JP7033292B2 - Thermoelectric property measuring device and thermoelectric property measuring method - Google Patents

Thermoelectric property measuring device and thermoelectric property measuring method Download PDF

Info

Publication number
JP7033292B2
JP7033292B2 JP2017142754A JP2017142754A JP7033292B2 JP 7033292 B2 JP7033292 B2 JP 7033292B2 JP 2017142754 A JP2017142754 A JP 2017142754A JP 2017142754 A JP2017142754 A JP 2017142754A JP 7033292 B2 JP7033292 B2 JP 7033292B2
Authority
JP
Japan
Prior art keywords
measured
following equation
thermoelectric
electric conductivity
δiv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017142754A
Other languages
Japanese (ja)
Other versions
JP2019024044A (en
Inventor
宇史 中嶋
貴博 山本
秀敏 福山
洋一郎 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2017142754A priority Critical patent/JP7033292B2/en
Publication of JP2019024044A publication Critical patent/JP2019024044A/en
Application granted granted Critical
Publication of JP7033292B2 publication Critical patent/JP7033292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、熱電物性測定装置及び熱電物性測定方法に関する。 The present invention relates to a thermoelectric physical property measuring device and a thermoelectric physical property measuring method.

熱電物性としてのゼーベック係数Sは、測定対象物の両端に温度差ΔT=Th-Tc(Th:高温部の温度、Tc:低温部の温度)が与えられたときに、測定対象物の両端に発生する起電力をΔvとして、従来、以下の式を用いて定義されている。
S=Δv/ΔT・・・(1)
そして、このゼーベック係数Sを求める場合、測定対象物の両端に温度差ΔTを与え、測定対象物の両端に発生した起電力Δvを電圧計で測定し、上記式(1)を用いて演算されている(例えば特許文献1参照)。
The Seebeck coefficient S as a thermoelectric property is obtained at both ends of the object to be measured when a temperature difference ΔT = Th—Tc (Th: temperature of the high temperature part, Tc: temperature of the low temperature part) is given to both ends of the object to be measured. Conventionally, the generated electromotive force is defined as Δv using the following equation.
S = Δv / ΔT ... (1)
Then, when the Seebeck coefficient S is obtained, a temperature difference ΔT is given to both ends of the object to be measured, the electromotive force Δv generated at both ends of the object to be measured is measured with a voltmeter, and the calculation is performed using the above equation (1). (See, for example, Patent Document 1).

特開2004-165233号公報Japanese Unexamined Patent Publication No. 2004-165233

しかし、このようにゼーベック係数Sを、起電力Δvより直接求める方法には以下の問題がある。
起電力Δvの測定には、電圧計が用いられる。電圧計で測定対象物の2点間の電圧を測定する際の理想的な条件は、電圧計の内部に電流が流れないこと、すなわち2点間が開放端であることである。電圧計の内部抵抗を大きくすることにより開放端に近い状態にして電流値を小さくすることはできる。しかし、電流値を完全にゼロにすることはできない。したがって、起電力Δvの測定精度には限界があり、ゆえに上記(1)式に基づいたゼーベック係数Sの演算の高精度化には限界がある。
However, the method of directly obtaining the Seebeck coefficient S from the electromotive force Δv has the following problems.
A voltmeter is used to measure the electromotive force Δv. The ideal condition for measuring the voltage between two points of an object to be measured with a voltmeter is that no current flows inside the voltmeter, that is, the two points are open ends. By increasing the internal resistance of the voltmeter, it is possible to reduce the current value so that it is close to the open end. However, the current value cannot be completely reduced to zero. Therefore, there is a limit to the measurement accuracy of the electromotive force Δv, and therefore there is a limit to the high accuracy of the calculation of the Seebeck coefficient S based on the above equation (1).

本発明は、ゼーベック係数S、すなわち熱電物性をより高精度に求めることが可能な熱電物性測定装置及び熱電物性測定方法を提供することを目的とする。 An object of the present invention is to provide a thermoelectric property measuring device and a thermoelectric property measuring method capable of obtaining a Seebeck coefficient S, that is, a thermoelectric property with higher accuracy.

本発明は上記課題を解決するために以下のものを提供する。
(1)測定対象物の一端と他端との間に電位差を加える電源と、前記一端と前記他端との間に温度差を加える温度差発生部と、前記一端と前記他端との間を流れる電流値を測定する電流計と、前記測定対象物の前記一端と前記他端との間の電圧を測定する電圧計と、演算部と、を備え、前記演算部は、前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、前記電源により前記一端と前記他端との間に電位差ΔV が加えられたときに前記電流計により測定された電流ΔI (2) を用いて、以下の式より電気伝導率L 11 (2) を求め、
11 (2) =(l/A)(ΔI (2) /ΔV
前記電源により前記一端と前記他端との間に前記電位差ΔV が加えられたときに前記電圧計により測定された電圧ΔV と、前記電流計により測定された電流ΔI (4) を用いて、以下の式より電気伝導率L 11 (4) を求め、
11 (4) =(l/A)(ΔI (4) /ΔV
前記電気伝導率L 11 (2) と、前記電気伝導率L 11 (4) とを用いて、以下の式より接触抵抗rを求め、
r=R (2) -R (4) =(1/L 11 (2) -1/L 11 (4) )(l/A)
前記一端と前記他端との間に電位差を与えず、前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電流値ΔI (2) を用いて、以下の式より熱電係数L 12 (2) を求め、
12 (2) =(l/A)(ΔI (2) /ΔT)
前記熱電係数L 12 (2) を前記接触抵抗rを用いて補正して、以下の式より熱電係数L 12 (4) を求め、
12 (4) ={(R (4) +r)/R (4) }L 12 (2)
前記電気伝導率L 11 (4) と前記熱電係数L 12 (4) を用いて、以下の式よりゼーベック係数Sを求める、
S=L 12 (4) /L 11 (4)
熱電物性測定装置。
The present invention provides the following in order to solve the above problems.
(1) Between a power source that applies a potential difference between one end and the other end of the object to be measured, a temperature difference generating portion that applies a temperature difference between the one end and the other end, and the one end and the other end. A current meter for measuring the value of the current flowing through the object, a voltmeter for measuring the voltage between the one end and the other end of the object to be measured, and a calculation unit, and the calculation unit is the object to be measured. When the length from the one end to the other end is l and the cross-sectional area orthogonal to the length direction is A, a potential difference ΔVA is added between the one end and the other end by the power supply . Using the current ΔIV (2) measured by the current meter at the time of calculation, the electric conductivity L 11 (2) was obtained from the following equation.
L 11 (2) = (l / A) (ΔIV ( 2) / ΔVA )
The voltage ΔV V measured by the voltmeter when the potential difference ΔVA is applied between the one end and the other end by the power supply and the current ΔIV V (4) measured by the ammeter are used. Then, the electric conductivity L 11 (4) was obtained from the following equation.
L 11 (4) = (l / A) (ΔIV ( 4) / ΔV V )
Using the electric conductivity L 11 (2) and the electric conductivity L 11 (4) , the contact resistance r was obtained from the following equation.
r = R (2) -R (4) = (1 / L 11 (2) -1 / L 11 (4) ) (l / A)
A current value measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generating portion without giving a potential difference between the one end and the other end. Using ΔIT (2) , obtain the thermoelectric coefficient L 12 (2) from the following equation.
L 12 (2) = (l / A) (ΔIT ( 2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected by using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation.
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Using the electric conductivity L 11 (4) and the thermoelectric coefficient L 12 (4) , the Seebeck coefficient S is obtained from the following equation.
S = L 12 (4) / L 11 (4)
Thermoelectric property measuring device.

更なる態様として、本発明は上記課題を解決するために以下のものを提供する。
)測定対象物の一端と他端との間に電位差を加える電源と、前記一端と前記他端との間に温度差を加える温度差発生部と、前記一端と前記他端との間を流れる電流値を測定する電流計と、前記測定対象物の前記一端と前記他端との間の電圧を測定する電圧計と、演算部と、を備え、前記演算部は、前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、前記電源により前記一端と前記他端との間に電位差ΔVが加えられたときに前記電流計により測定された電流ΔI (2)を用いて、以下の式より電気伝導率L11 (2)を求め、
11 (2)=(l/A)(ΔI (2)/ΔV
前記電源により前記一端と前記他端との間に前記電位差ΔVが加えられたときに前記電圧計により測定された電圧ΔVと、前記電流計により測定された電流ΔI (4)を用いて、以下の式より電気伝導率L11 (4)を求め、
11 (4)=(l/A)(ΔI (4)/ΔV
前記電気伝導率L11 (2)と、前記電気伝導率L11 (4)とを用いて、以下の式より接触抵抗rを求め、
r=R(2)-R(4)=(1/L11 (2)-1/L11 (4))(l/A)
前記一端と前記他端との間に電位差を与えず、前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電値ΔI (2)を用いて、以下の式より熱電係数L12 (2)を求め、
12 (2)=(l/A)(ΔI (2)/ΔT)
前記熱電係数L12 (2)を前記接触抵抗rを用いて補正して、以下の式より熱電係数L12 (4)を求める、
12 (4)={(R(4)+r)/R(4)}L12 (2)
熱電物性測定装置。
As a further aspect, the present invention provides the following in order to solve the above problems.
( 2 ) Between a power source that applies a potential difference between one end and the other end of the object to be measured, a temperature difference generating portion that applies a temperature difference between the one end and the other end, and the one end and the other end. A current meter for measuring the value of the current flowing through the object, a voltmeter for measuring the voltage between the one end and the other end of the object to be measured, and a calculation unit, and the calculation unit is the object to be measured. When the length from the one end to the other end is l and the cross-sectional area orthogonal to the length direction is A , a potential difference ΔVA is added between the one end and the other end by the power supply. Using the current ΔIV (2) measured by the current meter at the time of calculation, the electric conductivity L 11 (2) was obtained from the following equation.
L 11 (2) = (l / A) ( ΔIV (2) / ΔVA )
The voltage ΔV V measured by the voltmeter when the potential difference ΔVA is applied between the one end and the other end by the power supply and the current ΔIV V (4) measured by the ammeter are used. Then, the electric conductivity L 11 (4) was obtained from the following equation.
L 11 (4) = (l / A) (ΔIV (4) / ΔV V )
Using the electric conductivity L 11 (2) and the electric conductivity L 11 (4) , the contact resistance r was obtained from the following equation.
r = R (2) -R (4) = (1 / L 11 (2) -1 / L 11 (4) ) (l / A)
The current measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generating portion without giving a potential difference between the one end and the other end. Using the value ΔIT (2 ), obtain the thermoelectric coefficient L 12 (2) from the following equation.
L 12 (2) = (l / A) ( ΔIT (2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected by using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation.
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Thermoelectric property measuring device.

