを特徴としてもよい。かかる発明によれば、板状試料の厚さ方向中央近傍のゼーベック係数を精度良く且つ効率よく測定可能となるのである。 In the invention described above, the calculation may be performed with the electromotive force set to zero when the temperature difference is zero. According to this invention, the Seebeck coefficient near the center in the thickness direction of the plate-shaped sample can be measured with high accuracy and efficiency.

上記した発明において、前記起電力は、前記板状試料と前記高温側可変熱源及び前記低温側可変熱源とのそれぞれの間に介挿された2つの熱電対を用いて測定されることを特徴としてもよい。また、前記高温側可変熱源及び前記低温側可変熱源はペルチェ素子であることを特徴としてもよい。かかる発明によれば、板状試料の厚さ方向中央近傍のゼーベック係数を精度良く且つ簡便に測定可能となるのである。 In the invention described above, the electromotive force is measured using two thermocouples interposed between the plate-shaped sample and the high-temperature side variable heat source and the low-temperature side variable heat source, respectively. good too. Further, the high temperature side variable heat source and the low temperature side variable heat source may be Peltier elements. According to this invention, the Seebeck coefficient in the vicinity of the center in the thickness direction of the plate-like sample can be accurately and easily measured.

本発明による測定装置である。1 is a measuring device according to the invention; 本発明の原理を示す図である。It is a figure which shows the principle of this invention. 本発明の原理を示すグラフである。4 is a graph illustrating the principle of the invention; 本発明による測定装置で計測された熱源の温度差に対する板状試料(ニッケル板)の厚さ方向の起電力の関係を示すグラフである。4 is a graph showing the relationship between the temperature difference of the heat source and the electromotive force in the thickness direction of the plate-shaped sample (nickel plate) measured by the measuring device according to the present invention. 本発明による測定装置で計測された熱源の温度差に対する板状試料(PEDOT/PSS)の厚さ方向の起電力の関係を示すグラフである。4 is a graph showing the relationship of the electromotive force in the thickness direction of a plate-like sample (PEDOT/PSS) with respect to the temperature difference of the heat source measured by the measuring device according to the present invention. 本発明の応用例を示す図である。It is a figure which shows the application example of this invention.

本発明者らは、PEDOT/PSSのような導電性高分子をはじめとする膜状試料について、その厚さ方向に熱電特性を測定するのに必要十分な温度差を形成できる方法を見いだした。つまり、無機(金属)熱電材料に比して熱伝導率が小さい有機熱電材料において、試料の厚さが薄くとも、その内部に直線的とみなし得る温度勾配を形成でき、結果として、熱電特性を精度よく評価できるのである。 The present inventors have found a method capable of forming a necessary and sufficient temperature difference for measuring thermoelectric properties in the thickness direction of a film-like sample including a conductive polymer such as PEDOT/PSS. In other words, in organic thermoelectric materials, which have lower thermal conductivity than inorganic (metallic) thermoelectric materials, even if the thickness of the sample is thin, it is possible to form a temperature gradient that can be regarded as linear inside, and as a result, thermoelectric properties are improved. Accurate evaluation is possible.

以下、本発明の1つの実施例であるゼーベック係数の測定装置について、図に沿ってその詳細を説明する。 A Seebeck coefficient measuring apparatus, which is one embodiment of the present invention, will be described in detail below with reference to the drawings.

図1及び図2に示すように、板状試料10の厚さ方向中央近傍におけるゼーベック係数の測定装置1は、対向配置されそれぞれ独立して温度制御可能な高温側可変熱源5及び低温側可変熱源6を含む。 As shown in FIGS. 1 and 2, an apparatus 1 for measuring the Seebeck coefficient near the center in the thickness direction of a plate-shaped sample 10 includes a high temperature side variable heat source 5 and a low temperature side variable heat source 5 which are arranged opposite to each other and whose temperatures can be independently controlled. including 6.

