JP2004165233A - Seebeck coefficient measuring device - Google Patents

Seebeck coefficient measuring device Download PDF

Info

Publication number
JP2004165233A
JP2004165233A JP2002326267A JP2002326267A JP2004165233A JP 2004165233 A JP2004165233 A JP 2004165233A JP 2002326267 A JP2002326267 A JP 2002326267A JP 2002326267 A JP2002326267 A JP 2002326267A JP 2004165233 A JP2004165233 A JP 2004165233A
Authority
JP
Japan
Prior art keywords
seebeck coefficient
thermocouples
sample
temperature
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002326267A
Other languages
Japanese (ja)
Inventor
Ryoji Funahashi
良次 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002326267A priority Critical patent/JP2004165233A/en
Publication of JP2004165233A publication Critical patent/JP2004165233A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To develop technology simply quantifying a Seebeck coefficient and thermal conductivity of a substance. <P>SOLUTION: A Seebeck coefficient measuring device measures the Seebeck coefficient of the substance. The device comprises a pair of thermocouples, a heater for heating one thereof, a measuring instrument for measuring temperatures of individual thermocouples and thermal electromotive force of a substance specimen generated between both the thermocouples, and a calculation circuit for calculating the Seebeck coefficient by dividing the thermal electromotive force of the substance specimen by a temperature difference between both the thermocouples. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、物質のゼーベック係数を短時間で精密に測定できる装置に関し、特に熱電変換材料のゼーベック計数測定に適した装置に関する。
【0002】
【従来の技術】
我が国では、一次供給エネルギーからの有効なエネルギーの得率は30%程度にとどまっており、約70%ものエネルギーが最終的には熱として大気中に廃棄されている。また、各種の工場、ごみ焼却場などにおいて、燃焼により生ずる熱も、殆ど有効に利用されることなく、大気中に廃棄されている。このように、我々人類は、非常に多くの熱エネルギーを無駄に廃棄しており、化石エネルギーの燃焼などの行為から僅かなエネルギーしか獲得していない。
【0003】
エネルギーの得率を向上させるためには、大気中に廃棄されている熱エネルギーを利用することが最も効果的であり、熱エネルギーを直接電気エネルギーに変換する熱電変換は、極めて有効な手段である。
【0004】
この「熱電変換」は、ゼーベック効果を利用して、熱電変換材料の両端に温度差を生じさせることにより、電位差を生じさせ、発電を行うエネルギー変換法である。この熱電変換による発電では、熱電変換材料の一端を廃熱により生じた高温部に、他の一端を低温部(室温大気中)に配置し、それぞれの両端に外部抵抗を接続するだけで電気が得られるので、一般の発電において必須の構成要素であるモーター、タービンなど可動装置は、全く必要ない。そのため、設備コストと運転コストが低く、さらに燃焼などによるガスの排出も無く、熱電変換材料が劣化するまで継続的に発電を行うことができる。
従って、熱電発電は、今後予測されるエネルギー問題(化石燃料の枯渇、急速な地球温暖化など)の解決或いは軽減の一端を担うと期待されている。熱電発電を実現するためには、広範な材料を対象とする探索により、高い熱電変換効率を有する物質を見出す必要がある。
一般に、特定の物質の熱電変換効率を評価するためには、物質試料中の2点に温度差を生じさせたときに、2点間で生じる温度差1℃当たりの熱起電力(ゼーベック係数)と電気抵抗率および熱伝導度を測定しなければならない。物質試料の電気抵抗率は、四探針を用いる市販の抵抗率計測器により、短時間で容易に測定することができる。しかしながら、ゼーベック係数と熱伝導度とに関しては、簡便に数値化する技術が存在しないので、一試料の測定に数時間もかけているのが現状であり、このことが高性能熱電材料の開発における大きな阻害要因の一つとなっている。
以上の様な技術の現状を考慮すると、ゼーベック係数と熱伝導度とを短時間でかつ簡便に定量化できる装置を開発することにより、熱電変換材料の探索が促進され、ひいては熱電発電の実用化に大きく貢献するものと考えられる。
