JP5414068B2 - Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples - Google Patents

Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples Download PDF

Info

Publication number
JP5414068B2
JP5414068B2 JP2010206737A JP2010206737A JP5414068B2 JP 5414068 B2 JP5414068 B2 JP 5414068B2 JP 2010206737 A JP2010206737 A JP 2010206737A JP 2010206737 A JP2010206737 A JP 2010206737A JP 5414068 B2 JP5414068 B2 JP 5414068B2
Authority
JP
Japan
Prior art keywords
sample
temperature
heating
heat capacity
specific heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010206737A
Other languages
Japanese (ja)
Other versions
JP2012063207A (en
Inventor
博道 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010206737A priority Critical patent/JP5414068B2/en
Publication of JP2012063207A publication Critical patent/JP2012063207A/en
Application granted granted Critical
Publication of JP5414068B2 publication Critical patent/JP5414068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、高温における導電性試料の比熱容量及び半球全放射率の測定方法及び装置に関するものである。   The present invention relates to a method and apparatus for measuring the specific heat capacity and hemispherical total emissivity of a conductive sample at high temperatures.

高温における導電性試料の比熱容量及び半球全放射率の測定については従来より次のような熱量法を原理とする測定方法が採用されている。
従来技術(1):古典的なパルス通電加熱技術を利用した熱量法(非特許文献1参照)
従来技術(2):フィードバック制御パルス通電加熱技術を利用した熱量法(非特許文献2参照)
従来技術(3):試料の温度分布を考慮したパルス通電加熱技術を利用した熱量法(非特許文献3、4参照)
従来技術(4):加熱速度を目標温度において変化させる操作を複数回行うことを特徴とするパルス通電加熱技術を利用した熱量法(特許文献1参照)
以下簡単に紹介する。
For the measurement of the specific heat capacity and the hemispherical total emissivity of a conductive sample at a high temperature, a measurement method based on the following calorimetric method has been conventionally employed.
Prior art (1): Calorimetric method using classical pulsed heating technology (see Non-Patent Document 1)
Prior art (2): calorimetric method using feedback control pulse current heating technology (see Non-Patent Document 2)
Prior art (3): calorimetric method using pulsed current heating technique considering temperature distribution of sample (see Non-Patent Documents 3 and 4)
Prior art (4): a calorimetric method using a pulse current heating technique characterized in that the operation of changing the heating rate at the target temperature is performed a plurality of times (see Patent Document 1)
The following is a brief introduction.

従来技術(1)は、1500K以上の高温における導電性試料の比熱容量と半球全放射率を測定する際に利用される一般的な方法である。この方法を実施するために使用される典型的な装置の概略を図1に示す。この方法では、試料にバッテリーを通じてパルス状の大電流を流して試料を瞬間的に加熱する。そして、その際の試料を流れる電流Iと試料における電圧降下V及び試料の温度Tを連続測定する。Iの値は、試料に直列接続した標準抵抗における電圧降下の測定値から算出すると共にTの値は放射温度計により測定して決定する。室温から急速に通電加熱された試料の中央付近の温度分布は短時間内では一様であり、試料から周囲への熱移動は熱放射が支配的であると仮定できるため、試料の熱収支関係は次式[数1]で表される。
ここでmは、前述のVを測定する領域に対応する試料の有効質量、cは試料の比熱容量、Aは前述のmに対応する試料の有効表面積、εは試料の半球全放射率、σSBはステファン・ボルツマン定数、Tは試料周囲の温度である。
Prior art (1) is a general method used in measuring the specific heat capacity and hemispherical total emissivity of a conductive sample at a high temperature of 1500 K or higher. A schematic of a typical apparatus used to carry out this method is shown in FIG. In this method, a pulsed large current is passed through a sample through a battery to heat the sample instantaneously. Then, the current I flowing through the sample, the voltage drop V in the sample, and the temperature T of the sample are continuously measured. The value of I is calculated from the measured value of the voltage drop across a standard resistor connected in series with the sample, and the value of T is determined by measuring with a radiation thermometer. The temperature distribution around the center of the sample heated rapidly from room temperature is uniform within a short time, and it can be assumed that the heat transfer from the sample to the environment is dominated by heat radiation. Is expressed by the following equation [Equation 1].
Where m is the effective mass of the sample corresponding to the region for measuring the V described above, c p is the specific heat capacity of the sample, A is the effective surface area of the sample corresponding to the above-mentioned m, epsilon t the hemispherical total emissivity of the sample , Σ SB is the Stefan-Boltzmann constant, and T 0 is the temperature around the sample.