高温側可変熱源5及び低温側可変熱源6は、板状試料10に比して大なる熱容量を有し、板状試料10のそれぞれの主面に熱的に接触してその温度を制御できるようなヒーターや冷却器、好ましくは、電気的に温度を制御可能なペルチェ素子である。なお、後述するように、有機熱電材料についての測定では、その使用温度域を室温~200℃程度とするため、かかる温度域において温度制御性に優れたペルチェ素子が特に好ましい。 The high-temperature-side variable heat source 5 and the low-temperature-side variable heat source 6 have heat capacities larger than those of the plate-like sample 10, and are in thermal contact with the respective main surfaces of the plate-like sample 10 so as to control their temperatures. A heater or cooler, preferably a Peltier element whose temperature can be electrically controlled. As will be described later, in the measurement of the organic thermoelectric material, the operating temperature range is from room temperature to about 200° C., so a Peltier element is particularly preferable because it has excellent temperature controllability in this temperature range.

更に、測定装置1は、高温側可変熱源5及び低温側可変熱源6の温度を制御する信号を送出するとともに、所定の設定温度で、これらの間に挟み込まれた板状試料10の厚さ方向の起電力(電圧)Vを測定する測定部(中央制御部)30を含む。測定部30は、高温側可変熱源5及び低温側可変熱源6のそれぞれの温度を等温度ΔTだけ上昇及び下降させることで、板状試料10の表面温度をT及びTとするとともに、その1/2厚さ面C1(厚さ方向中央面)における温度を一定に維持しつつしつつ、板状試料10の厚さ方向の起電力Vを測定しようとするものである。 Furthermore, the measuring device 1 sends a signal for controlling the temperature of the high temperature side variable heat source 5 and the low temperature side variable heat source 6, and at a predetermined set temperature, the thickness direction of the plate-shaped sample 10 sandwiched between them includes a measurement unit (central control unit) 30 that measures the electromotive force (voltage) V of The measurement unit 30 raises and lowers the temperature of each of the high temperature side variable heat source 5 and the low temperature side variable heat source 6 by an equal temperature ΔT, thereby setting the surface temperature of the plate-shaped sample 10 to T H and T L and This is intended to measure the electromotive force V in the thickness direction of the plate-like sample 10 while maintaining a constant temperature in the 1/2 thickness plane C1 (the center plane in the thickness direction).

板状試料10の厚さ方向の起電力Vは、板状試料10の両主面に各種の形態で与えられた公知の計測手段で測定され得る。例えば、一方の熱電対12aは板状試料10と高温側可変熱源5の間に、他方の熱電対12bは板状試料10と低温側可変熱源6の間に介挿され、この2つの熱電対12の同種の片側素線間の起電力として測定できる。 The electromotive force V in the thickness direction of the plate-like sample 10 can be measured by known measurement means applied to both main surfaces of the plate-like sample 10 in various forms. For example, one thermocouple 12a is inserted between the plate-shaped sample 10 and the high temperature side variable heat source 5, and the other thermocouple 12b is inserted between the plate shaped sample 10 and the low temperature side variable heat source 6, and these two thermocouples It can be measured as an electromotive force between 12 identical single-sided strands.

次に、上記したゼーベック係数の測定装置1における測定方法及び原理について、その詳細を説明する。 Next, the details of the measuring method and principle of the Seebeck coefficient measuring apparatus 1 described above will be described.

まず、高温側可変熱源5及び低温側可変熱源6において温度T=Tで等しいとき、板状試料10の厚さ方向には温度差(温度勾配)は無いから、2つの熱電対12によって測定される起電力Vはゼロである。このとき、図3のように、横軸に温度差、縦軸に電位差Vを取ると、原点であるSが対応する。 First, when the high temperature side variable heat source 5 and the low temperature side variable heat source 6 have the same temperature T= T0 , there is no temperature difference (temperature gradient) in the thickness direction of the plate-shaped sample 10, so the two thermocouples 12 measure The applied electromotive force V is zero. At this time, as shown in FIG. 3, if the temperature difference is plotted on the horizontal axis and the potential difference V is plotted on the vertical axis, the origin S0 corresponds.