【0005】
【発明が解決しようとする課題】
従って、本発明は、物質のゼーベック係数と熱伝導度とを短時間でかつ簡便に定量化できる技術を開発することを主な目的とする。
【0006】
【課題を解決するための手段】
本発明者は、上記の熱電特性評価における問題点に留意しつつ研究を重ねた結果、特定の構成要素を備えた装置を使用することにより、上記の目的を達成しうることを見出した。
【0007】
すなわち、本発明は、下記に示す、物質のゼーベック係数評価装置(以下「ゼーベック係数テスター」ということがある)を提供する。
1.物質のゼーベック係数を測定するための装置であって、高温側接点と低温側接点とを有する一対の熱電対により形成される検出部、熱電対の一方を加熱するヒーター、個々の熱電対の温度と両熱電対間に生じる物質試料の熱起電力とをそれぞれ測定する計測部、および物質試料の熱起電力を両熱電対間の温度差で除することによりゼーベック係数を計算する演算部を備えた装置。
【0008】
【発明の実施の形態】
以下、本発明による物質のゼーベック係数テスターの概要を概略的に示す図面を参照しつつ、本発明をさらに詳細に説明する。
【0009】
本発明によるゼーベック係数テスターは、被測定試料の高温側測定用接点と低温側測定用接点を有する二つの熱電対、一方の熱電対を加熱するヒーター(例えば、ニクロム線からなっている)、両熱電対のそれぞれの温度および両熱電対間に生じる被測定試料の熱起電力を測定する計測部、および被測定試料の熱起電力を両熱電対間の温度差で除することによりゼーベック係数を算出する演算部(例えば、マイコン、パーソナルコンピュータ=PCなど)を主要な構成要素としている。PCを使用する場合には、測定に基づく演算結果をディスプレイ上にそのまま表示することができる。
【0010】
検出部を構成する熱電対の素材は、特に限定されず、計測温度域に適したものを使用すればよい。例えば、室温付近〜700℃程度の試料を測定する場合は、クロメル・アルメル線からなるK型熱電対(図1参照)を使用すればよい。また熱電対の線材径なども、特に限定されず、被測定試料に熱電対を接触させても変形しない強度があれば良い。例えば、K型熱電対においては、線径0.5〜2mm程度でよい。
【0011】
本発明装置を用いて所定の測定を行う場合には、先ずヒーターを介して加熱用電源により一方の熱電対を加熱した後、両熱電対を試料に接触させる。加熱された熱電対が接触した高温側接点では、試料の温度が上昇する。この状態で、両熱電対間に生じる試料の起電力を両熱電対の一方の素線を用いて測定する。この場合には、双方の熱電対において同じ素線を用いる必要がある。異なる素線を用いる場合には、素線の起電力が試料の起電力に上乗せされるので、正確なゼーベック係数を測定することができない。また、起電力測定の素線としては、熱起電力の小さい素線を用いることが好ましい。例えば、K型熱電対の場合には、アルメル線を、また白金・13%ロジウム(白金)熱電対(R型熱電対)の場合には、白金線を用いることが好ましい。
【0012】
熱電対を加熱するヒーターは、特に限定されないが、装置を小型化するためには、ニクロム線などの加熱線を熱電対に巻く構成が望ましい。ヒーターの加熱力は、特に限定しないが、両熱電対を試料に接触させた後、10秒以下の短時間以内に両熱電対と試料との間で、温度平衡が実現する様にすればよい。両熱電対間の温度差は、特に限定されないが、試料のゼーベック係数の温度依存性を考慮すると、精度良くゼーベック係数を得るためには50℃以下とすることが好ましく、さらには10℃以下とすることがより好ましい。この温度差の制御は、ヒーターに通電する電力を調整することにより、行うことができる。
【0013】
計測部は、熱電対からの電位を温度に換算する。また、試料の起電力を計測するために、電圧計を必要とする。電圧計と熱電対の接続方法により熱起電力の極性が反転するため、電圧計の接続端子を固定する必要がある。例えば、高温側の素線を電圧計の低電位側(マイナス側)に接続した場合に、正のゼーベック係数が得られれば、その試料はp型の熱電特性を有しており、負のゼーベック係数が得られれば、その試料はn型の熱電特性を有することになる。二つの熱電対により温度および試料の熱起電力を計測し、温度差を計算した後、熱起電力を温度差で除することにより、ゼーベック係数を算出する。この計算は、任意の演算素子或いは演算装置(マイコン、PCなど)を用いて行うことができる。用いる計測機器の大きさに応じて、据え置き型(図2)或いは可動型(図3)とすることができる。
【0014】
図3に示す可動型においてPCを使用する場合には、加熱、計測、計算および数値表示を単一の機器で行うことができる。
【0015】
【実施例】
実施例1
図1〜2に示す形式のゼーベック係数テスターを用いて、種々の材料のゼーベック係数を測定した。
【0016】
本実施例装置では、熱電対として0.7mm径のK型熱電対を用いた。また、ヒーターとしては0.4mm径、長さ450mmのニクロム線を高温側熱電対に50巻きした。この際、熱電対をセラミックスの保護管(鞘)の中に入れ、管の外側にニクロム線を巻き付けて、電気的に絶縁した。
【0017】
図4〜6は、金属および金属酸化物の試料につき、ゼーベック係数を測定した場合の温度差と起電力の時間変化を示す。
【0018】
これらの図に示す結果から、ニクロム線に3Vの直流電流を通電することにより、室温において二つの熱電対間に5〜15℃の温度差を数秒以内の短時間で安定的に生じさせることができ、起電力も約10秒で測定可能となることが分かった。
【0019】
表1は、本発明装置を用いる方法と長時間を要する従来方法とにより、種々の試料のゼーベック計数を測定した結果を対比して示す。全ての試料において、どちらの測定法においても、ほぼ同じ値が得られている。
【0020】
このことから、本発明のゼーベック係数テスターは、試料のゼーベック係数を短時間で正確に測定できていることが明らかである。
【0021】
【表1】