測定では図2に示すような温度変化を観測することになるが、電流を停止して試料が降温中であっても冷却開始直後であれば試料の温度分布が一様に保持されるとみなして[数1]が成立すると仮定する。この仮定の上で、昇温時(添字h)と降温時(添字c)における目標温度Tにおける熱収支式はそれぞれ次式[数2]で表される。
そして、式[数2−1]、式[数2−2]を連立することにより比熱容量cと半球全放射率εを次式[数3]により算出することができる。
In the measurement, a temperature change as shown in FIG. 2 is observed, but even if the current is stopped and the sample is being cooled, it is assumed that the temperature distribution of the sample is kept uniform if it is immediately after the start of cooling. Assume that [Equation 1] holds. Based on this assumption, the heat balance equations at the target temperature T m at the time of temperature rise (subscript h) and at the time of temperature fall (subscript c) are respectively expressed by the following equations [Equation 2].
Then, equation [Expression 2-1], can be calculated by the following equation [Expression 3] the specific heat capacity c p and hemispherical total emittance epsilon t by simultaneous equation [number 2-2.

従来技術(2)は、従来技術(1)を発展させた方法の1例である。従来技術(1)との違いは、電流制御スイッチにMOSFET等の半導体素子を用いることにより電流のON/OFFのみならず試料温度を基準パラメータとして電流をフィードバック制御することにより試料温度を短時間だけ温度一定に保持する機能を有する点である。この機能により試料を目標温度Tの定常状態に保持した場合には上記[数1]の左辺は零とみなせるため、半球全放射率εは次式[数4]により算出できる。
更に、得られた半球全放射率と加熱時の温度変化から次式[数5]により比熱容量を算出することができる。
The prior art (2) is an example of a method developed from the prior art (1). The difference from the prior art (1) is that not only the current ON / OFF by using a semiconductor element such as a MOSFET for the current control switch, but also the sample temperature is reduced for a short time by feedback control of the current using the sample temperature as a reference parameter. It has a function of keeping the temperature constant. Can be considered a left side zero of the Equation 1 in the case of the sample was held in a steady state of the target temperature T m This feature hemispherical total emittance epsilon t can be calculated by the following equation [Expression 4].
Further, the specific heat capacity can be calculated from the obtained hemispherical total emissivity and the temperature change during heating by the following equation [Formula 5].

従来技術(3)も、従来技術(1)を発展させた方法の1例である。従来技術(1)との違いは、冷却中の試料の温度とその時間変化率として放射温度計が測定する値ではなく、電気抵抗率の値から導出した温度を用いる点である。電気抵抗率から導出した温度を用いる理由は、急速加熱が終了して試料が冷却状態になると試料の温度分布は伝導熱損失の影響により急速に不均一になるため、単に試料表面の一部のみを観測する放射温度計が示す温度は試料全体の温度分布を考慮した実効温度と偏差を生じるためである。従来技術(3)による比熱容量の具体的な実施方法は、急速加熱により目標温度Tへ到達させた後も電流をわずかに流すことにより4端子法原理による電気抵抗率測定を冷却中も継続し、得られた電気抵抗率の値から実効的な温度を算出し、その実効温度を式[数3−1]中に代入して比熱容量を算出する(非特許文献3参照)。 The prior art (3) is also an example of a method developed from the prior art (1). The difference from the prior art (1) is that the temperature derived from the value of the electrical resistivity is used as the temperature of the sample during cooling and the time change rate thereof, not the value measured by the radiation thermometer. The reason for using the temperature derived from the electrical resistivity is that when rapid heating is completed and the sample is cooled, the temperature distribution of the sample becomes nonuniform rapidly due to the effect of conduction heat loss, so only a part of the sample surface is used. This is because the temperature indicated by the radiation thermometer that observes the difference between the effective temperature and deviation considering the temperature distribution of the entire sample. The specific implementation method of specific heat capacity according to the prior art (3) is that the electrical resistivity measurement based on the four-terminal method principle is continued even during cooling by passing a slight current after reaching the target temperature T m by rapid heating. Then, an effective temperature is calculated from the obtained electric resistivity value, and the specific heat capacity is calculated by substituting the effective temperature into the formula [Equation 3-1] (see Non-Patent Document 3).

また、温度分布を考慮したパルス通電加熱技術を利用した熱量法による半球全放射率の測定方法は、(2)の技術を発展させた方法である。この方法では、電流のフィードバック制御により試料温度を一定に保持した上で同時に測定される電気抵抗率の値から算出される実効的な温度の変動に対応するエンタルピー減少や伝導熱損失の効果を考慮した解析により半球全放射率を算出する(非特許文献4参照)。   The method of measuring the total emissivity of the hemisphere by the calorimetric method using the pulse current heating technique considering the temperature distribution is a method developed from the technique (2). This method takes into account the effects of enthalpy reduction and conduction heat loss corresponding to the effective temperature fluctuation calculated from the electrical resistivity value measured simultaneously while maintaining the sample temperature constant by current feedback control. The hemispherical total emissivity is calculated by the analysis (see Non-Patent Document 4).