一方、測定部30は、高温側可変熱源5の温度をΔTだけ上昇させT=T+ΔTとし、且つ、低温側可変熱源6の温度をΔTだけ下降させT=T-ΔTとする。すなわち、入熱量及び抜熱量の釣り合いから、板状試料10の厚さ方向中央にある1/2厚さ面C1における温度はT=Tで一定となる。そして、高温側可変熱源5及び低温側可変熱源6に接した板状試料10の両主面の温度がそれぞれ+ΔT及び-ΔTだけ変化し、T=T+ΔT及びT=T-ΔTとなる。つまり、板状試料10の厚さ方向には2ΔTの温度差を有することになるのである。この温度差に対する板状試料10の厚さ方向の起電力V=Vについて、測定部30は2つの熱電対12によって測定する。このとき、図3の測定点Sに対応する。 On the other hand, the measuring unit 30 raises the temperature of the high temperature side variable heat source 5 by ΔT 1 to T H =T 0 +ΔT 1 , and lowers the temperature of the low temperature side variable heat source 6 by ΔT 1 to T L =T 0 -. Let ΔT be 1 . That is, from the balance between the amount of heat input and the amount of heat extraction, the temperature at the half-thickness plane C1 at the center in the thickness direction of the plate-shaped sample 10 is constant at T= T0 . Then, the temperatures of both principal surfaces of the plate-shaped sample 10 in contact with the high temperature side variable heat source 5 and the low temperature side variable heat source 6 change by +ΔT 1 and −ΔT 1 respectively, and T H =T 0 +ΔT 1 and T L =T 0 −ΔT 1 . In other words, the plate-like sample 10 has a temperature difference of 2ΔT1 in the thickness direction. The measurement unit 30 measures the electromotive force V= V1 in the thickness direction of the plate-shaped sample 10 with respect to this temperature difference with the two thermocouples 12 . This time corresponds to the measurement point S1 in FIG.

同様に、測定部30は、高温側可変熱源5の温度を初期の温度T=TよりもΔTだけ上昇させT=T+ΔTと、且つ、低温側可変熱源6の温度を同様に初期の温度T=TよりもΔTだけ下降させT=T+ΔTとする。このときも、板状試料10の厚さ方向中央にある1/2厚さ面C1における温度は、上記同様にT=Tで一定となる。そして、厚さ方向に2ΔTの温度差を与えたときの板状試料10の厚さ方向の起電力V=Vを2つの熱電対12によって測定すると、図3の測定点Sに対応する。 Similarly, the measuring unit 30 raises the temperature of the high-temperature side variable heat source 5 from the initial temperature T= T0 by ΔT2 to T H = T0 + ΔT2 , and raises the temperature of the low-temperature side variable heat source 6 to Then, the temperature T is lowered by ΔT 2 from the initial temperature T=T 0 to give T L =T 0 +ΔT 2 . At this time as well, the temperature at the 1/2 thickness plane C1 at the center in the thickness direction of the plate-shaped sample 10 is constant at T= T0 in the same manner as described above. Then, when the electromotive force V= V1 in the thickness direction of the plate-shaped sample 10 when a temperature difference of 2ΔT2 is given in the thickness direction is measured by two thermocouples 12, it corresponds to the measurement point S2 in FIG. do.

ところで、ゼーベック係数Sは温度差に対する電位差であるから、図3のS及びSに対応するそれはそれぞれV/2ΔT及びV/2ΔTで表される。これらはいずれも板状試料10の厚さ方向中央近傍において同じ温度且つ温度勾配を変化させて求めたゼーベック係数Sであって同一値になるはずである。つまり、V/2ΔT=V/2ΔTであるから、V/V=ΔT/ΔTとなり、図3のように、測定点S及びSは原点Sを通る直線上にある。 By the way, since the Seebeck coefficient S is a potential difference with respect to a temperature difference, it corresponding to S 1 and S 2 in FIG. 3 is represented by V 1 /2ΔT 1 and V 2 /2ΔT 2 respectively. These are Seebeck coefficients S obtained at the same temperature and with varying temperature gradients in the vicinity of the center in the thickness direction of the plate-shaped sample 10, and should be the same value. That is, since V 1 /2ΔT 1 = V 2 / 2ΔT 2 , V 1 /V 2 =ΔT 1 /ΔT 2 , and as shown in FIG . It is above.