Figure 2004165233
【0022】
【発明の効果】
本発明装置によれば、10秒以下という短い時間で、試料のゼーベック係数を正確に測定することが可能である。従って、従来長時間を必要としていたゼーベック係数の測定を迅速かつ簡便に行うことが可能となった。
本発明は、広範囲の熱電材料の探索を促進することにより、高性能材料の早期開発に寄与するものである。
【図面の簡単な説明】
【図1】本発明によるゼーベック係数測定装置の検出部の概要を示す模式的断面図である。
【図2】本発明による据え置き型ゼーベック係数測定装置の概要を示す図面である。
【図3】本発明による可動型ゼーベック係数測定装置の概要を示す図面である。
【図4】金試料について、本発明によるゼーベック係数測定装置を用いて測定した二個の熱電対間の温度差および試料の起電力の時間変化を示す。ここで“0秒”は、二個の熱電対を試料に接触した時点に相当する。
【図5】コンスタンタン試料について、本発明によるゼーベック係数測定装置を用いて測定した二個の熱電対間の温度差および試料の起電力の時間変化を示す。
【図6】BiSrCo焼結体試料について、本発明によるゼーベック係数測定装置を用いて測定した二個の熱電対間の温度差および試料の起電力の時間変化を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus capable of accurately measuring the Seebeck coefficient of a substance in a short time, and particularly to an apparatus suitable for Seebeck counting measurement of a thermoelectric conversion material.
[0002]
[Prior art]
In Japan, the yield of effective energy from the primary supply energy is only about 30%, and about 70% of the energy is finally disposed of in the atmosphere as heat. Also, in various factories, refuse incineration plants, and the like, heat generated by combustion is almost completely discarded into the atmosphere without being effectively used. In this way, we human beings waste a great deal of heat energy wastefully, and obtain only a small amount of energy from actions such as burning fossil energy.
[0003]
The most effective way to improve energy yield is to use thermal energy that has been discarded in the atmosphere. Thermoelectric conversion, which directly converts thermal energy to electrical energy, is an extremely effective means. .
[0004]
This “thermoelectric conversion” is an energy conversion method that generates a potential difference by generating a temperature difference between both ends of a thermoelectric conversion material using the Seebeck effect to generate power. In power generation by thermoelectric conversion, one end of a thermoelectric conversion material is placed in a high-temperature portion generated by waste heat, and the other end is placed in a low-temperature portion (at room temperature and in air), and electricity is connected by simply connecting external resistors to both ends. As a result, there is no need for movable devices such as motors and turbines, which are essential components in general power generation. Therefore, equipment cost and operation cost are low, and there is no gas emission due to combustion or the like, and power can be continuously generated until the thermoelectric conversion material deteriorates.
Therefore, thermoelectric generation is expected to play a part in solving or mitigating energy problems (fossil fuel depletion, rapid global warming, etc.) which are expected in the future. In order to realize thermoelectric power generation, it is necessary to find substances having high thermoelectric conversion efficiency by searching for a wide range of materials.
Generally, in order to evaluate the thermoelectric conversion efficiency of a specific substance, when a temperature difference is generated between two points in a substance sample, a thermoelectromotive force (seebeck coefficient) per 1 ° C. of a temperature difference generated between the two points. And electrical resistivity and thermal conductivity must be measured. The electrical resistivity of a substance sample can be easily measured in a short time by a commercially available resistivity meter using a four probe. However, there is no technology to easily quantify the Seebeck coefficient and thermal conductivity, so currently it takes several hours to measure a single sample, which is a factor in the development of high-performance thermoelectric materials. It is one of the major obstacles.
Considering the current state of the technology as described above, the development of a device that can quantify the Seebeck coefficient and thermal conductivity in a short time and simply facilitates the search for thermoelectric conversion materials and, consequently, the practical use of thermoelectric power generation. It is thought that it greatly contributes to.
[0005]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to develop a technology that can easily and easily quantify the Seebeck coefficient and the thermal conductivity of a substance in a short time.
[0006]
[Means for Solving the Problems]
As a result of repeated studies while paying attention to the above-mentioned problems in the thermoelectric characteristic evaluation, the present inventor has found that the above object can be achieved by using an apparatus having specific components.
[0007]
That is, the present invention provides a Seebeck coefficient evaluation device (hereinafter, may be referred to as a “Seebeck coefficient tester”) for a substance as described below.
1. An apparatus for measuring the Seebeck coefficient of a substance, a detecting unit formed by a pair of thermocouples having a high-temperature contact and a low-temperature contact, a heater for heating one of the thermocouples, and a temperature of each thermocouple. And a measuring unit for measuring the thermoelectromotive force of the material sample generated between the two thermocouples, and a calculation unit for calculating the Seebeck coefficient by dividing the thermoelectromotive force of the material sample by the temperature difference between the two thermocouples. Equipment.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings schematically showing the outline of the Seebeck coefficient tester of the substance according to the present invention.
[0009]
The Seebeck coefficient tester according to the present invention comprises two thermocouples having a high-temperature measurement contact and a low-temperature measurement contact of a sample to be measured, a heater for heating one thermocouple (for example, a nichrome wire), A measuring unit that measures the temperature of each thermocouple and the thermoelectromotive force of the sample to be measured generated between the thermocouples, and the Seebeck coefficient by dividing the thermoelectromotive force of the sample to be measured by the temperature difference between the thermocouples. A calculation unit (for example, a microcomputer, a personal computer = PC, etc.) for calculation is a main component. When a PC is used, the calculation result based on the measurement can be displayed on a display as it is.
[0010]
The material of the thermocouple constituting the detection unit is not particularly limited, and a material suitable for the measurement temperature range may be used. For example, when measuring a sample at around room temperature to about 700 ° C., a K-type thermocouple (see FIG. 1) composed of a chromel-alumel wire may be used. Also, the diameter of the wire of the thermocouple is not particularly limited, as long as the thermocouple has a strength that does not deform even when the thermocouple is brought into contact with the sample to be measured. For example, a K-type thermocouple may have a wire diameter of about 0.5 to 2 mm.