他の態様として、本発明は上記課題を解決するために以下のものを提供する。
)測定対象物の一端と他端との間に電位差を加える電源と、前記一端と前記他端との間に温度差を加える温度差発生部と、前記一端と前記他端との間を流れる電流値を測定する電流計と、前記測定対象物の前記一端と前記他端との間の電圧を測定する電圧計と、を備える熱物性測定装置において、前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、前記電源により前記一端と前記他端との間に電位差ΔVが加えられたときに前記電流計により測定された電流ΔI (2)を用いて、以下の式より電気伝導率L11 (2)を求め、
11 (2)=(l/A)(ΔI (2)/ΔV
前記電源により前記一端と前記他端との間に前記電位差ΔVが加えられたときに前記電圧計により測定された電圧ΔVと、前記電流計により測定された電流ΔI (4)を用いて、以下の式より電気伝導率L11 (4)を求め、
11 (4)=(l/A)(ΔI (4)/ΔV
前記電気伝導率L11 (2)と、前記電気伝導率L11 (4)とを用いて、以下の式より接触抵抗rを求め、
r=R(2)-R(4)=(1/L11 (2)-1/L11 (4))(l/A)
前記一端と前記他端との間に電位差を与えず、前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電値ΔI (2)を用いて、以下の式より熱電係数L12 (2)を求め、
12 (2)=(l/A)(ΔI (2)/ΔT)
前記熱電係数L12 (2)を前記接触抵抗rを用いて補正して、以下の式より熱電係数L12 (4)を求め、
12 (4)={(R(4)+r)/R(4)}L12 (2)
前記電気伝導率L11 (4)と前記熱電係数L12 (4)を用いて、以下の式よりゼーベック係数Sを求める、
S=L12 (4)/L11 (4)
熱電物性測定方法。
As another aspect, the present invention provides the following in order to solve the above problems.
( 3 ) Between a power source that applies a potential difference between one end and the other end of the object to be measured, a temperature difference generating portion that applies a temperature difference between the one end and the other end, and the one end and the other end. In a thermoelectric property measuring device including a current meter for measuring a current value flowing through a current meter and a voltmeter for measuring a voltage between the one end and the other end of the measurement object, the one end of the measurement object is provided. When the potential difference ΔVA is applied between the one end and the other end by the power source when the length from the other end to the other end is l and the cross-sectional area orthogonal to the length direction is A. Using the current ΔIV (2) measured by the current meter, the electric conductivity L 11 (2) was obtained from the following equation.
L 11 (2) = (l / A) ( ΔIV (2) / ΔVA )
The voltage ΔV V measured by the voltmeter when the potential difference ΔVA is applied between the one end and the other end by the power supply and the current ΔIV V (4) measured by the ammeter are used. Then, the electric conductivity L 11 (4) was obtained from the following equation.
L 11 (4) = (l / A) (ΔIV (4) / ΔV V )
Using the electric conductivity L 11 (2) and the electric conductivity L 11 (4) , the contact resistance r was obtained from the following equation.
r = R (2) -R (4) = (1 / L 11 (2) -1 / L 11 (4) ) (l / A)
The current measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generating portion without giving a potential difference between the one end and the other end. Using the value ΔIT (2 ), obtain the thermoelectric coefficient L 12 (2) from the following equation.
L 12 (2) = (l / A) ( ΔIT (2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected by using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation.
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Using the electric conductivity L 11 (4) and the thermoelectric coefficient L 12 (4) , the Seebeck coefficient S is obtained from the following equation.
S = L 12 (4) / L 11 (4)
Thermoelectric property measurement method.

別の態様として、本発明は上記課題を解決するために以下のものを提供する。
(4)測定対象物の一端と他端との間に電位差を加える電源と、前記一端と前記他端との間に温度差を加える温度差発生部と、前記一端と前記他端との間を流れる電流値を測定する電流計と、前記測定対象物の前記一端と前記他端との間の電圧を測定する電圧計と、を備える熱電物性測定装置において、前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、前記電源により前記一端と前記他端との間に電位差ΔVが加えられたときに前記電流計により測定された電流ΔI (2)を用いて、以下の式より電気伝導率L11 (2)を求め、
11 (2)=(l/A)(ΔI (2)/ΔV
前記電源により前記一端と前記他端との間に前記電位差ΔVが加えられたときに前記電圧計により測定された電圧ΔVと、前記電流計により測定された電流ΔI (4)を用いて、以下の式より電気伝導率L11 (4)を求め、
11 (4)=(l/A)(ΔI (4)/ΔV
前記電気伝導率L11 (2)と、前記電気伝導率L11 (4)とを用いて、以下の式より接触抵抗rを求め、
r=R(2)-R(4)=(1/L11 (2)-1/L11 (4))(l/A)
前記一端と前記他端との間に電位差を与えず、前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電値ΔI (2)を用いて、以下の式より熱電係数L12 (2)を求め、
12 (2)=(l/A)(ΔI (2)/ΔT)
前記熱電係数L12 (2)を前記接触抵抗rを用いて補正して、以下の式より熱電係数L12 (4)を求める、
12 (4)={(R(4)+r)/R(4)}L12 (2)
熱電物性測定方法。
As another aspect, the present invention provides the following in order to solve the above problems.
(4) Between a power source that applies a potential difference between one end and the other end of the object to be measured, a temperature difference generating portion that applies a temperature difference between the one end and the other end, and the one end and the other end. In a thermoelectric property measuring device including a current meter for measuring a current value flowing through a current meter and a voltmeter for measuring a voltage between the one end and the other end of the object to be measured, from the one end of the object to be measured. When the length to the other end is l and the cross-sectional area orthogonal to the length direction is A , and the potential difference ΔVA is applied between the one end and the other end by the power source. Using the current ΔIV (2) measured by the current meter, the electric conductivity L 11 (2) was obtained from the following equation.
L 11 (2) = (l / A) ( ΔIV (2) / ΔVA )
The voltage ΔV V measured by the voltmeter when the potential difference ΔVA is applied between the one end and the other end by the power supply and the current ΔIV V (4) measured by the ammeter are used. Then, the electric conductivity L 11 (4) was obtained from the following equation.
L 11 (4) = (l / A) (ΔIV (4) / ΔV V )
Using the electric conductivity L 11 (2) and the electric conductivity L 11 (4) , the contact resistance r was obtained from the following equation.
r = R (2) -R (4) = (1 / L 11 (2) -1 / L 11 (4) ) (l / A)
The current measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generating portion without giving a potential difference between the one end and the other end. Using the value ΔIT (2 ), obtain the thermoelectric coefficient L 12 (2) from the following equation.
L 12 (2) = (l / A) ( ΔIT (2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected by using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation.
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Thermoelectric property measurement method.

本発明によれば、ゼーベック係数S、すなわち熱電物性をより高精度に求めることが可能な熱電物性測定装置及び熱電物性測定方法を提供することができる。 According to the present invention, it is possible to provide a thermoelectric property measuring device and a thermoelectric property measuring method capable of obtaining a Seebeck coefficient S, that is, a thermoelectric physical property with higher accuracy.

第1実施形態における熱電物性測定装置を説明するブロック図である。It is a block diagram explaining the thermoelectric property measuring apparatus in 1st Embodiment. 第1実施形態によるゼーベック係数Sの求め方を示すフローチャートである。It is a flowchart which shows the method of obtaining the Seebeck coefficient S by 1st Embodiment. 第2実施形態によるゼーベック係数Sの求め方を示すフローチャートである。It is a flowchart which shows the method of obtaining the Seebeck coefficient S by the 2nd Embodiment. それぞれの温度差ΔTにおいて、電位差ΔVを変更して電流値ΔIを測定した結果を示すグラフである。It is a graph which shows the result of having measured the current value ΔI by changing the potential difference ΔVA in each temperature difference ΔT. それぞれの温度差ΔTについて図4のグラフのy切片からL12、傾きからL11を算出した結果を示すグラフである。It is a graph which shows the result of having calculated L 12 from the y-intercept of the graph of FIG. 4 and L 11 from the slope for each temperature difference ΔT. 図5のL11及びL12の値より、ゼーベック係数Sを求めた結果であり、(a)の横軸は温度差ΔT、(b)の横軸は平均温度である。It is the result of obtaining the Seebeck coefficient S from the values of L 11 and L 12 in FIG. 5, the horizontal axis of (a) is the temperature difference ΔT, and the horizontal axis of (b) is the average temperature. I-Vグラフのデータを直線回帰によってフィッティングしたものであり、(a)はΔTが2Kの場合、(b)はΔTが0.4Kの場合である。The data of the IVA graph is fitted by linear regression, where (a) is the case where ΔT is 2K and (b) is the case where ΔT is 0.4K .