従来技術(4)も従来技術(1)を発展させた方法の1例である。従来技術(1)との違いは、試料の加熱速度を目標温度において変化させる通電加熱実験を複数回行う点である。
従来技術(4)では、導電性試料に通電して急速加熱し、該試料を目標温度Tに到達させるステップ、目標温度に到達直後に該電流を変化させ、その直後の温度変化率dT/dt、試料を流れる電流I、試料の電圧降下Vの測定データから次の関係式を利用してXとYを算出するステップ、
ただし式中のAは試料の有効表面積、σSBはステファン・ボルツマン定数、Tは目標温度、Tは試料周囲の温度である。
該複数のXとYの値に対して、XとYが次式に示す線形関係を持つことを利用して、近似的に導出したXとYの1次式の傾きと切片の値から比熱容量c及び半球全放射率εを算出するステップを含むことを特徴とする導電性試料の比熱容量及び半球全放射率の測定方法。
The prior art (4) is an example of a method developed from the prior art (1). The difference from the prior art (1) is that an electric heating experiment in which the heating rate of the sample is changed at the target temperature is performed a plurality of times.
In the prior art (4), by energizing the conductive sample is rapidly heated, steps to reach the sample to the target temperature T m, by changing the electric current immediately after reaching the target temperature, immediately after the temperature change rate dT / calculating X and Y from the measurement data of dt, current I flowing through the sample, and voltage drop V of the sample using the following relational expression:
Where A is the effective surface area of the sample, σ SB is the Stefan-Boltzmann constant, T m is the target temperature, and T 0 is the temperature around the sample.
By using the fact that X and Y have a linear relationship represented by the following expression for the plurality of X and Y values, a ratio is calculated from the slope and intercept values of the approximately derived X and Y linear expressions. specific heat capacity and the measuring method of the hemispherical total emissivity of conductive samples comprising the step of calculating the heat capacity c p and hemispherical total emittance epsilon t.

特許第4528954号公報Japanese Patent No. 45289954

A.Cezairliyan, J.L.McClure, and C.W.Beckett: J.Res.National Bureau of Standards,Vol.75C,7(1971).A. Cezairliyan, J.L.McClure, and C.W.Beckett: J.Res.National Bureau of Standards, Vol. 75C, 7 (1971). T.Matsumoto and A.Cezairliyan: Int.J.Thermophys.Vol.18,1539(1997).T. Matsumoto and A. Cezairliyan: Int. J. Thermophys. Vol. 18, 1539 (1997). H.Watanabe: Rev.Sci.Instrum.,Vol.77,036110(2006).H. Watanabe: Rev. Sci. Instrum., Vol. 77, 036110 (2006). H.Watanabe and T.Matsumoto: Rev.Sci.Instrum.,Vol.76,043904(2005).H. Watanabe and T. Matsumoto: Rev. Sci. Instrum., Vol. 76, 043904 (2005).

(従来技術の問題点)
モリブデン試料について上述の従来技術(2)により試料温度Tpを目標温度(1507K)に一定保持した際の試料の電気抵抗率ρavの測定値を図3に示している(非特許文献4参照)。この図から、試料温度を一定に保持しているにもかかわらず、温度に依存する電気抵抗率の値が時間変化することが認められる。このことは、試料に接触している電流供給のためのホルダーや電圧降下測定用のプローブを介した伝導熱損失により、温度分布の不均一化が進行していることを示している。つまり、観測パラメータである放射温度計が測定する温度は観測する試料中心の一部の範囲の温度を示しているに過ぎず、試料全体の温度分布が均一でないため試料の実効的な温度を代表しないことを示す。
(Problems of conventional technology)
FIG. 3 shows a measured value of the electrical resistivity ρ av of the molybdenum sample when the sample temperature T p is kept constant at the target temperature (1507 K) by the above-described conventional technique (2) (see Non-Patent Document 4). ). From this figure, it is recognized that the value of the electrical resistivity depending on the temperature changes with time even though the sample temperature is kept constant. This indicates that the temperature distribution is becoming non-uniform due to conduction heat loss through a holder for supplying current in contact with the sample and a probe for measuring voltage drop. In other words, the temperature measured by the radiation thermometer, which is an observation parameter, only shows the temperature in a part of the center of the sample to be observed, and the temperature distribution of the entire sample is not uniform. Indicates not to.

図3に示された試料中心温度と電気抵抗率の温度係数の不一致は、急速な通電加熱を停止した後は試料の温度分布が急速に不均一になることを示している。前述の従来技術(1)と(2)の解析においてはいずれも急速通電加熱停止後のデータが使用されているため、試料温度分布の不均一性についての問題がつきまとう。従来技術(3)は、この問題の1つの解決法として提案されたが、半球全放射率を算出するためには比熱容量と熱伝導率及び試料の温度分布とその経時変化を測定する必要があるという大きな制限がある。従来技術(4)については、目標温度到達後の加熱速度も比較的大きな値に維持することで試料温度分布の不均一化を避けることができるが、次に述べるような問題点がある。   The discrepancy between the sample center temperature and the temperature coefficient of the electrical resistivity shown in FIG. 3 indicates that the temperature distribution of the sample rapidly becomes non-uniform after the rapid energization heating is stopped. In the above-described conventional techniques (1) and (2), since the data after the rapid energization heating stop is used, there is a problem with the nonuniformity of the sample temperature distribution. Prior art (3) was proposed as one solution to this problem, but in order to calculate the total emissivity of the hemisphere, it is necessary to measure the specific heat capacity, the thermal conductivity, the temperature distribution of the sample, and its change over time. There is a big limitation that there is. Regarding the prior art (4), the heating rate after reaching the target temperature can be maintained at a relatively large value to avoid the non-uniformity of the sample temperature distribution, but there are the following problems.