[0011]
When performing a predetermined measurement using the apparatus of the present invention, first, one thermocouple is heated by a heating power supply via a heater, and then both thermocouples are brought into contact with the sample. The temperature of the sample increases at the high-temperature side contact where the heated thermocouple contacts. In this state, the electromotive force of the sample generated between the thermocouples is measured using one of the wires of the thermocouples. In this case, it is necessary to use the same strand for both thermocouples. When a different strand is used, the electromotive force of the strand is added to the electromotive force of the sample, so that an accurate Seebeck coefficient cannot be measured. Further, it is preferable to use a strand having a small thermal electromotive force as the strand for measuring the electromotive force. For example, in the case of a K-type thermocouple, it is preferable to use an alumel wire, and in the case of a platinum / 13% rhodium (platinum) thermocouple (an R-type thermocouple), it is preferable to use a platinum wire.
[0012]
The heater for heating the thermocouple is not particularly limited, but in order to reduce the size of the apparatus, a configuration in which a heating wire such as a nichrome wire is wound around the thermocouple is desirable. The heating power of the heater is not particularly limited, but it is sufficient that a temperature equilibrium is realized between the thermocouple and the sample within a short time of 10 seconds or less after the two thermocouples are brought into contact with the sample. . The temperature difference between the two thermocouples is not particularly limited, but in consideration of the temperature dependence of the Seebeck coefficient of the sample, the temperature difference is preferably 50 ° C. or less in order to accurately obtain the Seebeck coefficient, and more preferably 10 ° C. or less. Is more preferable. The control of the temperature difference can be performed by adjusting the electric power supplied to the heater.
[0013]
The measuring unit converts a potential from the thermocouple into a temperature. In addition, a voltmeter is required to measure the electromotive force of the sample. Since the polarity of the thermoelectromotive force is inverted depending on the connection method between the voltmeter and the thermocouple, the connection terminal of the voltmeter needs to be fixed. For example, if a positive Seebeck coefficient is obtained when the high-temperature side element wire is connected to the low-potential side (minus side) of the voltmeter, the sample has p-type thermoelectric characteristics, and the negative Seebeck coefficient is obtained. If the coefficient is obtained, the sample has n-type thermoelectric properties. The temperature and the thermoelectromotive force of the sample are measured by two thermocouples, and after calculating the temperature difference, the Seebeck coefficient is calculated by dividing the thermoelectromotive force by the temperature difference. This calculation can be performed using any arithmetic element or arithmetic device (microcomputer, PC, etc.). Depending on the size of the measuring instrument used, it can be of a stationary type (FIG. 2) or a movable type (FIG. 3).
[0014]
When a PC is used in the movable type shown in FIG. 3, heating, measurement, calculation, and numerical display can be performed by a single device.
[0015]
【Example】
Example 1
Seebeck coefficients of various materials were measured using a Seebeck coefficient tester of the type shown in FIGS.
[0016]
In the present embodiment, a 0.7 mm diameter K-type thermocouple was used as the thermocouple. In addition, as a heater, a nichrome wire having a diameter of 0.4 mm and a length of 450 mm was wound around a high temperature side thermocouple 50 times. At this time, a thermocouple was placed in a ceramic protective tube (sheath), and a nichrome wire was wound around the outside of the tube to be electrically insulated.
[0017]
FIGS. 4 to 6 show the time difference of the temperature difference and the electromotive force when the Seebeck coefficient is measured for the metal and metal oxide samples.
[0018]
From the results shown in these figures, by applying a DC current of 3 V to the nichrome wire, it is possible to stably generate a temperature difference of 5 to 15 ° C. between the two thermocouples at room temperature in a short time within several seconds. It was found that the electromotive force could be measured in about 10 seconds.
[0019]
Table 1 shows the results of measuring the Seebeck counts of various samples by the method using the apparatus of the present invention and the conventional method requiring a long time. In all samples, almost the same value was obtained in both measurement methods.
[0020]
From this, it is clear that the Seebeck coefficient tester of the present invention can accurately measure the Seebeck coefficient of a sample in a short time.
[0021]
[Table 1]
Figure 2004165233
[0022]
【The invention's effect】
According to the device of the present invention, it is possible to accurately measure the Seebeck coefficient of a sample in a short time of 10 seconds or less. Therefore, the measurement of the Seebeck coefficient, which conventionally required a long time, can be performed quickly and easily.
The present invention contributes to the early development of high-performance materials by promoting the search for a wide range of thermoelectric materials.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an outline of a detection unit of a Seebeck coefficient measuring device according to the present invention.
FIG. 2 is a drawing showing an outline of a stationary Seebeck coefficient measuring apparatus according to the present invention.
FIG. 3 is a drawing showing an outline of a movable Seebeck coefficient measuring apparatus according to the present invention.
FIG. 4 shows a time change of a temperature difference between two thermocouples and an electromotive force of the sample measured by using a Seebeck coefficient measuring apparatus according to the present invention for a gold sample. Here, “0 seconds” corresponds to a point in time when two thermocouples are brought into contact with the sample.
FIG. 5 shows a time difference of a temperature difference between two thermocouples and an electromotive force of the sample measured using a Seebeck coefficient measuring apparatus according to the present invention for a constantan sample.
FIG. 6 is a graph showing a temperature change between two thermocouples and a time change of an electromotive force of a sample of a Bi 2 Sr 2 Co 2 O 9 sintered body sample measured using a Seebeck coefficient measuring apparatus according to the present invention.