(第1実施形態)
(熱電物性測定装置1の説明)
図1は本発明の第1実施形態における熱電物性測定装置1を説明するブロック図である。本実施形態の熱電物性測定装置1は、熱電物性としてゼーベック係数Sを求める装置であり、図示するように、測定部10と演算部20とを備える。
(First Embodiment)
(Explanation of the thermoelectric property measuring device 1)
FIG. 1 is a block diagram illustrating a thermoelectric physical characteristic measuring device 1 according to the first embodiment of the present invention. The thermoelectric property measuring device 1 of the present embodiment is a device for obtaining a Seebeck coefficient S as a thermoelectric property, and includes a measuring unit 10 and a calculation unit 20 as shown in the figure.

測定部10は、ゼーベック係数Sの測定対象物(以下、試料12という)を載置する試料載置部11と、試料載置部11に載置された試料12の一端12aと他端12bとを接続する第1回路C1とを備える。第1回路C1には、電流計13と、試料12の一端12aと電流計13との間に設けられた第1スイッチS1と、が配置されている。 The measuring unit 10 includes a sample mounting unit 11 on which an object to be measured having a Seebeck coefficient S (hereinafter referred to as a sample 12) is placed, and one end 12a and the other end 12b of the sample 12 placed on the sample mounting unit 11. It is provided with a first circuit C1 for connecting the above. In the first circuit C1, an ammeter 13 and a first switch S1 provided between one end 12a of the sample 12 and the ammeter 13 are arranged.

第1回路C1における電流計13から第1スイッチS1側に延びる配線部分は、2方向に分岐している。分岐している一方には第1端子aが設けられ、分岐している他方には第2端子bが設けられ、第2端子bと電流計13との間には電源14が配置されている。
第1スイッチS1は、電流計13側において、第1端子aと第2端子bとの間でスイッチングが可能である。第1スイッチS1が第1端子a側に接続されると、第1回路C1は、試料12の一端12aから電源14を通らず、電流計13を通って他端12bへと接続される。第1スイッチS1が第2端子b側に接続されると、第1回路C1は、試料12の一端12aから電源14及び電流計13を通って他端12bへと接続される。
The wiring portion extending from the ammeter 13 to the first switch S1 side in the first circuit C1 is branched in two directions. A first terminal a is provided on one of the branches, a second terminal b is provided on the other of the branches, and a power supply 14 is arranged between the second terminal b and the ammeter 13. ..
The first switch S1 can switch between the first terminal a and the second terminal b on the ammeter 13 side. When the first switch S1 is connected to the first terminal a side, the first circuit C1 is connected from one end 12a of the sample 12 to the other end 12b through the ammeter 13 without passing through the power supply 14. When the first switch S1 is connected to the second terminal b side, the first circuit C1 is connected from one end 12a of the sample 12 to the other end 12b through the power supply 14 and the ammeter 13.

また、測定部10は、試料12の一端12aと他端12bとを接続する第2回路C2を備え、第2回路C2には電圧計15と、試料の他端12bと電圧計15との間に設けられた第2スイッチS2と、が配置されている。
さらに測定部10は、試料12の一端12aと他端12bとの間に温度差を加える温度差発生部16も備える。
Further, the measuring unit 10 includes a second circuit C2 for connecting one end 12a and the other end 12b of the sample 12, and the second circuit C2 is between the voltmeter 15 and the other end 12b of the sample and the voltmeter 15. The second switch S2 provided in the above is arranged.
Further, the measuring unit 10 also includes a temperature difference generating unit 16 that adds a temperature difference between one end 12a and the other end 12b of the sample 12.

演算部20は、後に詳述するが、電源14により試料12の一端12aと他端12bとの間に電位差ΔVが加えられたときに、電流計13により測定された一端12aと他端12bとの間を流れる第1電流値ΔIと、温度差発生部16により試料12の一端12aと他端12bとの間に温度差ΔTが加えられたときに、電流計13により測定された一端12aと他端12bとの間を流れる第2電流値ΔIとを用いて、ゼーベック係数S等を求める演算を行う。 As will be described in detail later, the arithmetic unit 20 will describe the one end 12a and the other end 12b measured by the ammeter 13 when the potential difference ΔVA is applied between the one end 12a and the other end 12b of the sample 12 by the power supply 14. One end measured by the ammeter 13 when the first current value ΔIV flowing between the two and the temperature difference ΔT is applied between one end 12a and the other end 12b of the sample 12 by the temperature difference generating unit 16. Using the second current value ΔIT flowing between the 12a and the other end 12b, an operation for obtaining the Seebeck coefficient S or the like is performed.

(ゼーベック係数Sの演算方法)
一般的にゼーベック係数Sは、試料12の両端に温度差ΔTを与え、試料12の両端に発生した起電力Δvを測定し、以下の式(1)を用いて演算される。

S=Δv/ΔT・・・(1)
(Calculation method of Seebeck coefficient S)
Generally, the Seebeck coefficient S is calculated by giving a temperature difference ΔT to both ends of the sample 12, measuring the electromotive force Δv generated at both ends of the sample 12, and using the following equation (1).

S = Δv / ΔT ... (1)

しかし、本実施形態では、上記式(1)を用いたゼーベック係数Sの演算は行わない。以下、本実施形態によるゼーベック係数Sの求め方について説明する。 However, in the present embodiment, the calculation of the Seebeck coefficient S using the above equation (1) is not performed. Hereinafter, how to obtain the Seebeck coefficient S according to the present embodiment will be described.

図2は、第1実施形態によるゼーベック係数Sの求め方を示すフローチャートである。
〔1〕まず、試料載置部11に試料12を載置する(ステップS1)。
本実施形態において、ゼーベック係数Sの測定対象物である試料12は矩形であり、一端12aと他端12bとの間の長さl、その長さ方向と直交する方向の断面積Aが一定である。ただし、これに限らず、断面積Aが長さ方向において異なるものであってもゼーベック係数Sの演算は可能である。
FIG. 2 is a flowchart showing how to obtain the Seebeck coefficient S according to the first embodiment.
[1] First, the sample 12 is placed on the sample placing portion 11 (step S1).
In the present embodiment, the sample 12 to be measured with the Seebeck coefficient S is rectangular, and the length l between one end 12a and the other end 12b and the cross-sectional area A in the direction orthogonal to the length direction are constant. be. However, not limited to this, the Seebeck coefficient S can be calculated even if the cross-sectional areas A are different in the length direction.

〔2〕電気伝導率L11を求める(ステップS2)
電気伝導率L11は、物体に電位差を与えたときにどれだけ電流が流れやすいか(物質中における電気伝導のしやすさ)を表す物理量である。電気伝導率L11は試料12の両端に電位差ΔVを与え、試料12に流れる電流値ΔIを計測して、これらの値を用いて以下の式(2)より求められる。なお、この際、試料12の両端に温度差は与えなくても与えてもよい(ΔT=0)。

11=(l/A)(ΔI/ΔV)・・・(2)
[2] Obtain the electrical conductivity L 11 (step S2)
The electric conductivity L 11 is a physical quantity indicating how easy it is for an electric current to flow when a potential difference is applied to an object (easiness of electric conduction in a substance). The electric conductivity L 11 is obtained from the following equation (2) by giving a potential difference ΔVA to both ends of the sample 12, measuring the current value ΔIV flowing through the sample 12, and using these values. At this time, the temperature difference may not be given to both ends of the sample 12 (ΔT = 0).

L 11 = (l / A ) ( ΔIV / ΔVA) ... (2)

ここで、電気伝導率L11を測定する際、測定方法によって、接触抵抗rの影響を含む場合と含まない場合とがある。本実施形態で接触抵抗rは、試料12と、第1回路C1及び第2回路C2を構成する配線とを接触させたときに、その接触部で生じる抵抗である。
ゼーベック係数Sをより高精度に演算するには、接触抵抗rの影響が排除された電気伝導率L11を求めることが必要である。
Here, when measuring the electric conductivity L 11 , the influence of the contact resistance r may or may not be included depending on the measuring method. In the present embodiment, the contact resistance r is a resistance generated at the contact portion when the sample 12 and the wiring constituting the first circuit C1 and the second circuit C2 are brought into contact with each other.
In order to calculate the Seebeck coefficient S with higher accuracy, it is necessary to obtain the electric conductivity L 11 excluding the influence of the contact resistance r.

〔2-1〕2端子法により接触抵抗rの影響を含む電気伝導率L11 (2)を求める(ステップS2-1)。
2端子法による接触抵抗rの影響を含む電気伝導率L11 (2)は以下のように求める。
まず、第1スイッチS1を第2端子bに接続し、第2スイッチS2をOFFにする。電源14をONにして、ΔVが第1回路C1に印加された状態にする。この状態で電流計13に流れる電流値ΔI (2)を測定する。
演算部20には、試料12の長さl,試料12の断面積Aの情報が入力されている。演算部20は、これらの値と、上記のように測定された電流値ΔI (2)を用いて、以下の式(2-1)を用いて電気伝導率L11 (2)を演算する。

11 (2)=(l/A)(ΔI (2)/ΔV)・・・(2-1)
[2-1] The electrical conductivity L 11 (2) including the influence of the contact resistance r is obtained by the two-terminal method (step S2-1).
The electric conductivity L 11 (2) including the influence of the contact resistance r by the two-terminal method is obtained as follows.
First, the first switch S1 is connected to the second terminal b, and the second switch S2 is turned off. The power supply 14 is turned on so that ΔVA is applied to the first circuit C1. In this state, the current value ΔIV (2) flowing through the ammeter 13 is measured.
Information on the length l of the sample 12 and the cross-sectional area A of the sample 12 is input to the calculation unit 20. Using these values and the current value ΔIV (2) measured as described above, the calculation unit 20 calculates the electric conductivity L 11 (2) using the following equation (2-1). ..