従来技術(4)では、大容量のバッテリーやキャパシターを用いて大電流を試料に流して試料を室温から所定の目標温度に1秒以内に高速加熱し、目標温度に到達した時点で電流を変化させる。図4に示すように、同一の目標温度到達後に流す電流を離散的に変化させて複数の加熱実験を行い、各加熱実験における目標温度到達後の試料温度、温度変化率、試料の電圧降下と電流を測定する。そして、複数組の目標温度における上記測定値から特許文献1に記載した解析方法に従って比熱容量と半球全放射率を導出できる。この方法は、1点の温度における比熱容量と半球全放射率を測定する場合であれば、1秒以下で終了する加熱実験を複数回繰り返すだけで良いが、広い温度範囲における比熱容量と半球全放射率を複数の温度において測定するためには加熱実験を非常に多く繰り返す必要があり、測定の効率性に関して改良の余地がある。また、目標温度到達直後に試料に流れる電流値を変化させる電流制御機能を必要とするため、装置のコストは従来技術(1)を実施する装置に比較して高くなる問題がある。   In the prior art (4), a large current is passed through the sample using a large-capacity battery or capacitor, the sample is rapidly heated from room temperature to a predetermined target temperature within 1 second, and the current is changed when the target temperature is reached. Let As shown in FIG. 4, a plurality of heating experiments are performed by discretely changing the current that flows after reaching the same target temperature, and the sample temperature, temperature change rate, sample voltage drop after reaching the target temperature in each heating experiment, and Measure the current. Then, the specific heat capacity and the hemispherical total emissivity can be derived from the above measured values at a plurality of sets of target temperatures according to the analysis method described in Patent Document 1. In this method, when measuring the specific heat capacity and the hemispherical total emissivity at one temperature, it is only necessary to repeat the heating experiment that is completed in 1 second or less, but the specific heat capacity and the hemispherical total in a wide temperature range are repeated. In order to measure the emissivity at a plurality of temperatures, it is necessary to repeat the heating experiment very often, and there is room for improvement in terms of measurement efficiency. In addition, since a current control function for changing the value of the current flowing through the sample immediately after reaching the target temperature is required, there is a problem that the cost of the apparatus is higher than that of the apparatus that implements the prior art (1).

(本発明の解決課題)
本発明は、急速な通電自己加熱を利用した熱量法を原理とする導電性試料の比熱容量及び半球全放射率の測定方法において、低コストな装置により広い温度範囲中の任意の温度における比熱容量と半球全放射率を短時間で測定することで測定効率を向上させると共に試料温度分布の不均一性や電磁干渉ノイズの問題を解消して測定値の確度・信頼性を向上させることを課題とする。
(Solution Problems of the Present Invention)
The present invention relates to a specific heat capacity and hemispherical total emissivity measurement method of a conductive sample based on a calorimetric method using rapid energization self-heating, and a specific heat capacity at an arbitrary temperature in a wide temperature range with a low-cost apparatus. And improving the measurement efficiency by measuring the total emissivity of the hemisphere in a short time and improving the accuracy and reliability of measured values by eliminating the problem of non-uniform sample temperature distribution and electromagnetic interference noise. To do.

上記課題を解決するために本発明は、次のような測定方法及び装置を提供する。
(1)導電性試料に電流を流して急速通電自己加熱し、該試料を目標温度Tより高温の任意の温度に到達させ、目標温度Tにおける試料の加熱速度dT/dt、試料を流れる電流I、試料の電圧降下Vの測定データから次の関係式を利用してXとYを算出するステップ、
ただし式中のAは試料の有効表面積、σSBはステファン・ボルツマン定数、Tは目標温度、Tは試料周囲の温度である。
試料に流す電流を変えることで加熱速度を離散的に変えて上記のステップを繰り返すことにより複数組のXとYを算出するステップ、該複数のXとYの値に対して、XとYが次式に示す線形関係を持つことを利用して、近似的に導出したXとYの1次式の傾きと切片の値から比熱容量c及び半球全放射率εを算出するステップを含むことを特徴とする導電性試料の比熱容量及び半球全放射率の測定方法。
(2)急速通電自己加熱における加熱速度を変えることにより複数のXとYの値を算出するステップを自動的に繰り返す手段を備えたことを特徴とする請求項1に記載の比熱容量と半球全放射率の測定方法を実施する装置。
In order to solve the above problems, the present invention provides the following measuring method and apparatus.
(1) by applying a current to the conductive sample rapidly energizing self-heating, the sample to reach from any temperature of the hot target temperature T m of the flow rate of heating of the sample at the target temperature T m dT / dt, the samples A step of calculating X and Y from the measurement data of the current I and the voltage drop V of the sample using the following relational expression:
Where A is the effective surface area of the sample, σ SB is the Stefan-Boltzmann constant, T m is the target temperature, and T 0 is the temperature around the sample.
The step of calculating the plurality of sets of X and Y by repeating the above steps by changing the heating rate discretely by changing the current passed through the sample, and for the plurality of X and Y values, The step of calculating the specific heat capacity c p and the hemispherical total emissivity ε t from the slope and intercept value of the approximately derived linear equation of X and Y using the linear relationship shown in the following equation is included. A method for measuring a specific heat capacity and a hemispherical total emissivity of a conductive sample.
(2) The specific heat capacity according to claim 1, further comprising means for automatically repeating a step of calculating a plurality of X and Y values by changing a heating rate in the rapid energization self-heating. A device that implements the emissivity measurement method.