以上のように、板状試料10の厚さ方向中央近傍、1/2厚さ面C1(図2参照)における温度を一定とするように、高温側可変熱源5及び低温側可変熱源6の温度を等温度だけそれぞれ上昇及び下降させると、その温度勾配のみを変化させ得るのである。このようにして板状試料10の厚さ方向の起電力Vを測定すると、電位差Vは温度差に比例するから、これを順次繰り返した測定点(S、S、S…)は直線で整理でき、この勾配が板状試料10の厚さ方向中央近傍のゼーベック係数に対応しこれを算出できる。この測定点の数を増やすことでゼーベック係数の算出誤差を減じ得るのである。 As described above, the temperatures of the high-temperature-side variable heat source 5 and the low-temperature-side variable heat source 6 are adjusted so as to keep the temperature constant in the vicinity of the center in the thickness direction of the plate-shaped sample 10, the half-thickness plane C1 (see FIG. 2). respectively increasing and decreasing by equal temperatures can change only the temperature gradient. When the electromotive force V in the thickness direction of the plate-shaped sample 10 is measured in this manner, the potential difference V is proportional to the temperature difference . This gradient corresponds to the Seebeck coefficient near the center in the thickness direction of the plate-like sample 10 and can be calculated. By increasing the number of measurement points, the calculation error of the Seebeck coefficient can be reduced.

以上述べたように、高温側可変熱源5及び低温側可変熱源6の温度を等温度だけそれぞれ上昇及び下降させ、板状試料の厚さ方向中央近傍での温度を変化させずその温度勾配のみを変化させて、順次、複数回測定を行うことで、シート(フィルム)状や板状など諸形態の板状試料10の厚さ方向中央近傍のゼーベック係数を精度良く測定可能となる。特に、板状試料10の厚さが薄いほど、その側面からの熱の出入りが少なくなるから、上記したような温度勾配を正確に得られて、厚さ方向中央近傍のゼーベック係数を精度良く測定可能となる。 As described above, the temperatures of the high temperature side variable heat source 5 and the low temperature side variable heat source 6 are increased and decreased by the same temperature, respectively, and only the temperature gradient is maintained without changing the temperature near the center in the thickness direction of the plate-shaped sample. The Seebeck coefficient in the vicinity of the center in the thickness direction of the plate-like sample 10 in various forms such as sheet (film) and plate-like can be measured with high accuracy by changing and successively performing measurements a plurality of times. In particular, the thinner the thickness of the plate-shaped sample 10, the less heat enters and exits from its side surfaces, so the temperature gradient as described above can be accurately obtained, and the Seebeck coefficient near the center in the thickness direction can be accurately measured. It becomes possible.

なお、上記した板状試料の厚さ方向中央近傍での温度を変化させずその温度勾配のみを変化させた測定方法は、ゼーベック係数の測定以外にも応用できる。 The above-described measurement method in which only the temperature gradient is changed without changing the temperature near the center in the thickness direction of the plate-shaped sample can be applied to other than the measurement of the Seebeck coefficient.

図6には、リング状電極を用いた四端子法による導電性ポリマーフィルムの熱異方性の測定方法(ACS Macro Lett. , 2014, 3, pp 948-952.を参照)への応用を示す。すなわち、薄板試料110を上下に挟んで一対のリング状電極120a、120bを与え、その環状内部に一対の円板電極130a、130bを同様に薄板試料110を上下に挟んで与える。このとき、リング状電極120a、120bと円板電極130a、130bとの間隔dを変化させて、例えば、電気伝導度(導電率)を測定できる。 Figure 6 shows an application to a method for measuring the thermal anisotropy of a conductive polymer film by the four-terminal method using ring electrodes (see ACS Macro Lett., 2014, 3, pp 948-952.). . That is, a pair of ring-shaped electrodes 120a and 120b are provided with the thin plate sample 110 vertically sandwiched therebetween, and a pair of disc electrodes 130a and 130b are similarly provided in the annular interior thereof with the thin plate sample 110 vertically sandwiched therebetween. At this time, by changing the distance d between the ring-shaped electrodes 120a, 120b and the disc electrodes 130a, 130b, electrical conductivity can be measured, for example.

合わせて、薄板試料110の上下に配置した高温側ヒータ及び低温側ヒータの温度を上記したように等温度だけそれぞれ上昇及び下降させると、薄板試料110の厚さ方向中央部の温度を一定にしつつ、その温度勾配のみを変化させ得るのである。円板電極130a、130bに熱電対を与えることで、電気伝導度(導電率)とゼーベック係数とを同時に測定でき得ることになる。 At the same time, when the temperatures of the high-temperature side heater and the low-temperature side heater arranged above and below the thin plate sample 110 are raised and lowered by equal temperatures as described above, the temperature at the central portion in the thickness direction of the thin plate sample 110 is kept constant. , only its temperature gradient can be changed. By providing the disk electrodes 130a and 130b with thermocouples, it is possible to simultaneously measure the electric conductivity (conductivity) and the Seebeck coefficient.