Claims (3)

物質のゼーベック係数を測定するための装置であって、高温側接点と低温側接点とを有する一対の熱電対により形成される検出部、熱電対の一方を加熱するヒーター、個々の熱電対の温度と両熱電対間に生じる物質試料の熱起電力とをそれぞれ測定する計測部、および物質試料の熱起電力を両熱電対間の温度差で除することによりゼーベック係数を計算する演算部を備えた装置。An apparatus for measuring the Seebeck coefficient of a substance, a detecting unit formed by a pair of thermocouples having a high-temperature contact and a low-temperature contact, a heater for heating one of the thermocouples, and a temperature of each thermocouple. And a measuring unit for measuring the thermoelectromotive force of the material sample generated between the two thermocouples, and a calculation unit for calculating the Seebeck coefficient by dividing the thermoelectromotive force of the material sample by the temperature difference between the two thermocouples. Equipment. 据え置き型である請求項1に記載のゼーベック係数測定装置。The Seebeck coefficient measuring device according to claim 1, which is a stationary type. 可動型である請求項1に記載のゼーベック係数測定装置。The Seebeck coefficient measuring device according to claim 1, which is a movable type.
JP2002326267A 2002-11-11 2002-11-11 Seebeck coefficient measuring device Pending JP2004165233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002326267A JP2004165233A (en) 2002-11-11 2002-11-11 Seebeck coefficient measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326267A JP2004165233A (en) 2002-11-11 2002-11-11 Seebeck coefficient measuring device