本発明では、従来技術(1)と(2)において問題となる試料の温度分布の不均一性を避けるため、温度分布が比較的一定な急速通電加熱時における試料の温度、電圧降下、電流値を解析に用いる。また、従来技術(2)において必要とした温度のフィードバック制御機能や従来技術(3)と(4)において必要とした急速通電加熱中に目標温度に到達したと同時に電流値を変化させるための電流制御機能を有さない低コストの装置により、温度分布の不均一性の影響を廃した上で比熱容量と半球全放射率を測定できる。また、急速通電加熱時には電磁干渉ノイズにより試料の電圧降下と電流測定に有為な誤差が生じることが懸念されるが、本発明においては、目標温度における複数のXとYの値が線形関係を持つかどうかを評価することにより、測定データ中に電磁干渉ノイズに起因する深刻な誤差の有無や本発明が実施可能な熱収支関係式[数1]が成立していたかどうかをセルフチェックできる。さらに、本発明では、上述の4種類の従来技術全てと異なり、試料の通電加熱の開始温度から終了温度に渡る広い温度範囲中の任意の温度における比熱容量と半球全放射率を1秒程度の通電加熱実験を複数回行うことで効率的に導出することができる。   In the present invention, in order to avoid the non-uniformity of the temperature distribution of the sample, which is a problem in the prior arts (1) and (2), the temperature, voltage drop, and current value of the sample during rapid energization heating with a relatively constant temperature distribution. Is used for analysis. Further, the current feedback control function required in the prior art (2) and the current for changing the current value at the same time as the target temperature is reached during the rapid energization heating required in the prior art (3) and (4). With a low-cost device that does not have a control function, it is possible to measure the specific heat capacity and the hemispherical total emissivity while eliminating the influence of non-uniformity in temperature distribution. In addition, there is a concern that a significant error may occur in voltage drop and current measurement due to electromagnetic interference noise during rapid energization heating, but in the present invention, a plurality of X and Y values at the target temperature have a linear relationship. By evaluating whether or not it has, it is possible to self-check whether or not there is a serious error due to electromagnetic interference noise in the measurement data and whether the heat balance relational expression [Equation 1] that can implement the present invention is established. Furthermore, in the present invention, unlike all of the above four types of conventional technologies, the specific heat capacity and the hemispherical total emissivity at an arbitrary temperature in a wide temperature range from the starting temperature to the ending temperature of the sample are set to about 1 second. It can be efficiently derived by conducting the current heating experiment a plurality of times.

急速な通電自己加熱技術を利用した熱量法を原理とする比熱容量と半球全放射率の測定方法を実施するための典型的な装置例Typical apparatus for implementing specific heat capacity and hemispherical total emissivity measurement methods based on the calorimetric method using rapid energization self-heating technology 従来技術(1)により得られる典型的な試料温度の時間変化曲線Time course curve of typical sample temperature obtained by the prior art (1) 従来技術(2)により得られる目標温度到達後の電気抵抗率と試料中央部の温度の時間変化曲線Time course curve of electrical resistivity and temperature at the center of the sample after reaching the target temperature obtained by the conventional technique (2) 従来技術(4)により得られる目標温度到達後にゲート電圧の値を変えることを特徴とする複数の通電自己加熱実験で得られる温度時間変化曲線を重ね合わせた場合の模式図Schematic diagram when temperature and time change curves obtained in a plurality of energization self-heating experiments are characterized in that the gate voltage value is changed after reaching the target temperature obtained by the prior art (4) 本発明の技術において得られる広い温度範囲中の任意の温度におけるXとYの値を導出するために行う複数の通電自己加熱実験で得られる温度時間変化曲線を重ね合わせた場合の模式図Schematic diagram when temperature and time change curves obtained in a plurality of energization self-heating experiments conducted to derive X and Y values at an arbitrary temperature in a wide temperature range obtained by the technology of the present invention are superimposed. 目標温度Tが同じ条件で複数の異なる加熱速度dT/dtを実現させた測定から得られたXとYの値を用いた比熱容量と半球全放射率の算出方法の模式図Schematic diagram of a specific heat capacity and the calculation method of the hemispherical total emissivity using the value of the target temperature T m was obtained from measurements obtained by realizing the heating rate dT / dt to a plurality of different under the same conditions X and Y