以下に上記した測定方法で各種板状のゼーベック係数を測定した測定例を示す。 Measurement examples in which the Seebeck coefficients of various plate-like materials were measured by the above-described measurement method are shown below.

図4は、厚さ1mmのニッケル薄板について、厚さ方向中央近傍での温度を25℃として上記したような方法で測定を行った結果である。複数の測定点が原点を通る直線上にあることが判る。この関係(直線の傾き)から、ゼーベック係数を-21μV/Kと求めることができる。熱伝導性の良い金属薄板であっても、精度良く厚さ方向中央近傍のゼーベック係数を求めることができる。 FIG. 4 shows the result of measuring a thin nickel plate with a thickness of 1 mm by the method described above, with the temperature near the center in the thickness direction set to 25°C. It can be seen that a plurality of measurement points are on a straight line passing through the origin. From this relationship (the slope of the straight line), the Seebeck coefficient can be obtained as -21 μV/K. The Seebeck coefficient near the center in the thickness direction can be obtained with high accuracy even for a thin metal plate with good thermal conductivity.

図5は、厚さ100μmのPEDOT/PSS膜について、厚さ方向中央近傍での温度を25℃として上記したような方法で測定を行った結果である。ここでも複数の測定点が原点を通る直線上にある。この関係(直線の傾き)から、ゼーベック係数を16μV/Kと求めることができる。異方性の強い薄板であっても、精度良く厚さ方向中央近傍のゼーベック係数を求めることができる。なお、金属材料に比べて熱伝導率が一般的に低い有機物薄膜では、より厚さの薄い試料であっても温度勾配をより精確に制御でき、例えば、10μm程度であっても十分なゼーベック係数の測定が可能である。 FIG. 5 shows the results of measurement of a 100 μm-thick PEDOT/PSS film by the method described above, with the temperature near the center in the thickness direction set to 25°C. Again, the measurement points are on a straight line passing through the origin. From this relationship (the slope of the straight line), the Seebeck coefficient can be determined to be 16 μV/K. Even for a thin plate with strong anisotropy, the Seebeck coefficient near the center in the thickness direction can be obtained with high accuracy. In organic thin films, which generally have lower thermal conductivity than metal materials, the temperature gradient can be controlled more accurately even with thinner samples. can be measured.

以上、本発明による実施例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 Although embodiments according to the present invention have been described above, the present invention is not necessarily limited thereto, and a person skilled in the art can make various modifications without departing from the spirit of the present invention or the scope of the appended claims. Alternate embodiments and modifications may be found.

1 測定装置
5 高温側可変熱源
6 低温側可変熱源
10 板状試料
12 熱電対
30 測定部
C1 1/2厚さ面

1 Measuring device 5 High temperature side variable heat source 6 Low temperature side variable heat source 10 Plate-shaped sample 12 Thermocouple 30 Measurement part C1 1/2 thickness surface

Claims (8)

板状試料の厚さ方向中央近傍におけるゼーベック係数の測定方法であって、
対向配置されそれぞれ独立して温度制御可能な高温側可変熱源及び低温側可変熱源の間に、前記高温側可変熱源及び前記低温側可変熱源の温度差で前記厚さ方向に直線状の温度勾配をその内部に形成させるように前記板状試料を挟み込み、前記高温側可変熱源及び前記低温側可変熱源の温度を等温度だけそれぞれ上昇及び下降させて前記厚さ方向中央近傍における温度を変化させず前記直線状の温度勾配を変化させた上で起電力を測定し、これを繰り返し前記温度差に対する前記起電力との関係からゼーベック係数の算出を行うことを特徴とするゼーベック係数の測定方法。
A method for measuring the Seebeck coefficient near the center in the thickness direction of a plate-shaped sample, comprising:
Between a high temperature side variable heat source and a low temperature side variable heat source which are arranged opposite to each other and whose temperature can be controlled independently, a temperature difference between the high temperature side variable heat source and the low temperature side variable heat source creates a linear temperature gradient in the thickness direction. The plate-shaped sample is sandwiched so as to be formed inside , and the temperatures of the high-temperature side variable heat source and the low-temperature side variable heat source are raised and lowered by the same temperature, respectively, without changing the temperature near the center in the thickness direction. A method for measuring a Seebeck coefficient, comprising: measuring an electromotive force after changing a linear temperature gradient ; repeating this measurement; and calculating the Seebeck coefficient from the relationship between the electromotive force and the temperature difference.
前記温度差がゼロのときに前記起電力をゼロとして前記算出の精度確認を行うことを特徴とする請求項1記載のゼーベック係数の測定方法。 2. The method of measuring the Seebeck coefficient according to claim 1, wherein when the temperature difference is zero, the electromotive force is assumed to be zero to check the accuracy of the calculation. 前記起電力は、前記板状試料と前記高温側可変熱源及び前記低温側可変熱源とのそれぞれの間に介挿された2つの熱電対を用いて測定されることを特徴とする請求項1又は2に記載のゼーベック係数の測定方法。 2. The electromotive force is measured using two thermocouples interposed between the plate-shaped sample and the high temperature side variable heat source and the low temperature side variable heat source, respectively. 2. The method for measuring the Seebeck coefficient according to 2. 前記高温側可変熱源及び前記低温側可変熱源はペルチェ素子であることを特徴とする請求項1乃至3のうちの1つに記載のゼーベック係数の測定方法。 4. The method for measuring the Seebeck coefficient according to claim 1, wherein the high temperature side variable heat source and the low temperature side variable heat source are Peltier elements. 板状試料の厚さ方向中央近傍におけるゼーベック係数の測定装置であって、
対向配置されそれぞれ独立して温度制御可能な高温側可変熱源及び低温側可変熱源と、
前記高温側可変熱源及び低温側可変熱源の間に、前記高温側可変熱源及び前記低温側可変熱源の温度差で前記厚さ方向に直線状の温度勾配をその内部に形成させるように前記板状試料を挟み込み、前記板状試料の前記厚さ方向の起電力を測定する測定部と、を含み、
前記測定部は、前記高温側可変熱源及び前記低温側可変熱源の温度を等温度だけそれぞれ上昇及び下降させて前記厚さ方向中央近傍における温度を変化させず前記直線状の温度勾配を変化させた上で起電力を測定し、これを繰り返し前記温度差に対する前記起電力との関係からゼーベック係数の算出を行うことを特徴とするゼーベック係数の測定装置。
A device for measuring the Seebeck coefficient near the center in the thickness direction of a plate-shaped sample,
a high-temperature-side variable heat source and a low-temperature-side variable heat source which are arranged opposite to each other and whose temperatures can be independently controlled;
Between the high temperature side variable heat source and the low temperature side variable heat source, the plate-shaped heat source is formed so that a temperature difference between the high temperature side variable heat source and the low temperature side variable heat source forms a linear temperature gradient in the thickness direction. a measuring unit that sandwiches a sample and measures the electromotive force in the thickness direction of the plate-shaped sample,
The measuring unit raises and lowers the temperatures of the high-temperature-side variable heat source and the low-temperature-side variable heat source by the same temperature, respectively, to change the linear temperature gradient without changing the temperature near the center in the thickness direction. An apparatus for measuring the Seebeck coefficient, characterized in that the electromotive force is measured repeatedly in the above-described step, and the Seebeck coefficient is calculated from the relationship between the electromotive force and the temperature difference.
前記温度差がゼロのときに前記起電力をゼロとして前記算出の精度確認を行うことを特徴とする請求項5記載のゼーベック係数の測定装置。 6. The Seebeck coefficient measuring apparatus according to claim 5, wherein when the temperature difference is zero, the electromotive force is assumed to be zero to check the accuracy of the calculation. 前記測定部は、前記板状試料と前記高温側可変熱源及び前記低温側可変熱源のそれぞれとの間に介挿された2つの熱電対を含むことを特徴とする請求項5又は6に記載のゼーベック係数の測定装置。 7. The measuring unit according to claim 5, wherein the measuring unit includes two thermocouples interposed between the plate-shaped sample and each of the high temperature side variable heat source and the low temperature side variable heat source. A device for measuring the Seebeck coefficient. 前記高温側可変熱源及び前記低温側可変熱源はペルチェ素子であることを特徴とする請求項5乃至7のうちの1つに記載のゼーベック係数の測定装置。
8. The Seebeck coefficient measuring apparatus according to claim 5, wherein said high temperature side variable heat source and said low temperature side variable heat source are Peltier elements.
JP2019025521A 2019-02-15 2019-02-15 Seebeck coefficient measuring device and its measuring method Active JP7232513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019025521A JP7232513B2 (en) 2019-02-15 2019-02-15 Seebeck coefficient measuring device and its measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019025521A JP7232513B2 (en) 2019-02-15 2019-02-15 Seebeck coefficient measuring device and its measuring method

Publications (2)

Publication Number Publication Date
JP2020134237A JP2020134237A (en) 2020-08-31
JP7232513B2 true JP7232513B2 (en) 2023-03-03

Family

ID=72263275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019025521A Active JP7232513B2 (en) 2019-02-15 2019-02-15 Seebeck coefficient measuring device and its measuring method

Country Status (1)

Country Link
JP (1) JP7232513B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102338444B1 (en) * 2020-04-29 2021-12-10 중앙대학교 산학협력단 Method for measuring seebeck coefficient of high resistance transition metal dischalcogenide material
CN114199934A (en) * 2021-12-10 2022-03-18 佛山市川东磁电股份有限公司 Seebeck coefficient measuring structure suitable for thermopile and preparation method thereof
WO2024135477A1 (en) * 2022-12-19 2024-06-27 国立大学法人 東京大学 Non-linear thermoelectric effect measurement device, non-linear thermoelectric effect measurement method, non-linear thermoelectric effect measurement program, recording medium, temperature-fluctuating environment power generation element, and temperature fluctuation sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042509A (en) 2014-08-15 2016-03-31 国立研究開発法人産業技術総合研究所 Organic thermoelectric material improved in thermoelectric property, and manufacturing method thereof
JP2016082132A (en) 2014-10-20 2016-05-16 国立研究開発法人産業技術総合研究所 Thermoelectric conversion element and thermoelectric conversion module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042509A (en) 2014-08-15 2016-03-31 国立研究開発法人産業技術総合研究所 Organic thermoelectric material improved in thermoelectric property, and manufacturing method thereof
JP2016082132A (en) 2014-10-20 2016-05-16 国立研究開発法人産業技術総合研究所 Thermoelectric conversion element and thermoelectric conversion module

Also Published As

Publication number Publication date
JP2020134237A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP7232513B2 (en) Seebeck coefficient measuring device and its measuring method
Iervolino et al. Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1
Huesgen et al. Design and fabrication of MEMS thermoelectric generators with high temperature efficiency
JP2011185697A (en) Thermoelectric material evaluation device and thermoelectric characteristic evaluation method
Linseis et al. Platform for in-plane ZT measurement and Hall coefficient determination of thin films in a temperature range from 120 K up to 450 K
Francioso et al. Wearable and flexible thermoelectric generator with enhanced package
KR20150007686A (en) Thermoelectric property measurement system
US9448121B2 (en) Measurement method, measurement apparatus, and computer program product
CN111721802B (en) Comprehensive measuring device and method for thermal and electrical physical properties of two-dimensional material
Park et al. Design of micro-temperature sensor array with thin film thermocouples
Nandihalli A short account of thermoelectric film characterization techniques
Narjis et al. Design of a simple apparatus for the measurement of the seebeck coefficient
Yan et al. Surface phonon polariton-mediated near-field radiative heat transfer at cryogenic temperatures
Han et al. A built-in temperature sensor in an integrated microheater
Ziolkowski et al. Interlaboratory Testing for High‐Temperature Power Generation Characteristics of a Ni‐Based Alloy Thermoelectric Module
Hassanzadeh et al. A new self-powered temperature sensor based on thermoelectric generators
Tanwar et al. A fully automated measurement system for the characterization of micro thermoelectric devices near room temperature
Guralnik et al. Determination of thermoelectric properties from micro four-point probe measurements
Fujiki et al. Development on measurement method for Thomson coefficient of thin film
Lee et al. Thermoelectric characterization and power generation using a silicon-on-insulator substrate
Boulouz et al. Fabrication of Thermoelectric Sensor and Cooling Devices Based on Elaborated Bismuth‐Telluride Alloy Thin Films
Cerimovic et al. Bidirectional micromachined flow sensor featuring a hot film made of amorphous germanium
Schwyter et al. Fully automated measurement setup for non-destructive characterization of thermoelectric materials near room temperature
Amagai et al. Improvements in the low-frequency characteristic and sensitivity of a thin-film multijunction thermal converter in vacuum
Ider et al. A Robust System for Thermoelectric Device Characterization

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7232513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150