L 11 (2) = (l / A) ( ΔIV (2) / ΔVA ) ... (2-1)

〔2-2〕4端子法により接触抵抗rの影響を含まない電気伝導率L11 (4)を求める(ステップS2-2)。
4端子法による接触抵抗rの影響を含まない電気伝導率L11 (4)は以下のように求める。
まず、第1スイッチS1を第2端子bに接続し、第2スイッチS2をONにする。電源14をONにして、ΔVが第1回路C1に印加された状態にする。この状態で、電圧計15により電圧ΔVを測定するとともに、電流計13により電流値ΔI (4)を測定する。
[2-2] The electrical conductivity L 11 (4) excluding the influence of the contact resistance r is obtained by the 4-terminal method (step S2-2).
The electric conductivity L 11 (4) excluding the influence of the contact resistance r by the four-terminal method is obtained as follows.
First, the first switch S1 is connected to the second terminal b, and the second switch S2 is turned on. The power supply 14 is turned on so that ΔVA is applied to the first circuit C1. In this state, the voltage ΔV V is measured by the voltmeter 15, and the current value ΔIV (4) is measured by the ammeter 13.

演算部20は、電気伝導率L11 (2)と同様に、上記のように測定された電圧ΔVと電流値ΔI (4)とを用いて、以下の式(2-2)により電気伝導率L11 (4)を演算する。

11 (4)=(l/A)(ΔI (4)/ΔV)・・・(2-2)

なお、ステップS2-1とステップS2-2の順序は逆であってもよい。
Similar to the electric conductivity L 11 (2) , the arithmetic unit 20 uses the voltage ΔV V and the current value ΔIV (4) measured as described above to generate electricity according to the following equation (2-2). Calculate the conductivity L 11 (4) .

L 11 (4) = (l / A) (ΔIV (4) / ΔV V ) ... (2-2)

The order of steps S2-1 and step S2-2 may be reversed.

〔3〕接触抵抗rを求める(ステップS4)
次に、演算部20は、以下の式(3)を用いて、2端子測定法により求めた電気伝導率L11 (2)と、4端子測定法により求めた電気伝導率L11 (4)とから、接触抵抗rを演算する。

r=R(2)-R(4)=(1/L11 (2)-1/L11 (4))(l/A)・・・(3)
[3] Obtaining the contact resistance r (step S4)
Next, the arithmetic unit 20 uses the following equation (3) to obtain the electric conductivity L 11 (2) by the two-terminal measurement method and the electric conductivity L 11 (4) obtained by the four-terminal measurement method. From, the contact resistance r is calculated.

r = R (2) -R (4) = (1 / L 11 (2) -1 / L 11 (4) ) (l / A) ... (3)

〔4〕熱電係数(熱電応答係数,熱電応答関数,熱電定数)L12を求める(ステップS4)
次に、演算部20は、熱電係数L12を求める。熱電係数L12は、物体に温度差を加えたときにどれだけ電流が流れやすいかを示す物理量である。熱電係数L12は試料12の両端には電位差を与えず(ΔV=0)、温度差発生部16を用いて試料12の両端に温度差ΔTを与え、試料12に流れる電流値ΔIを計測して、以下の式(4)より求められる。

12=(l/A)(ΔI/ΔT)・・・(4)
[4] Obtain the thermoelectric coefficient (thermoelectric response coefficient, thermoelectric response function, thermoelectric constant) L 12 (step S4).
Next, the calculation unit 20 obtains the thermoelectric coefficient L 12 . The thermoelectric coefficient L 12 is a physical quantity indicating how easily a current flows when a temperature difference is applied to an object. The thermoelectric coefficient L 12 does not give a potential difference to both ends of the sample 12 ( ΔVA = 0), gives a temperature difference ΔT to both ends of the sample 12 using the temperature difference generating unit 16, and determines the current value ΔIT flowing through the sample 12. It is measured and obtained from the following equation (4).

L 12 = (l / A) ( ΔIT / ΔT) ... (4)

ここでも熱電係数L12を測定する際、測定方法によって、接触抵抗rの影響を含む場合と含まない場合とがある。ゼーベック係数Sをより精度高く演算するには、接触抵抗rの影響を含まない熱電係数L12を求めることが必要である。 Here, too, when measuring the thermoelectric coefficient L12, the influence of the contact resistance r may or may not be included depending on the measuring method. In order to calculate the Seebeck coefficient S with higher accuracy, it is necessary to obtain the thermoelectric coefficient L 12 which does not include the influence of the contact resistance r.

〔4-1〕2端子法により接触抵抗rの影響を含む熱電係数L12 (2)を求める(ステップS4-1)。
2端子法による熱電係数L12 (2)は以下のように求める。
試料12の両端に温度差ΔTを加える。
そして、第1スイッチS1を第1端子aに接続し、第2スイッチS2をOFFにする。この状態で電流計13に流れるΔI (2)を測定する。
[4-1] The thermoelectric coefficient L 12 (2) including the influence of the contact resistance r is obtained by the two-terminal method (step S4-1).
The thermoelectric coefficient L 12 (2) by the two-terminal method is obtained as follows.
A temperature difference ΔT is added to both ends of the sample 12.
Then, the first switch S1 is connected to the first terminal a, and the second switch S2 is turned off. In this state, ΔIT (2) flowing through the ammeter 13 is measured.

次いで、演算部20は、以下の式(4-1)を用いて熱電係数L12 (2)を演算する。

12 (2)=(l/A)(ΔI (2)/ΔT)・・・(4-1)
Next, the calculation unit 20 calculates the thermoelectric coefficient L 12 (2) using the following equation (4-1).

L 12 (2) = (l / A) ( ΔIT (2) / ΔT) ... (4-1)

〔4-2〕接触抵抗の影響を含まない熱電係数L12 (4)の算出(ステップS4-2)
上記のように求めた接触抵抗rを用いて熱電係数L12 (2)を以下の式(4-2)により補正し、接触抵抗rの影響を含まない熱電係数L12 (4)を求める。

12 (4)={(R(4)+r)/R(4)}L12 (2)・・・(4-2)
[4-2] Calculation of thermoelectric coefficient L 12 (4) not including the influence of contact resistance (step S4-2)
Using the contact resistance r obtained as described above, the thermoelectric coefficient L 12 (2) is corrected by the following equation (4-2) to obtain the thermoelectric coefficient L 12 (4) not including the influence of the contact resistance r.

L 12 (4) = {(R (4) + r) / R (4) } L 12 (2) ... (4-2)

〔5〕ゼーベック係数Sの算出(ステップS5)
次いで、上述のように求めた電気伝導率L11 (4)と、熱電係数L12 (4)を用いて、演算部20は、以下の式(5)よりゼーベック係数Sを求める。

S=L12 (4)/L11 (4)・・・(5)

また、演算部20は、単位温度当たりの発電電力であるパワーファクターPFも以下の式(6)により上述のように求めた電気伝導率L11 (4)と、熱電係数L12 (4)を用いて求めることができる。

PF=(L12 (4)/L11 (4)・・・(6)
[5] Calculation of Seebeck coefficient S (step S5)
Next, using the electric conductivity L 11 (4) obtained as described above and the thermoelectric coefficient L 12 (4) , the arithmetic unit 20 obtains the Seebeck coefficient S from the following equation (5).

S = L 12 (4) / L 11 (4) ... (5)

Further, the arithmetic unit 20 also obtains the electric conductivity L 11 (4) and the thermoelectric coefficient L 12 (4) obtained as described above by the following equation (6) for the power factor PF which is the generated power per unit temperature. It can be obtained by using.

PF = (L 12 (4) ) 2 / L 11 (4) ... (6)

なお、本測定は、

J=L11×E+L12(-dT/dx)・・・(7)

が成立する範囲で可能となる。Jは電流密度、Eは電界、lは試料12の長さである。式(7)が成り立つためには、dT/dlを大きくし過ぎないことが重要である。dT/dlが大きいとJ-Eカーブに非線形性が現れるからである。また、式(7)が成り立たない状況になった場合は、J-Eカーブの線型性を確認することで測定に問題がなかったかを確認することができる。なお、dT/dxは、試料12の長さ方向の温度勾配を示す。
In addition, this measurement is

J = L 11 x E + L 12 (-dT / dx) ... (7)

Is possible as long as is satisfied. J is the current density, E is the electric field, and l is the length of the sample 12. In order for equation (7) to hold, it is important not to make dT / dl too large. This is because when dT / dl is large, non-linearity appears in the JE curve. Further, when the situation in which the equation (7) does not hold, it is possible to confirm whether or not there is a problem in the measurement by confirming the linearity of the JE curve. In addition, dT / dx indicates the temperature gradient in the length direction of the sample 12.

(第2実施形態)
第1実施形態では、接触抵抗rの影響を考慮してゼーベック係数Sを求めた。しかし、接触抵抗rは上述のように影響が軽微であるので、接触抵抗rを無視することもできる。図3は、第2実施形態によるゼーベック係数Sの求め方を示すフローチャートである。
第2実施形態の熱電物性測定装置は、第1実施形態の第1回路C1のみの構成で、2点測定のみを行う。各部については第1実施形態と同様であるので同様の符号を付して説明を省略する。
(Second Embodiment)
In the first embodiment, the Seebeck coefficient S was obtained in consideration of the influence of the contact resistance r. However, since the contact resistance r has a slight influence as described above, the contact resistance r can be ignored. FIG. 3 is a flowchart showing how to obtain the Seebeck coefficient S according to the second embodiment.
The thermoelectric property measuring device of the second embodiment has only the configuration of the first circuit C1 of the first embodiment, and performs only two-point measurement. Since each part is the same as that of the first embodiment, the same reference numerals are given and the description thereof will be omitted.

〔1〕まず、試料載置部11に試料12を載置する(ステップS21)。
〔2〕電気伝導率L11を求める(ステップS22)
第1スイッチS1を第2端子bに接続する。電源14をONにして、ΔVが第1回路C1に印加された状態にする。この状態で電流計13に流れる電流値ΔIを測定する。演算部20は、この電流値ΔIを用いて、以下の式(2)により電気伝導率L11を演算する。

11=(l/A)(ΔI/ΔV)・・・(2)
[1] First, the sample 12 is placed on the sample placing portion 11 (step S21).
[2] Obtain the electrical conductivity L 11 (step S22).
The first switch S1 is connected to the second terminal b. The power supply 14 is turned on so that ΔV is applied to the first circuit C1. In this state, the current value ΔIV flowing through the ammeter 13 is measured. The calculation unit 20 calculates the electric conductivity L 11 by the following equation (2) using this current value ΔIV .

L 11 = (l / A) ( ΔIV / ΔV) ... (2)

〔3〕熱電係数L12を求める(ステップS23)
次に、熱電係数L12を求める。熱電係数L12は試料12の両端には電位差を与えず(ΔV=0)、温度差発生部16を用いて試料12の両端に温度差ΔTを与え、試料12に流れる電流値ΔIを測定する。演算部20は、この電流値ΔIを用いて、以下の式(4)により熱電係数L12を演算する。

12=(l/A)(ΔI/ΔT)・・・(4)
[3] Obtain the thermoelectric coefficient L 12 (step S23).
Next, the thermoelectric coefficient L 12 is obtained. The thermoelectric coefficient L 12 does not give a potential difference to both ends of the sample 12 (ΔV = 0), gives a temperature difference ΔT to both ends of the sample 12 using the temperature difference generating unit 16, and measures the current value ΔIT flowing through the sample 12. do. The calculation unit 20 calculates the thermoelectric coefficient L 12 by the following equation (4) using this current value ΔIT .

L 12 = (l / A) ( ΔIT / ΔT) ... (4)

〔4〕ゼーベック係数Sの算出(ステップS24)
次いで、上述のように求めた電気伝導率L11と、熱電係数L12を用いて、演算部20は、以下の式よりゼーベック係数Sを求める。

S=L12/L11・・・(5)

なお、式(5)に式(2)、(4)を代入すると以下のようになる。

S=(ΔI・ΔV)/(ΔI・ΔT)・・・(5-2)

したがって、演算部20は、電気伝導率L11と、熱電係数L12とを演算せずに、電流値ΔIと電流値ΔIとから直接、ゼーベック係数Sを求めることができる。
さらに、演算部20は、第1実施形態と同様に上述のように求めた電気伝導率L11と熱電係数L12を用いて、パワーファクターPFも以下の式(6)により求めることができる。

PF=(L12/L11・・・(6)
[4] Calculation of Seebeck coefficient S (step S24)
Next, using the electric conductivity L 11 obtained as described above and the thermoelectric coefficient L 12 , the arithmetic unit 20 obtains the Seebeck coefficient S from the following equation.

S = L 12 / L 11 ... (5)

Substituting the equations (2) and (4) into the equation (5) gives the following.

S = ( ΔIT · ΔV) / ( ΔIV · ΔT) ... (5-2)

Therefore, the calculation unit 20 can directly obtain the Seebeck coefficient S from the current value ΔIV and the current value ΔIT without calculating the electric conductivity L 11 and the thermoelectric coefficient L 12 .
Further, the arithmetic unit 20 can also obtain the power factor PF by the following equation (6) by using the electric conductivity L 11 and the thermoelectric coefficient L 12 obtained as described above as in the first embodiment.

PF = (L 12 ) 2 / L 11 ... (6)

(実施形態の効果)
[1]上述のように、従来、ゼーベック係数Sは、電圧計により測定された起電力Δvを用いて式(1)S=Δv/ΔTにより求められている。
しかし、本実施形態によると、上述のようにゼーベック係数Sは式(5)S=L12/L11又は式(5-2)S=(ΔI・ΔV)/(ΔI・ΔT)のように表される。
ここで、例えば、後述の、Keysight社製B2911A、プレシジョンソース/メジャーユニットの場合、電流計としての最小測定分解能が10fA、電圧計としての最小測定分解能は100nVである。
したがって、ノイズ対策などが適切に行われていれば、式(5-2)により、測定した電流値を用いて演算したゼーベック係数Sの制度は、従来の式(1)により、測定した電圧値で求めたゼーベック係数Sに比べて電流測定のほうが10倍の精度が保障される。
ゆえに(1)式のようにゼーベック係数Sを求める際に直接的に用いられる値に電圧計によって計測されたΔvを用いる場合と比べて、本実施形態によると、高精度でゼーベック係数を求めることができる。
(Effect of embodiment)
[1] As described above, conventionally, the Seebeck coefficient S is obtained by the equation (1) S = Δv / ΔT using the electromotive force Δv measured by the voltmeter.
However, according to the present embodiment, as described above, the Seebeck coefficient S is of the formula (5) S = L 12 / L 11 or the formula (5-2) S = ( ΔIT · ΔV) / ( ΔIV · ΔT). It is expressed as.
Here, for example, in the case of Keysight's B2911A and precision source / measure unit, which will be described later, the minimum measurement resolution as an ammeter is 10 fA, and the minimum measurement resolution as a voltmeter is 100 nV.
Therefore, if noise countermeasures are properly taken, the system of Seebeck coefficient S calculated using the current value measured by the equation (5-2) is the voltage value measured by the conventional equation (1). The accuracy of the current measurement is guaranteed to be 107 times higher than that of the Seebeck coefficient S obtained in.
Therefore, according to the present embodiment, the Seebeck coefficient is obtained with high accuracy as compared with the case where Δv measured by the voltmeter is used as the value directly used when the Seebeck coefficient S is obtained as in the equation (1). Can be done.

なお、第1実施形態において、L11 (4)を求める際に、以下の式、
11 (4)=(l/A)(ΔI (4)/ΔV)・・・(2-2)
に示すように電圧計15の測定値であるΔVを用いている。しかし、L11 (4)は、接触抵抗rを求める以下の式、
r=R(2)-R(4)=(1/L11 (2)-1/L11 (4))(l/A)
に代入するために用いるものである。
接触抵抗rは以下の式、
12 (4)={(R(4)+r)/R(4)}L12 (2)・・・(4-2)
においてL12 (4)を求める精度を向上させるために用いるものであるが、接触抵抗rは、4端子法で求めた試料12の抵抗値R(4)と比べて非常に小さいので、式(4-2)における接触抵抗rの影響は、そもそも大きくない。
本実施形態では、より高精度にゼーベック係数Sを求めるために、接触抵抗rの影響を考慮したものであり、影響が小さい接触抵抗rを求める際に用いる電圧計15の測定値であるΔVに多少の誤差が含まれていても、ゼーベック係数Sの測定に対する影響は、上記式(1)とくらべると非常に小さい。
したがって、上記式(1)を用いる場合と比べてゼーベック係数Sを高精度に求めることができる。
In the first embodiment, when L 11 (4) is obtained, the following equation,
L 11 (4) = (l / A) (ΔIV (4) / ΔV V ) ... (2-2)
As shown in, ΔVV , which is a measured value of the voltmeter 15, is used. However, in L 11 (4) , the following equation for obtaining the contact resistance r,
r = R (2) -R (4) = (1 / L 11 (2) -1 / L 11 (4) ) (l / A)
It is used to substitute for.
The contact resistance r is the following formula,
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2) ... (4-2)
The contact resistance r is very small as compared with the resistance value R (4) of the sample 12 obtained by the 4-terminal method, although it is used to improve the accuracy of obtaining L 12 (4) . The influence of the contact resistance r in 4-2) is not large in the first place.
In the present embodiment, the influence of the contact resistance r is taken into consideration in order to obtain the Seebeck coefficient S with higher accuracy, and ΔV V is a measured value of the voltmeter 15 used when obtaining the contact resistance r having a small influence. Even if some errors are included in the above equation, the influence on the measurement of the Seebeck coefficient S is very small as compared with the above equation (1).
Therefore, the Seebeck coefficient S can be obtained with higher accuracy than when the above equation (1) is used.

また、ゼーベック係数Sの測定精度が向上することにより、ゼーベック係数の分解能が向上するので、例えば1つの資料における面内のゼーベック係数の分布等を測定することも可能となる。 Further, since the resolution of the Seebeck coefficient is improved by improving the measurement accuracy of the Seebeck coefficient S, it is possible to measure the distribution of the Seebeck coefficient in the plane in one material, for example.

[2]本実施形態によると、熱電係数L12も電圧計による計測値を用いずに求めることができる。したがって、本実施形態によると熱電係数L12も高精度で求めることができる。 [2] According to the present embodiment, the thermoelectric coefficient L 12 can also be obtained without using the measured value by the voltmeter. Therefore, according to the present embodiment, the thermoelectric coefficient L 12 can also be obtained with high accuracy.

[3]さらに、ゼーベック係数Sだけでなく、熱電材料のパワーファクターPFの高精度化も可能となる。 [3] Further, it is possible to improve the accuracy of not only the Seebeck coefficient S but also the power factor PF of the thermoelectric material.

以下、第2実施形態の熱電物性測定装置1を用いて実際に熱電物性を測定した実施例について説明する。実施例の熱電物性測定装置1は、電流計13及び電源部14として、Keysight社製B2911A、プレシジョンソース/メジャーユニットを用いた。このユニットは一台で2端子測定と4端子測定を切り替えて測定可能である。このユニットの性能を以下に示す。
最小電源分解能:10fA/100nV
最小測定分解能:10fA/100nV
最大出力:210V、3A DC/10.5 Aパルス
また、温度差発生部16は温度調節器による加熱制御(Th)と水冷による室温での一定温度制御(Tc)とが可能である。熱電物性を測定する試料としての熱電材料は、2×2×11.6mmのMgSiを用いた。
Hereinafter, an example in which the thermoelectric property is actually measured using the thermoelectric property measuring device 1 of the second embodiment will be described. As the thermoelectric property measuring device 1 of the example, B2911A manufactured by Keysight Co., Ltd. and a precision source / measure unit were used as the ammeter 13 and the power supply unit 14. This unit can switch between 2-terminal measurement and 4-terminal measurement with one unit. The performance of this unit is shown below.
Minimum power resolution: 10fA / 100nV
Minimum measurement resolution: 10fA / 100nV
Maximum output: 210V, 3A DC / 10.5A pulse Further, the temperature difference generating unit 16 can perform heating control (Th) by a temperature controller and constant temperature control (Tc) at room temperature by water cooling. As the thermoelectric material as a sample for measuring the thermoelectric characteristics, Mg 2 Si having a size of 2 × 2 × 11.6 mm was used.

熱電物性測定装置1を用いた熱電物性の測定は、以下のように行った。
試料載置部11に試料12を載置し、第1スイッチS1を第2端子bに接続し、電源14をONにして、第1回路C1に電位差Vを印加しつつ温度差発生部16を用いて試料12の両端に温度差ΔTを与えた。
なお、実施例では、温度差ΔTを一定にして電位差ΔVを変更して電流値ΔIを測定した。一定にする温度差ΔTは、2,3,4,5,6,7,8,9Kの8段階である。測定結果を図4に示す。
The thermoelectric property measurement using the thermoelectric property measuring device 1 was performed as follows.
The sample 12 is placed on the sample mounting portion 11, the first switch S1 is connected to the second terminal b, the power supply 14 is turned on, and the temperature difference generating portion 16 is applied to the first circuit C1 while applying the potential difference VA . Was used to give a temperature difference ΔT to both ends of the sample 12.
In the example, the current value ΔI was measured by changing the potential difference ΔVA while keeping the temperature difference ΔT constant. The constant temperature difference ΔT is in eight stages of 2,3,4,5,6,7,8,9K. The measurement results are shown in FIG.

図示するように、温度差ΔTにかかわらず、ΔI-ΔV直線の傾きは略一定であるが、温度差ΔTが大きくなるに従い、ΔI-ΔV直線は図中下方に平行移動し、すなわちy切片(ΔI切片、ΔV=0のときのΔI)が小さくなっている。 As shown in the figure, the slope of the ΔI− ΔVA straight line is substantially constant regardless of the temperature difference ΔT, but as the temperature difference ΔT increases, the ΔI− ΔVA straight line translates downward in the figure, that is, y. The intercept (ΔI section, ΔI when ΔVA = 0) is smaller.

上述のように、L11とL12は式(2)L11=(l/A)(ΔI/ΔV)、式(4)L12=(l/A)(ΔI/ΔT)で表されるので、それぞれの温度差ΔTにおいて図4のグラフの傾きからL11、y切片からL12を算出した。その結果を図5に示す。なお、式(2)、(4)におけるΔI及びΔIは、実施例においては、同時に測定し、ΔIで表す。 As described above, L 11 and L 12 are expressed by the formula (2) L 11 = (l / A) ( ΔIV / ΔV) and the formula (4) L 12 = (l / A) ( ΔIT / ΔT). Therefore, L 11 was calculated from the slope of the graph of FIG. 4 and L 12 was calculated from the y-intercept at each temperature difference ΔT. The results are shown in FIG. In the examples, ΔIV and ΔIT in the formulas (2) and (4) are measured at the same time and are represented by ΔI.

図6は、図5のL11及びL12の値より、ゼーベック係数Sを求めた結果である。図6(a)の横軸は温度差ΔT、図6(b)の横軸は平均温度である。(a)及び(b)において、同様の結果となる。
なお、実施例では試料12の低温部を18.7℃の室温にクランプし、ヒーター側を加熱制御することで温度差ΔTを発生させている。また、平均温度は、例えばΔT=2℃のときは、(18.7+20.7)/2+273.15=292.85Kとなる。
FIG. 6 shows the result of obtaining the Seebeck coefficient S from the values of L 11 and L 12 in FIG. The horizontal axis of FIG. 6A is the temperature difference ΔT, and the horizontal axis of FIG. 6B is the average temperature. Similar results are obtained in (a) and (b).
In the embodiment, the low temperature portion of the sample 12 is clamped to a room temperature of 18.7 ° C., and the heater side is heated and controlled to generate a temperature difference ΔT. The average temperature is (18.7 + 20.7) /2+273.15=292.85K when, for example, ΔT = 2 ° C.

図6に示すように、平均温度が293~296K程度の付近では、実施例のゼーベック係数Sは-350~-325μV/K程度であった。 As shown in FIG. 6, in the vicinity of the average temperature of about 293 to 296 K, the Seebeck coefficient S of the example was about −350 to 325 μV / K.

なお、測定データに直線回帰処理を施すことで精度の向上がさらに可能になる。
図7はI-Vグラフのデータを直線回帰によってフィッティングしたものであり、(a)はΔTが2Kの場合、(b)はΔTが0.4Kの場合である。
図示するように、データ点にはノイズなどのバラつきが生じる、さらに式(4)L12=(l/A)(ΔI/ΔT)で表されるL12は、温度差ΔTが小さくなるについて、y切片付近でのΔIの変化も小さくなるので、L12の高精度の算出が困難になってくる。
このような場合に、直線回帰処理をすることで、y切片や傾きの精度を向上することができる。一般的に誤差(ERR)については、ERR∝1/√(測定回数)の関係がある。例えば、2500点測定した場合、点数があるので、y切片1点を計測した場合に比べて50倍の精度を得ることができる。
It should be noted that the accuracy can be further improved by performing linear regression processing on the measured data.
FIG. 7 shows the data of the IVA graph fitted by linear regression. FIG. 7A is a case where ΔT is 2K, and FIG. 7B is a case where ΔT is 0.4K.
As shown in the figure, there are variations such as noise in the data points, and in L12 represented by the equation ( 4 ) L12 = (l / A) ( ΔIT / ΔT), the temperature difference ΔT becomes smaller. Since the change in ΔIT near the y-intercept is also small, it becomes difficult to calculate L 12 with high accuracy.
In such a case, the accuracy of the y-intercept and the slope can be improved by performing the linear regression processing. Generally, the error (ERR) has a relationship of ERR∝1 / √ (number of measurements). For example, when 2500 points are measured, since there are points, it is possible to obtain 50 times the accuracy as compared with the case where one y-intercept is measured.

従来のゼーベック係数評価装置も平均化処理は行うが、ある温度差に対して得られる電圧は1つであり、この測定を複数回繰り返すことで精度を上げている。したがって2500回の測定点よりも少ない回数で行うことが一般的である。
実施例では、ある温度差に対して、印加電界を変化させながら各々の電界下における電流密度の計測を2500点行った。なお、実施例ではこの2500点の計測を1回行っているが、2500点の測定を複数回行うことでさらに精度を向上することができる。また、計測点数は計器の設定上の問題なので、より点数を多くとれる測定器や複数台の測定器の活用によっても精度は向上可能である。
ちなみに直線回帰処理の際に得られる標準誤差が本測定の精度となるが、その標準誤差は、以下の結果のようになっている。なお、実施例では、2500回測定を行っている。

Figure 0007033292000001
The conventional Seebeck coefficient evaluation device also performs averaging processing, but the voltage obtained for a certain temperature difference is one, and the accuracy is improved by repeating this measurement a plurality of times. Therefore, it is common to perform the measurement less than 2500 measurement points.
In the example, 2500 points of current density measurement under each electric field were performed while changing the applied electric field for a certain temperature difference. In the embodiment, the measurement of 2500 points is performed once, but the accuracy can be further improved by performing the measurement of 2500 points a plurality of times. In addition, since the number of measurement points is a problem in setting the instrument, the accuracy can be improved by utilizing a measuring instrument that can obtain a larger number of points or a plurality of measuring instruments.
By the way, the standard error obtained in the linear regression processing is the accuracy of this measurement, and the standard error is as follows. In the example, the measurement is performed 2500 times.
Figure 0007033292000001

このように、本実施例によると、I-V直線の傾きaの標準誤差が10-5のオーダ、I切片(V=0)bの標準誤差が10-8のオーダであり、0.4Kという小さな温度差であったとしても、標準誤差が極めて小さくなっており、傾きaやI切片bを高精度に求めることができた。 As described above, according to this embodiment, the standard error of the slope a of the IV straight line is on the order of 10-5 , and the standard error of the I-intercept (V = 0) b is on the order of 10-8 , 0.4K. Even if the temperature difference is as small as that, the standard error is extremely small, and the slope a and the I section b can be obtained with high accuracy.

1 熱電物性測定装置
10 測定部
11 試料載置部
12 試料
12a 一端
12b 他端
13 電流計
14 電源
15 電圧計
16 温度差発生部
20 演算部
C1 第1回路
C2 第2回路
a 端子
b 端子
r 接触抵抗
1 Thermoelectric property measuring device 10 Measuring unit 11 Sample mounting unit 12 Sample 12a One end 12b Other end 13 Ammeter 14 Power supply 15 Voltmeter 16 Temperature difference generator 20 Calculation unit C1 1st circuit C2 2nd circuit a terminal b terminal r Contact resistance

Claims (4)

測定対象物の一端と他端との間に電位差を加える電源と、
前記一端と前記他端との間に温度差を加える温度差発生部と、
前記一端と前記他端との間を流れる電流値を測定する電流計と
前記測定対象物の前記一端と前記他端との間の電圧を測定する電圧計と、
演算部と、を備え、
前記演算部は、
前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、
前記電源により前記一端と前記他端との間に電位差ΔV が加えられたときに前記電流計により測定された電流ΔI (2) を用いて、以下の式より電気伝導率L 11 (2) を求め、
11 (2) =(l/A)(ΔI (2) /ΔV
前記電源により前記一端と前記他端との間に前記電位差ΔV が加えられたときに前記電圧計により測定された電圧ΔV と、前記電流計により測定された電流ΔI (4) を用いて、以下の式より電気伝導率L 11 (4) を求め、
11 (4) =(l/A)(ΔI (4) /ΔV
前記電気伝導率L 11 (2) と、前記電気伝導率L 11 (4) とを用いて、以下の式より接触抵抗rを求め、
r=R (2) -R (4) =(1/L 11 (2) -1/L 11 (4) )(l/A)
前記一端と前記他端との間に電位差を与えず、前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電流値ΔI (2) を用いて、以下の式より熱電係数L 12 (2) を求め、
12 (2) =(l/A)(ΔI (2) /ΔT)
前記熱電係数L 12 (2) を前記接触抵抗rを用いて補正して、以下の式より熱電係数L 12 (4) を求め、
12 (4) ={(R (4) +r)/R (4) }L 12 (2)
前記電気伝導率L 11 (4) と前記熱電係数L 12 (4) を用いて、以下の式よりゼーベック係数Sを求める、
S=L 12 (4) /L 11 (4)
熱電物性測定装置。
A power supply that applies a potential difference between one end and the other end of the object to be measured,
A temperature difference generating portion that adds a temperature difference between the one end and the other end,
An ammeter that measures the value of the current flowing between one end and the other end ,
A voltmeter that measures the voltage between the one end and the other end of the object to be measured,
With a calculation unit,
The arithmetic unit
When the length from one end to the other end of the measurement object is l and the cross-sectional area orthogonal to the length direction is A,
Using the current ΔIV (2) measured by the ammeter when the potential difference ΔVA was applied between the one end and the other end by the power source, the electric conductivity L 11 ( 2) was calculated from the following equation. ) _
L 11 (2) = (l / A) (ΔIV ( 2) / ΔVA )
The voltage ΔV V measured by the voltmeter when the potential difference ΔVA is applied between the one end and the other end by the power supply and the current ΔIV V (4) measured by the ammeter are used. Then, the electric conductivity L 11 (4) was obtained from the following equation.
L 11 (4) = (l / A) (ΔIV ( 4) / ΔV V )
Using the electric conductivity L 11 (2) and the electric conductivity L 11 (4) , the contact resistance r was obtained from the following equation.
r = R (2) -R (4) = (1 / L 11 (2) -1 / L 11 (4) ) (l / A)
A current value measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generating portion without giving a potential difference between the one end and the other end. Using ΔIT (2) , obtain the thermoelectric coefficient L 12 (2) from the following equation.
L 12 (2) = (l / A) (ΔIT ( 2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected by using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation.
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Using the electric conductivity L 11 (4) and the thermoelectric coefficient L 12 (4) , the Seebeck coefficient S is obtained from the following equation.
S = L 12 (4) / L 11 (4)
Thermoelectric property measuring device.
測定対象物の一端と他端との間に電位差を加える電源と、
前記一端と前記他端との間に温度差を加える温度差発生部と、
前記一端と前記他端との間を流れる電流値を測定する電流計と、
前記測定対象物の前記一端と前記他端との間の電圧を測定する電圧計と、
演算部と、を備え、
前記演算部は、
前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、
前記電源により前記一端と前記他端との間に電位差ΔVが加えられたときに前記電流計により測定された電流ΔI (2)を用いて、以下の式より電気伝導率L11 (2)を求め、
11 (2)=(l/A)(ΔI (2)/ΔV
前記電源により前記一端と前記他端との間に前記電位差ΔVが加えられたときに前記電圧計により測定された電圧ΔVと、前記電流計により測定された電流ΔI (4)を用いて、以下の式より電気伝導率L11 (4)を求め、
11 (4)=(l/A)(ΔI (4)/ΔV
前記電気伝導率L11 (2)と、前記電気伝導率L11 (4)とを用いて、以下の式より接触抵抗rを求め、
r=R(2)-R(4)=(1/L11 (2)-1/L11 (4))(l/A)
前記一端と前記他端との間に電位差を与えず、前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電値ΔI (2)を用いて、以下の式より熱電係数L12 (2)を求め、
12 (2)=(l/A)(ΔI (2)/ΔT)
前記熱電係数L12 (2)を前記接触抵抗rを用いて補正して、以下の式より熱電係数L12 (4)を求める、
12 (4)={(R(4)+r)/R(4)}L12 (2)
熱電物性測定装置。
A power supply that applies a potential difference between one end and the other end of the object to be measured,
A temperature difference generating portion that adds a temperature difference between the one end and the other end,
An ammeter that measures the value of the current flowing between one end and the other end,
A voltmeter that measures the voltage between the one end and the other end of the object to be measured,
With a calculation unit,
The arithmetic unit
When the length from one end to the other end of the measurement object is l and the cross-sectional area orthogonal to the length direction is A,
Using the current ΔIV (2) measured by the ammeter when the potential difference ΔVA was applied between the one end and the other end by the power source, the electric conductivity L 11 (2) was calculated from the following equation. )
L 11 (2) = (l / A) ( ΔIV (2) / ΔVA )
The voltage ΔV V measured by the voltmeter when the potential difference ΔVA is applied between the one end and the other end by the power supply and the current ΔIV V (4) measured by the ammeter are used. Then, the electric conductivity L 11 (4) was obtained from the following equation.
L 11 (4) = (l / A) (ΔIV (4) / ΔV V )
Using the electric conductivity L 11 (2) and the electric conductivity L 11 (4) , the contact resistance r was obtained from the following equation.
r = R (2) -R (4) = (1 / L 11 (2) -1 / L 11 (4) ) (l / A)
The current measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generating portion without giving a potential difference between the one end and the other end. Using the value ΔIT (2 ), obtain the thermoelectric coefficient L 12 (2) from the following equation.
L 12 (2) = (l / A) ( ΔIT (2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected by using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation.
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Thermoelectric property measuring device.
測定対象物の一端と他端との間に電位差を加える電源と、
前記一端と前記他端との間に温度差を加える温度差発生部と、
前記一端と前記他端との間を流れる電流値を測定する電流計と、
前記測定対象物の前記一端と前記他端との間の電圧を測定する電圧計と、
を備える熱物性測定装置において、
前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、
前記電源により前記一端と前記他端との間に電位差ΔVが加えられたときに前記電流計により測定された電流ΔI (2)を用いて、以下の式より電気伝導率L11 (2)を求め、
11 (2)=(l/A)(ΔI (2)/ΔV
前記電源により前記一端と前記他端との間に前記電位差ΔVが加えられたときに前記電圧計により測定された電圧ΔVと、前記電流計により測定された電流ΔI (4)を用いて、以下の式より電気伝導率L11 (4)を求め、
11 (4)=(l/A)(ΔI (4)/ΔV
前記電気伝導率L11 (2)と、前記電気伝導率L11 (4)とを用いて、以下の式より接触抵抗rを求め、
r=R(2)-R(4)=(1/L11 (2)-1/L11 (4))(l/A)
前記一端と前記他端との間に電位差を与えず、前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電値ΔI (2)を用いて、以下の式より熱電係数L12 (2)を求め、
12 (2)=(l/A)(ΔI (2)/ΔT)
前記熱電係数L12 (2)を前記接触抵抗rを用いて補正して、以下の式より熱電係数L12 (4)を求め、
12 (4)={(R(4)+r)/R(4)}L12 (2)
前記電気伝導率L11 (4)と前記熱電係数L12 (4)を用いて、以下の式よりゼーベック係数Sを求める、
S=L12 (4)/L11 (4)
熱電物性測定方法。
A power supply that applies a potential difference between one end and the other end of the object to be measured,
A temperature difference generating portion that adds a temperature difference between the one end and the other end,
An ammeter that measures the value of the current flowing between one end and the other end,
A voltmeter that measures the voltage between the one end and the other end of the object to be measured,
In a thermoelectric property measuring device equipped with
When the length from one end to the other end of the measurement object is l and the cross-sectional area orthogonal to the length direction is A,
Using the current ΔIV (2) measured by the ammeter when the potential difference ΔVA was applied between the one end and the other end by the power source, the electric conductivity L 11 (2) was calculated from the following equation. )
L 11 (2) = (l / A) ( ΔIV (2) / ΔVA )
The voltage ΔV V measured by the voltmeter when the potential difference ΔVA is applied between the one end and the other end by the power supply and the current ΔIV V (4) measured by the ammeter are used. Then, the electric conductivity L 11 (4) was obtained from the following equation.
L 11 (4) = (l / A) (ΔIV (4) / ΔV V )
Using the electric conductivity L 11 (2) and the electric conductivity L 11 (4) , the contact resistance r was obtained from the following equation.
r = R (2) -R (4) = (1 / L 11 (2) -1 / L 11 (4) ) (l / A)
The current measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generating portion without giving a potential difference between the one end and the other end. Using the value ΔIT (2 ), obtain the thermoelectric coefficient L 12 (2) from the following equation.
L 12 (2) = (l / A) ( ΔIT (2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected by using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation.
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Using the electric conductivity L 11 (4) and the thermoelectric coefficient L 12 (4) , the Seebeck coefficient S is obtained from the following equation.
S = L 12 (4) / L 11 (4)
Thermoelectric property measurement method.
測定対象物の一端と他端との間に電位差を加える電源と、
前記一端と前記他端との間に温度差を加える温度差発生部と、
前記一端と前記他端との間を流れる電流値を測定する電流計と、
前記測定対象物の前記一端と前記他端との間の電圧を測定する電圧計と、
を備える熱電物性測定装置において、
前記測定対象物の前記一端から前記他端までの長さをl、及び、前記長さ方向と直交する断面積をAとしたときに、
前記電源により前記一端と前記他端との間に電位差ΔVが加えられたときに前記電流計により測定された電流ΔI (2)を用いて、以下の式より電気伝導率L11 (2)を求め、
11 (2)=(l/A)(ΔI (2)/ΔV
前記電源により前記一端と前記他端との間に前記電位差ΔVが加えられたときに前記電圧計により測定された電圧ΔVと、前記電流計により測定された電流ΔI (4)を用いて、以下の式より電気伝導率L11 (4)を求め、
11 (4)=(l/A)(ΔI (4)/ΔV
前記電気伝導率L11 (2)と、前記電気伝導率L11 (4)とを用いて、以下の式より接触抵抗rを求め、
r=R(2)-R(4)=(1/L11 (2)-1/L11 (4))(l/A)
前記一端と前記他端との間に電位差を与えず、前記温度差発生部により前記一端と前記他端との間に前記温度差ΔTが加えられたときに前記電流計により測定された電値ΔI (2)を用いて、以下の式より熱電係数L12 (2)を求め、
12 (2)=(l/A)(ΔI (2)/ΔT)
前記熱電係数L12 (2)を前記接触抵抗rを用いて補正して、以下の式より熱電係数L12 (4)を求める、
12 (4)={(R(4)+r)/R(4)}L12 (2)
熱電物性測定方法。
A power supply that applies a potential difference between one end and the other end of the object to be measured,
A temperature difference generating portion that adds a temperature difference between the one end and the other end,
An ammeter that measures the value of the current flowing between one end and the other end,
A voltmeter that measures the voltage between the one end and the other end of the object to be measured,
In a thermoelectric property measuring device equipped with
When the length from one end to the other end of the measurement object is l and the cross-sectional area orthogonal to the length direction is A,
Using the current ΔIV (2) measured by the ammeter when the potential difference ΔVA was applied between the one end and the other end by the power source, the electric conductivity L 11 (2) was calculated from the following equation. )
L 11 (2) = (l / A) ( ΔIV (2) / ΔVA )
The voltage ΔV V measured by the voltmeter when the potential difference ΔVA is applied between the one end and the other end by the power supply and the current ΔIV V (4) measured by the ammeter are used. Then, the electric conductivity L 11 (4) was obtained from the following equation.
L 11 (4) = (l / A) (ΔIV (4) / ΔV V )
Using the electric conductivity L 11 (2) and the electric conductivity L 11 (4) , the contact resistance r was obtained from the following equation.
r = R (2) -R (4) = (1 / L 11 (2) -1 / L 11 (4) ) (l / A)
The current measured by the ammeter when the temperature difference ΔT is applied between the one end and the other end by the temperature difference generating portion without giving a potential difference between the one end and the other end. Using the value ΔIT (2 ), obtain the thermoelectric coefficient L 12 (2) from the following equation.
L 12 (2) = (l / A) ( ΔIT (2) / ΔT)
The thermoelectric coefficient L 12 (2) is corrected by using the contact resistance r, and the thermoelectric coefficient L 12 (4) is obtained from the following equation.
L 12 (4) = {(R (4) + r) / R (4) } L 12 (2)
Thermoelectric property measurement method.
JP2017142754A 2017-07-24 2017-07-24 Thermoelectric property measuring device and thermoelectric property measuring method Active JP7033292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017142754A JP7033292B2 (en) 2017-07-24 2017-07-24 Thermoelectric property measuring device and thermoelectric property measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017142754A JP7033292B2 (en) 2017-07-24 2017-07-24 Thermoelectric property measuring device and thermoelectric property measuring method

Publications (2)

Publication Number Publication Date
JP2019024044A JP2019024044A (en) 2019-02-14
JP7033292B2 true JP7033292B2 (en) 2022-03-10

Family

ID=65368981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017142754A Active JP7033292B2 (en) 2017-07-24 2017-07-24 Thermoelectric property measuring device and thermoelectric property measuring method

Country Status (1)

Country Link
JP (1) JP7033292B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11815444B2 (en) * 2021-10-14 2023-11-14 Saudi Arabian Oil Company Thermoelectric polymer system for corrosion monitoring

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165233A (en) 2002-11-11 2004-06-10 National Institute Of Advanced Industrial & Technology Seebeck coefficient measuring device
JP2004214279A (en) 2002-12-27 2004-07-29 Japan Science & Technology Agency Cooling device of electronic component using thermoelectric conversion material
JP2008170259A (en) 2007-01-11 2008-07-24 Toyota Motor Corp Evaluating substrate of thermoelectric material, and package/collective evaluation device for the thermoelectric material
JP2011185697A (en) 2010-03-08 2011-09-22 Sintokogio Ltd Thermoelectric material evaluation device and thermoelectric characteristic evaluation method
JP3196069U (en) 2014-12-05 2015-02-19 介面光電股▲ふん▼有限公司 Thermoelectric generator
JP2016153367A (en) 2015-02-13 2016-08-25 株式会社Nextコロイド分散凝集技術研究所 Carbon nanotube dispersion, manufacturing method therefor, carbon nanotube-containing thermoelectric transducer and manufacturing method therefor
JP2017011218A (en) 2015-06-25 2017-01-12 国立大学法人広島大学 Composition for thermoelectric conversion thin film formation and method for producing thermoelectric conversion thin film
JP2017040556A (en) 2015-08-20 2017-02-23 国立研究開発法人物質・材料研究機構 Sample support, electrothermal characteristic evaluation device, method of evaluating electrothermal characteristic, and method of evaluating electrode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298318A (en) * 1996-05-02 1997-11-18 Katsutoshi Ono Thermoelectric conversion element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165233A (en) 2002-11-11 2004-06-10 National Institute Of Advanced Industrial & Technology Seebeck coefficient measuring device
JP2004214279A (en) 2002-12-27 2004-07-29 Japan Science & Technology Agency Cooling device of electronic component using thermoelectric conversion material
JP2008170259A (en) 2007-01-11 2008-07-24 Toyota Motor Corp Evaluating substrate of thermoelectric material, and package/collective evaluation device for the thermoelectric material
JP2011185697A (en) 2010-03-08 2011-09-22 Sintokogio Ltd Thermoelectric material evaluation device and thermoelectric characteristic evaluation method
JP3196069U (en) 2014-12-05 2015-02-19 介面光電股▲ふん▼有限公司 Thermoelectric generator
JP2016153367A (en) 2015-02-13 2016-08-25 株式会社Nextコロイド分散凝集技術研究所 Carbon nanotube dispersion, manufacturing method therefor, carbon nanotube-containing thermoelectric transducer and manufacturing method therefor
JP2017011218A (en) 2015-06-25 2017-01-12 国立大学法人広島大学 Composition for thermoelectric conversion thin film formation and method for producing thermoelectric conversion thin film
JP2017040556A (en) 2015-08-20 2017-02-23 国立研究開発法人物質・材料研究機構 Sample support, electrothermal characteristic evaluation device, method of evaluating electrothermal characteristic, and method of evaluating electrode

Also Published As

Publication number Publication date
JP2019024044A (en) 2019-02-14

Similar Documents

Publication Publication Date Title
CN105074477B (en) Measuring resistor and corresponding measurement method
JP6426601B2 (en) Method and device for detecting isotropic stress and providing compensation for piezo Hall effect
ES2705433T3 (en) Method for temperature drift compensation of temperature measurement device using thermocouple
US9562930B2 (en) Method for the contactless determination of an electrical potential of an object using two different values for the electric flux, and device
US10088439B2 (en) Thermophysical property measurement method and thermophysical property measurement apparatus
CN109541513B (en) Alternating current micro-current tracing device and method
KR101057555B1 (en) Thermometer side circuit in flow meter
JP7033292B2 (en) Thermoelectric property measuring device and thermoelectric property measuring method
CN107607214B (en) Temperature measuring method and electromigration testing method
CN111965212B (en) Thermophysical property calculation method, thermophysical property test system, electronic device, and storage medium
Rietveld et al. DC characterization of AC current shunts for wideband power applications
JP4474550B2 (en) Thermoelectric element characteristic evaluation method
CN110260997A (en) A kind of Thermistor Temperature Measurement device
JP4528954B1 (en) Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples
KR20150037458A (en) Apparatus and method for measuring thermoelectric device
CN107622958B (en) A kind of accurate measurement method of heterogeneous semiconductor device longitudinal direction thermal resistance
KR200417455Y1 (en) A resistor measuring apparatus
CN105785102B (en) Thermoelectrical potential measuring circuit, platform and the method for minute yardstick sample
JP5018373B2 (en) Resistance measuring device and resistance measuring method
Amagai et al. Improved electrothermal simulation for low-frequency characterization of a single-junction thermal converter
Li et al. Interlaboratory comparison of high direct voltage resistor dividers
CN221007723U (en) Shunt type current sensor
Min A new method for measuring contact resistance
CN116125135B (en) Temperature self-compensating tunneling magneto-resistance current sensor, current measuring method and device
RU2311655C1 (en) Method for reducing errors of hall magnetometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220218

R150 Certificate of patent or registration of utility model

Ref document number: 7033292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150