本発明に係る導電性試料の比熱容量及び半球全放射率の測定方法の概要を説明する。
本発明は、試料温度分布の均一性が良い急速な通電自己加熱中の測定データを利用して、試料の通電自己加熱の開始温度から終了温度に渡る広い温度範囲中の任意の温度における比熱容量cと半球全放射率εtを正確かつ効率的に導出することを目的とする。
大電流を流して試料を急速通電加熱する場合、試料温度分布の不均一性や伝導熱損失の影響はほぼ無視できるため試料の熱収支について式[数1]が成立する。そして、式[数1]は、以下のように変形することができる。
The outline | summary of the measuring method of the specific heat capacity and hemispherical total emissivity of the electroconductive sample which concerns on this invention is demonstrated.
The present invention utilizes the measurement data during rapid self-heating of the sample with good uniformity of the sample temperature distribution, and the specific heat capacity at any temperature in a wide temperature range from the start temperature to the end temperature of the sample. The object is to accurately and efficiently derive c p and the hemispherical total emissivity ε t .
If by flowing a c p large current rapidly energized heating the sample, the influence of nonuniformity and conductive heat loss of the sample temperature distribution for heat balance of the sample for substantially negligible formula [Number 1] is established. The equation [Equation 1] can be modified as follows.

上述の式[数10]は、式[数11]からそれぞれ算出されるXとYの値の間には線形関係が成立することを示している。したがって、加熱に際して試料に流す電流を様々な値に離散的に変えることで算出した複数のXとYの値に対して最小自乗法等によりXとYの一次式を近似的に算出し、その一次近似式の傾きと切片の値から通電自己加熱の開始温度から終了温度に渡る温度範囲中の目標温度Tにおける比熱容量cと半球全放射率εtを算出できると共に、XとYの間の線形性の有無から測定の健全性を評価できる。 The above equation [Equation 10] indicates that a linear relationship is established between the values of X and Y calculated from the equation [Equation 11], respectively. Therefore, a linear expression of X and Y is approximately calculated by a least square method or the like for a plurality of X and Y values calculated by discretely changing the current flowing through the sample during heating to various values. The specific heat capacity c p and the hemispherical total emissivity ε t at the target temperature T m in the temperature range from the start temperature to the end temperature of the energization self-heating can be calculated from the slope and intercept value of the linear approximation formula, The soundness of the measurement can be evaluated from the presence or absence of linearity between them.

本発明は、上述の従来技術(1)を実施する際に使用するような低コストな装置(図1参照)で実施可能である。
測定は、以下の手順により行う。
温度Tに保持された試料に図1のような装置を用いて大電流を流して任意の温度Tmaxへ急速通電自己加熱を行う。その際の試料温度、試料の電圧降下、電流の値を連続的に測定する。その次に電流回路中の可変抵抗の値を変化させるか、電流スイッチとしてMOSFETを利用している場合には通電自己加熱時におけるMOSFETのゲート電圧Vを先に行った加熱時と異なる値に変化させて試料を前回と異なる加熱速度dT/dtで急速通電自己加熱する。このように、加熱速度dT/dtの値を離散的に変えた測定を繰り返し、異なるdT/dtの条件の下で測定された温度TとTmaxの間における目標温度TにおけるXとYの値を算出する。
The present invention can be implemented by a low-cost apparatus (see FIG. 1) used when implementing the above-described prior art (1).
The measurement is performed according to the following procedure.
The sample held at the temperature T 0 is subjected to rapid energization self-heating to an arbitrary temperature T max by flowing a large current using an apparatus as shown in FIG. At that time, the sample temperature, the voltage drop of the sample, and the current value are continuously measured. As one follows the varying the value of the variable resistor in the current circuit, to a value different from the time of heating was conducted gate voltage V g of the MOSFET during conduction self-heating above if you are using MOSFET as a current switch The sample is rapidly heated and self-heated rapidly at a heating rate dT / dt different from the previous time. In this way, the measurement with the heating rate dT / dt changed discretely is repeated, and X and Y at the target temperature T m between the temperatures T 0 and T max measured under different dT / dt conditions. Is calculated.

図5は上記の手順により行われた複数の通電自己加熱実験により得られた試料温度の時間変化曲線を示している。各通電自己加熱実験において加熱時に流す電流Iを変化させる手段を設けることで、異なるdT/dtの条件の下で測定された温度TとTmaxの間における目標温度Tにおける複数のXとYの値を短時間で導出することができる。
各通電自己加熱実験時に試料に流す電流は離散的に異なっていれば任意の大きさで構わないため、図1に占める本発明を実施する装置例において自動的に電流回路中の可変抵抗を変化させる機械的な機構もしくは電流スイッチにMOSFETを使用している場合は電流を調整するMOSFETのゲート電圧を適当な間隔で複数点変えてXとYの算出に必要なT、I、Vの測定を繰り返す簡単なコンピュータ・プログラム機能を有する装置により、通電自己加熱実験の開始温度から終了温度にいたる温度範囲中の目標温度Tにおける比熱容量と半球全放射率の自動測定が可能となる。
図5に示すような複数の通電自己加熱実験から目標温度TにおけるXとYの値をそれぞれ算出し、図6に示すようにXとYの直線近似式を導出することによりTにおけるcとεtを算出できる。
FIG. 5 shows a time change curve of the sample temperature obtained by a plurality of energizing self-heating experiments performed by the above procedure. By providing means for changing the current I flowing during heating in each energizing self-heating experiment, a plurality of Xs at the target temperature T m between temperatures T 0 and T max measured under different dT / dt conditions The value of Y can be derived in a short time.
Since the current flowing through the sample during each energization self-heating experiment may be arbitrarily large as long as it is discretely different, the variable resistance in the current circuit is automatically changed in the example of the apparatus embodying the present invention shown in FIG. If a MOSFET is used as a mechanical mechanism or current switch, measure the T, I, and V required to calculate X and Y by changing the gate voltage of the MOSFET that adjusts the current at multiple intervals. the device with a simple computer program functions to repeat, it is possible to automatically measure the specific heat capacity and hemispherical total emissivity of the target temperature T m of a in the temperature range leading to completion temperature from the starting temperature of the energization self-heating experiment.
The values of X and Y at the target temperature T m calculated from a plurality of current self-heating experiment as shown in FIG. 5, c in T m by deriving a linear approximation of X and Y as shown in FIG. 6 p and ε t can be calculated.