Publications (1)

Publication Number Publication Date
JP2004165233A true JP2004165233A (en) 2004-06-10

Family

ID=32805215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326267A Pending JP2004165233A (en) 2002-11-11 2002-11-11 Seebeck coefficient measuring device

Country Status (1)

Country Link
JP (1) JP2004165233A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100397071C (en) * 2005-10-14 2008-06-25 哈尔滨工业大学 Method and apparatus for measuring material Seebeck coefficient
CN102608153A (en) * 2012-01-10 2012-07-25 东南大学 On-line test structure for Seebeck coefficient of polysilicon-metal thermocouple
CN101413908B (en) * 2008-11-27 2013-05-08 天津大学 System and method for testing thin film thermoelectricity material Seebeck coefficient
CN104569619A (en) * 2015-01-20 2015-04-29 哈尔滨师范大学 Testing device for thermoelectric power of semiconductor thermoelectric materials and testing method
JP2019024044A (en) * 2017-07-24 2019-02-14 学校法人東京理科大学 Device and method for measuring thermoelectric physical property
CN109581060A (en) * 2018-12-20 2019-04-05 云南大学 A method of in uneven temperature test material conductivity off field
AU2015295751B2 (en) * 2014-07-28 2021-05-13 Electrolux Appliances Aktiebolag Cooking appliance comprising an electrical adapter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186642A (en) * 1984-10-04 1986-05-02 Sumitomo Metal Ind Ltd Metal analyzing apparatus
JPS6293639A (en) * 1985-10-21 1987-04-30 Showa Denko Kk Method and apparatus for rapidly measuring heat conductivity
JPH0342562A (en) * 1989-07-10 1991-02-22 Hitachi Metals Ltd Quality discriminating device
JPH03127251A (en) * 1989-10-13 1991-05-30 Sanyo Electric Co Ltd Data communication system for parallel computer
JPH04125458A (en) * 1990-09-17 1992-04-24 Hitachi Ltd Device and method for measuring thermoelectric capacity
JPH06300719A (en) * 1993-04-16 1994-10-28 Tokuyama Soda Co Ltd Method and apparatus for measuring thermoelectric conversion characteristic
JPH07286908A (en) * 1994-04-20 1995-10-31 Japan Energy Corp Temperature measuring element and method for measuring temperature
JP2003057121A (en) * 2001-08-09 2003-02-26 Chokoon Zairyo Kenkyusho:Kk Method for measuring thermoelectromotive force of thermoelectric material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186642A (en) * 1984-10-04 1986-05-02 Sumitomo Metal Ind Ltd Metal analyzing apparatus
JPS6293639A (en) * 1985-10-21 1987-04-30 Showa Denko Kk Method and apparatus for rapidly measuring heat conductivity
JPH0342562A (en) * 1989-07-10 1991-02-22 Hitachi Metals Ltd Quality discriminating device
JPH03127251A (en) * 1989-10-13 1991-05-30 Sanyo Electric Co Ltd Data communication system for parallel computer
JPH04125458A (en) * 1990-09-17 1992-04-24 Hitachi Ltd Device and method for measuring thermoelectric capacity
JPH06300719A (en) * 1993-04-16 1994-10-28 Tokuyama Soda Co Ltd Method and apparatus for measuring thermoelectric conversion characteristic
JPH07286908A (en) * 1994-04-20 1995-10-31 Japan Energy Corp Temperature measuring element and method for measuring temperature
JP2003057121A (en) * 2001-08-09 2003-02-26 Chokoon Zairyo Kenkyusho:Kk Method for measuring thermoelectromotive force of thermoelectric material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100397071C (en) * 2005-10-14 2008-06-25 哈尔滨工业大学 Method and apparatus for measuring material Seebeck coefficient
CN101413908B (en) * 2008-11-27 2013-05-08 天津大学 System and method for testing thin film thermoelectricity material Seebeck coefficient
CN102608153A (en) * 2012-01-10 2012-07-25 东南大学 On-line test structure for Seebeck coefficient of polysilicon-metal thermocouple
AU2015295751B2 (en) * 2014-07-28 2021-05-13 Electrolux Appliances Aktiebolag Cooking appliance comprising an electrical adapter
CN104569619A (en) * 2015-01-20 2015-04-29 哈尔滨师范大学 Testing device for thermoelectric power of semiconductor thermoelectric materials and testing method
CN104569619B (en) * 2015-01-20 2017-10-31 哈尔滨师范大学 The test device and method of testing of semi-conductor thermoelectric material thermoelectric power
JP2019024044A (en) * 2017-07-24 2019-02-14 学校法人東京理科大学 Device and method for measuring thermoelectric physical property
JP7033292B2 (en) 2017-07-24 2022-03-10 学校法人東京理科大学 Thermoelectric property measuring device and thermoelectric property measuring method
CN109581060A (en) * 2018-12-20 2019-04-05 云南大学 A method of in uneven temperature test material conductivity off field
CN109581060B (en) * 2018-12-20 2020-11-24 云南大学 Method for testing conductivity of material under nonuniform temperature field

Similar Documents

Publication Publication Date Title
Buist Methodology for testing thermoelectric materials and devices
Chaikin et al. Apparatus for thermopower measurements on organic conductors
JP5062753B2 (en) Method and apparatus for measuring the Seebeck coefficient and thermal conductivity of thin film samples
CN201016950Y (en) Semiconductor thermoelectric performance testing instrument
Kallaher et al. An apparatus for concurrent measurement of thermoelectric material parameters
JP2016024174A (en) Substance thermal diffusivity measurement method and substance thermoelectric characteristic evaluation device using the method
CN100334442C (en) Equipment for measuring Seebeck coefficient and resistivity of semiconductor material
KR20150007686A (en) Thermoelectric property measurement system
JP2013228346A (en) Thermal conductivity sensor using time integration of output, hydrogen gas sensor using the same, absolute humidity sensor, and thermal conductivity sensor chip
Nishida Measurements of electrical properties
JP2004165233A (en) Seebeck coefficient measuring device
CN104111268A (en) Device for in-situ heating of atomic force microscope conducting probe and in-situ characterization of nanometer Seebeck coefficient
Adhikari Thermocouple: facts and theories
KR102024679B1 (en) Seebeck coefficient and electrical conductivity measurement device made of quartz tube and method thereof
JP2832334B2 (en) Thermoelectric conversion performance evaluation method and apparatus
CN109725183B (en) Probe for portable thermoelectric potential detector
Lenz et al. Traceable measurements of electrical conductivity and Seebeck coefficient of β‐Fe0. 95Co0. 05Si2 and Ge in the temperature range from 300 K to 850 K
Patel et al. Automated instrumentation for the determination of the high-temperature thermoelectric figure-of-merit
US6727709B2 (en) Vacuum gauge using peltier tip
Fujiki et al. Development on measurement method for Thomson coefficient of thin film
Iwasaki et al. Development of a measurement system for the figure of merit in the high-temperature region
JPS6122255B2 (en)
Edler et al. Reference material for Seebeck coefficients
Codreanu et al. Experimental set-up for the measurement of the thermal conductivity of liquids
RU120236U1 (en) PROBE FOR DETERMINING THE THERMAL CONDUCTIVITY COEFFICIENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090612

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090731