本発明の第1の利点は、試料温度分布の不均一性がほぼ無視できる急速通電自己加熱中の試料温度、電流、電圧降下の測定データのみを用いることによる測定誤差の低減である。
本発明の第2の利点は、上述の従来技術(2)において必要とした温度のフィードバック制御機能や従来技術(4)において必要とした急速通電自己加熱中に電流値を離散的に変化させるための電流制御機能を有さない低コストの装置により、温度分布の不均一性の影響を廃した上で比熱容量と半球全放射率を測定できる。
The first advantage of the present invention is a reduction in measurement error by using only measurement data of sample temperature, current, and voltage drop during rapid energization self-heating where the non-uniformity of the sample temperature distribution can be almost ignored.
The second advantage of the present invention is that the current value is discretely changed during the temperature feedback control function required in the above-described prior art (2) and the rapid energization self-heating required in the prior art (4). With a low-cost device that does not have the current control function, it is possible to measure the specific heat capacity and the total emissivity of the hemisphere while eliminating the influence of non-uniform temperature distribution.

本発明の第3の利点は、得られた複数の(X,Y)点が線形関係を持つかどうかを評価することにより、深刻な電磁干渉ノイズや試料の変質などを原因とする測定誤差の有無や本発明が実施可能な熱収支関係すなわち式[数1]が成立していたかどうかをセルフチェックできることである。
本発明の第4の利点は、各通電加熱実験時に試料に流す電流は離散的に異なっていれば任意の大きさで構わないため、自動的に電流回路中の可変抵抗を変化させる機械的な機構もしくは電流スイッチにMOSFETを使用している場合は電流を調整するMOSFETのゲート電圧を適当な間隔で変えてXとYの算出に必要なT、I、Vの測定を繰り返す簡単なコンピュータ・プログラム機能を有する装置により、通電加熱の開始温度から終了温度に渡る広い温度範囲中の任意の温度における比熱容量と半球全放射率を短時間で自動測定することが可能な点である。

The third advantage of the present invention is that by evaluating whether or not the obtained (X, Y) points have a linear relationship, measurement errors caused by serious electromagnetic interference noise or sample alteration can be reduced. It is possible to self-check whether or not there is a heat balance relationship in which the present invention can be implemented, that is, whether the formula [Equation 1] has been established.
The fourth advantage of the present invention is that a mechanical resistance that automatically changes the variable resistance in the current circuit can be used as long as the current flowing through the sample during each energization heating experiment is discretely different. If a MOSFET is used for the mechanism or current switch, a simple computer program that repeats the T, I, and V measurements necessary to calculate X and Y by changing the gate voltage of the MOSFET that adjusts the current at appropriate intervals The specific heat capacity and hemispherical total emissivity at an arbitrary temperature in a wide temperature range from the start temperature to the end temperature of the electric heating can be automatically measured in a short time by a device having a function.

Claims (2)

導電性試料に電流を流して急速通電自己加熱し、該試料を目標温度Tを超えて任意の温度へ到達させ、目標温度Tにおける試料の加熱速度dT/dt、試料を流れる電流I、試料の電圧降下Vの測定データから次の関係式を利用してXとYを算出するステップ、
ただし式中のAは試料の有効表面積、σSBはステファン・ボルツマン定数、Tは目標温度、Tは試料周囲の温度である。
試料に流す電流を変えることで加熱速度を離散的に変えて上記のステップを繰り返すことにより複数組のXとYを算出するステップ、該複数のXとYの値に対して、XとYが次式に示す線形関係を持つことを利用して、近似的に導出したXとYの1次式の傾きと切片の値から比熱容量c及び半球全放射率εを算出するステップを含むことを特徴とする導電性試料の比熱容量及び半球全放射率の測定方法。
By applying a current to the conductive sample rapidly energizing self-heating, the sample exceeds the target temperature T m is reached to any temperature, the current flowing through the heating rate of the sample at the target temperature T m dT / dt, the samples I, Calculating X and Y from the measurement data of the voltage drop V of the sample using the following relational expression;
Where A is the effective surface area of the sample, σ SB is the Stefan-Boltzmann constant, T m is the target temperature, and T 0 is the temperature around the sample.
The step of calculating the plurality of sets of X and Y by repeating the above steps by changing the heating rate discretely by changing the current passed through the sample, and for the plurality of X and Y values, The step of calculating the specific heat capacity c p and the hemispherical total emissivity ε t from the slope and intercept value of the approximately derived linear equation of X and Y using the linear relationship shown in the following equation is included. A method for measuring a specific heat capacity and a hemispherical total emissivity of a conductive sample.
急速通電自己加熱における加熱速度を変えることにより複数のXとYの値を算出するステップを自動的に繰り返す手段を備えたことを特徴とする請求項1に記載の比熱容量と半球全放射率の測定方法を実施する装置。

The specific heat capacity and hemispherical total emissivity according to claim 1, further comprising means for automatically repeating a step of calculating a plurality of X and Y values by changing a heating rate in the rapid energization self-heating. A device that implements the measurement method.

JP2010206737A 2010-09-15 2010-09-15 Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples Expired - Fee Related JP5414068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010206737A JP5414068B2 (en) 2010-09-15 2010-09-15 Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010206737A JP5414068B2 (en) 2010-09-15 2010-09-15 Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples

Publications (2)

Publication Number Publication Date
JP2012063207A JP2012063207A (en) 2012-03-29
JP5414068B2 true JP5414068B2 (en) 2014-02-12

Family

ID=46059075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010206737A Expired - Fee Related JP5414068B2 (en) 2010-09-15 2010-09-15 Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples

Country Status (1)

Country Link
JP (1) JP5414068B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158292A (en) * 2015-08-27 2015-12-16 河海大学 Gas specific heat ratio measuring device and gas specific heat ratio measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364434B (en) * 2013-04-24 2016-01-13 清华大学 The hemisphere of large difference sample is to the measuring method of total emissivity

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792070A (en) * 1993-09-25 1995-04-07 Meitec Corp Method and device for thermal analysis
JPH09257374A (en) * 1996-03-22 1997-10-03 Sumitomo Kinzoku Technol Kk Infrared heating furnace and thermodilatometer
JP4195935B2 (en) * 2004-03-01 2008-12-17 独立行政法人産業技術総合研究所 Thermophysical property measuring method and apparatus
JP4284545B2 (en) * 2005-04-25 2009-06-24 独立行政法人産業技術総合研究所 Specific heat capacity measuring method and apparatus
JP4953061B2 (en) * 2006-11-02 2012-06-13 独立行政法人産業技術総合研究所 Object heating method and apparatus
JP4528954B1 (en) * 2009-03-06 2010-08-25 独立行政法人産業技術総合研究所 Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158292A (en) * 2015-08-27 2015-12-16 河海大学 Gas specific heat ratio measuring device and gas specific heat ratio measuring method

Also Published As

Publication number Publication date
JP2012063207A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP4195935B2 (en) Thermophysical property measuring method and apparatus
Pavia et al. Electro-thermal measurements and finite element method simulations of a spark plasma sintering device
Karg et al. Measurement of thermoelectric properties of single semiconductor nanowires
JP2011185697A (en) Thermoelectric material evaluation device and thermoelectric characteristic evaluation method
KR101898037B1 (en) High temperature structure for measuring of properties of curved thermoelectric device, system for measuring of properties of curved thermoelectric device using the same and method thereof
JP2018185329A (en) Ion modification
JP4284545B2 (en) Specific heat capacity measuring method and apparatus
JP6202580B2 (en) Thermophysical property measuring method and thermophysical property measuring device
CN109781776A (en) A kind of device and method that can measure the multiple thermoelectricity parameters of material simultaneously
JP4528954B1 (en) Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples
JP5414068B2 (en) Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples
US20210368584A1 (en) Passive and active calibration methods for a resistive heater
JP6607469B2 (en) Thermophysical property measuring method and thermophysical property measuring device
CN109613054B (en) Direct-electrifying longitudinal heat conductivity coefficient testing method
US20200230607A1 (en) Temperature control device and nucleic acid amplification apparatus
JP7232513B2 (en) Seebeck coefficient measuring device and its measuring method
RU2510491C2 (en) Method of measuring emissivity factor
CN206038730U (en) Be used for novel sample platform of thermoelectric parameter testing of film
JP7250268B2 (en) How to measure specific heat and enthalpy change
Konopka Thermocouple dynamic errors correction for instantaneous temperature measurements in induction heating
RU2716466C1 (en) Method of controlling thermophysical properties of materials and device for its implementation
WO2020149830A1 (en) Electrical measurement of a green object during sintering
Mochidzuki et al. Development of a rapid temperature scanning system for pulsed magnetic fields and its applications
Anatychuk et al. Increasing the rapidity of thermal conductivity measurement by the absolute method
Lukas et al. Thermal stability of thermoelectric materials via in situ resistivity measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R150 Certificate of patent or registration of utility model

Ref document number: 5414068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees