JP2003057121A - Method for measuring thermoelectromotive force of thermoelectric material - Google Patents

Method for measuring thermoelectromotive force of thermoelectric material

Info

Publication number
JP2003057121A
JP2003057121A JP2001242149A JP2001242149A JP2003057121A JP 2003057121 A JP2003057121 A JP 2003057121A JP 2001242149 A JP2001242149 A JP 2001242149A JP 2001242149 A JP2001242149 A JP 2001242149A JP 2003057121 A JP2003057121 A JP 2003057121A
Authority
JP
Japan
Prior art keywords
thermoelectric material
temperature side
thermocouple
electromotive force
contact portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001242149A
Other languages
Japanese (ja)
Inventor
Akio Kasama
昭夫 笠間
Junko Ota
順子 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chokoon Zairyo Kenkyusho Kk
Japan Ultra High Temperature Materials Research Institute JUTEM
Original Assignee
Chokoon Zairyo Kenkyusho Kk
Japan Ultra High Temperature Materials Research Institute JUTEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chokoon Zairyo Kenkyusho Kk, Japan Ultra High Temperature Materials Research Institute JUTEM filed Critical Chokoon Zairyo Kenkyusho Kk
Priority to JP2001242149A priority Critical patent/JP2003057121A/en
Publication of JP2003057121A publication Critical patent/JP2003057121A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate the influence of a voltage resulting from a thermocouple in measuring the thermoelectromotive force of a thermoelectric material using the thermocouple. SOLUTION: A heater 11 on the low-temperature side of a thermoelectric material 10 and a heater 12 on the high-temperature side hereof are used to measure a thermoelectromotive force while eliminating a difference of temperature between the heaters 11 and 12, thereby measuring a voltage resulting from the thermocouple derived from the heaters 11 and 12. The voltage derived from the thermocouple is subtracted from an actually measured apparent electromotive force to accurately measure a thermoelectromotive force derived from the thermoelectric material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱電対を利用した
熱電材料の熱起電力の測定技術に関し、特に、熱電対に
由来する起電力の影響を排除することで、熱電材料に基
づく熱起電力を精度よく測定する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring thermoelectromotive force of a thermoelectric material using a thermocouple, and in particular, by eliminating the influence of the electromotive force derived from the thermocouple, The present invention relates to a technique for accurately measuring electric power.

【0002】[0002]

【従来の技術】従来より熱電材料は、測定したその熱起
電力からゼーベック係数を求めて、そのゼーベック係数
によりその性能が評価されている。かかる熱起電力は、
温度差をつけた熱電材料の低温側と高温側とに、それぞ
れ熱電対を接触させ、熱電対の温度測定と併せて、両熱
電対間に電圧計を介在させて計測された起電力を熱起電
力と見做して求められる。
2. Description of the Related Art Conventionally, a thermoelectric material has been evaluated for its performance by obtaining a Seebeck coefficient from the measured thermoelectromotive force and by using the Seebeck coefficient. Such thermoelectromotive force is
A thermocouple is contacted with each of the low temperature side and high temperature side of the thermoelectric material with a temperature difference, and along with the temperature measurement of the thermocouple, the electromotive force measured by interposing a voltmeter between both thermocouples is used. It is considered as an electromotive force.

【0003】[0003]

【発明が解決しようとする課題】熱電材料の熱起電力
は、2個の熱電対を使用して、上記要領で測定が行なわ
れているが、かかる測定においては、両熱電対の同種材
質間自体には起電力を発生しないものとの前提がなされ
ている。そのため、熱電材料の低温側接触部、高温側接
触部に接触させた両熱電対間の起電力がそのまま熱起電
力とされてきた。
The thermoelectromotive force of the thermoelectric material is measured by using two thermocouples in the above-mentioned manner. In such measurement, the thermoelectromotive force between the same materials of both thermocouples is measured. It is premised that it does not generate electromotive force. Therefore, the electromotive force between both thermocouples contacting the low temperature side contact portion and the high temperature side contact portion of the thermoelectric material has been used as it is as the thermoelectromotive force.

【0004】本発明者は、ある熱電材料のゼーベック係
数評価段階で、当初測定された熱起電力から予想される
予想値よりもあまりにもかけ離れた結果が得られるケー
スに出会った。原因追求のため、標準試料(クロメルコ
ンスタンタン)による校正実験を行なった。その結果、
起電力の測定値に異常のあることが判明した。
The present inventor has encountered a case in which the Seebeck coefficient evaluation stage of a thermoelectric material gives a result which is far from the expected value expected from the initially measured thermoelectromotive force. In order to pursue the cause, a calibration experiment was performed using a standard sample (chromel constantan). as a result,
It was found that the measured electromotive force was abnormal.

【0005】当該熱電材料の熱起電力測定は、非常に安
定に測定が行なわれ、見かけ上は尤もなデータが得られ
ており、その段階では異常には気付かなかった。かかる
熱起電力の測定は、図8に示すように、熱電材料1の下
部電極部に設置された加熱ヒータ2により試料としての
熱電材料1の内部に温度差をつけ、熱電対3を接触させ
た熱電材料1の低温側接触部と、熱電対4を接触させた
熱電材料1の高温側接触部との間の起電力を、両熱電対
3、4間に介在させた電圧計5で計測した。このように
して温度測定用の熱電対3、4を流用して計測した起電
力を熱電材料1の熱起電力とした。
The thermoelectromotive force of the thermoelectric material was measured very stably, and seemingly reasonable data were obtained. At that stage, no abnormality was noticed. As shown in FIG. 8, the thermoelectromotive force is measured by applying a temperature difference to the inside of the thermoelectric material 1 as a sample by the heater 2 installed in the lower electrode portion of the thermoelectric material 1 and contacting the thermocouple 3. The electromotive force between the low temperature side contact part of the thermoelectric material 1 and the high temperature side contact part of the thermoelectric material 1 with which the thermocouple 4 is contacted is measured by the voltmeter 5 interposed between both thermocouples 3 and 4. did. The electromotive force measured by diverting the thermocouples 3 and 4 for temperature measurement in this manner was used as the thermoelectromotive force of the thermoelectric material 1.

【0006】かかる測定においては、起電力を計測する
ためのリード線3a、4aとして使用しているアルメル
クロメル熱電対の同種材質間の特性は等価であることを
前提としている。しかし、今回の上記トラブルは、等価
であるものと考えていたアルメルクロメル熱電対のリー
ド線3a、4aの特性に差があったため発生したものと
判明した。
In such measurement, it is premised that the characteristics of the same kind of material of the alumel chromel thermocouple used as the lead wires 3a, 4a for measuring the electromotive force are equivalent. However, it was found that the above-mentioned trouble occurred this time because there was a difference in the characteristics of the lead wires 3a and 4a of the alumel chromel thermocouple which were considered to be equivalent.

【0007】すなわち、一対のリード線3a、4a間に
は特性に差があったため、リード線3a、4a間でノイ
ズとなる電圧が発生し、バイアスとして本来の熱電材料
1の熱起電力に加算されたため発生した現象と考えられ
た。
That is, since there is a difference in characteristics between the pair of lead wires 3a and 4a, a voltage that causes noise is generated between the lead wires 3a and 4a and is added to the original thermoelectromotive force of the thermoelectric material 1 as a bias. It was considered that this was a phenomenon that occurred.

【0008】従来の熱電材料の熱起電力の測定において
は、かかる熱電対自身に由来する起電力の影響を考慮す
ることなく行われていた。
The measurement of the thermoelectromotive force of the conventional thermoelectric material has been performed without considering the influence of the electromotive force derived from the thermocouple itself.

【0009】熱電材料における熱起電力は、μVのオー
ダーで極めて微小な電圧であるため、熱電対におけるリ
ード線の上記の如き等価性のずれから発生する電圧の影
響は、極めて大きく効くこととなり、熱電材料の評価に
重大な影響を及ぼすこととなる。かかる熱電対由来のノ
イズ電圧は、熱電材料の熱起電力測定における誤差の範
囲を遥かに大きく越えるものである。さらに、かかる問
題の深刻さは、起電力測定の段階では、その異常性が明
確に確認できないことにある。
Since the thermoelectromotive force in the thermoelectric material is an extremely small voltage on the order of μV, the influence of the voltage generated from the above-mentioned deviation of the equivalence of the lead wires in the thermocouple is extremely large. This will have a significant impact on the evaluation of thermoelectric materials. The noise voltage derived from such a thermocouple greatly exceeds the error range in thermoelectromotive force measurement of thermoelectric materials. Furthermore, the seriousness of such a problem is that the anomaly cannot be clearly confirmed at the stage of measuring the electromotive force.

【0010】本発明の目的は、熱電材料の熱起電力の測
定において、測定に使用する熱電対自体に基づくノイズ
となる電圧の影響を排除して、正確な熱起電力を求める
ことができるようにすることにある。
An object of the present invention is to obtain an accurate thermoelectromotive force in the measurement of thermoelectromotive force of a thermoelectric material by eliminating the influence of a voltage which becomes noise due to the thermocouple itself used for the measurement. Is to

【0011】[0011]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
次のとおりである。
Among the inventions disclosed in the present application, a brief description will be given to the outline of typical ones.
It is as follows.

【0012】すなわち、本発明は、温度差をつけた熱電
材料の高温側と低温側とにそれぞれ熱電対を接触させた
測定系で、高温側接触部と低温側接触部との間の起電力
を計測して前記熱電材料の熱起電力を求める熱電材料の
熱起電力測定方法であって、熱電対自体により発生する
ノイズとなる熱電対由来のノイズ電圧を前記起電力から
除くことにより前記熱電材料の熱起電力を求めることを
特徴とする。
That is, the present invention is a measuring system in which thermocouples are respectively brought into contact with the high temperature side and the low temperature side of thermoelectric materials having different temperatures, and the electromotive force between the high temperature side contact portion and the low temperature side contact portion is set. Is a thermoelectromotive force measuring method of a thermoelectric material for determining the thermoelectromotive force of the thermoelectric material by measuring the thermoelectric power by removing from the electromotive force a noise voltage derived from the thermocouple that becomes noise generated by the thermocouple itself. It is characterized in that the thermoelectromotive force of the material is obtained.

【0013】前記熱電対由来のノイズ電圧を、前記測定
系で、前記高温側接触部と前記低温側接触部との間の起
電力の計測と併せて計測することを特徴とする。前記熱
電対由来のノイズ電圧は、温度差をつけた前記熱電材料
の前記高温側接触部と前記低温側接触部との間の起電力
の計測において、前記熱電材料の前記高温側接触部と前
記低温側接触部との間の温度差なしの状態を少なくとも
1回は発生させて、その状態で前記起電力の計測を行う
ことにより求められることを特徴とする。
The noise voltage derived from the thermocouple is measured by the measuring system together with the measurement of the electromotive force between the high temperature side contact portion and the low temperature side contact portion. The noise voltage derived from the thermocouple is a measurement of electromotive force between the high temperature side contact portion and the low temperature side contact portion of the thermoelectric material with a temperature difference, and the high temperature side contact portion of the thermoelectric material and the It is characterized in that it is obtained by generating a state where there is no temperature difference with the low temperature side contact portion at least once and measuring the electromotive force in that state.

【0014】あるいは、前記熱電材料の前記高温側接触
部と前記低温側接触部との間の起電力の計測を、前記高
温側接触部と前記低温側接触部とを互いに入れ替えた状
態と、入れ替えない状態とで行い、入れ替えた状態での
起電力と、入れ替えない状態での起電力との相加平均値
を求めることにより前記熱電材料の前記高温側接触部と
前記低温側接触部との間の起電力から前記熱電対由来の
ノイズ電圧を除くようにしてもよい。
Alternatively, the measurement of the electromotive force between the high temperature side contact portion and the low temperature side contact portion of the thermoelectric material is exchanged with a state in which the high temperature side contact portion and the low temperature side contact portion are exchanged with each other. Between the high temperature side contact part and the low temperature side contact part of the thermoelectric material by determining the arithmetic mean value of the electromotive force in the exchanged state and the electromotive force in the non-exchanged state. The noise voltage derived from the thermocouple may be excluded from the electromotive force of 1.

【0015】かかる熱電材料の熱起電力測定方法は、次
のような構成を有する起電力測定システムを使用して行
えばよい。例えば、熱電材料を間に設置して、前記熱電
材料に温度差を発生させる複数の熱源と、前記熱電材料
の高温側に接触させて高温側接触部の温度を測定する高
温側熱電対と、前記熱電材料の低温側に接触させて低温
側接触部の温度を測定する低温側熱電対と、複数の前記
熱源を、コンピュータにより温度制御プログラムで温度
制御する温度制御手段と、前記高温側熱電対と前記低温
側熱電対とで、前記熱電材料のへの高温側接触部と低温
側接触部との間の起電力を測定する起電力測定手段と、
異なる測定条件下で前記起電力測定手段により測定され
た複数の測定起電力に基づいて、前記コンピュータによ
り補正プログラムにより、熱電対自体により発生する熱
電対由来のノイズ電圧を前記起電力から除くなどの補正
を行う熱電対由来ノイズ電圧補正手段とを有する構成の
起電力測定システムを用いることができる。
The thermoelectromotive force measuring method for such a thermoelectric material may be carried out using an electromotive force measuring system having the following configuration. For example, by installing a thermoelectric material in between, a plurality of heat sources that generate a temperature difference in the thermoelectric material, a high temperature side thermocouple that contacts the high temperature side of the thermoelectric material and measures the temperature of the high temperature side contact portion, A low temperature side thermocouple that contacts the low temperature side of the thermoelectric material to measure the temperature of the low temperature side contact portion, a temperature control unit that controls the temperature of the plurality of heat sources with a temperature control program by a computer, and the high temperature side thermocouple With the low temperature side thermocouple, electromotive force measuring means for measuring the electromotive force between the high temperature side contact portion and the low temperature side contact portion to the thermoelectric material,
Based on a plurality of measured electromotive force measured by the electromotive force measuring means under different measurement conditions, by the correction program by the computer, the thermocouple-derived noise voltage generated by the thermocouple itself is removed from the electromotive force, etc. An electromotive force measurement system having a thermocouple-derived noise voltage correction means for correction can be used.

【0016】かかる起電力測定システムにおいては、例
えば、異なる測定条件下で前記起電力測定手段により測
定された複数の測定起電力に基づいて、前記熱電対に基
づく熱電対由来のノイズ電圧を除くには、複数の前記熱
源のうち高温側熱源と低温側熱源との温度を、前記温度
制御手段により反転させて測定条件を変え、前記熱電材
料の高温側と低温側との温度を反転させた状態で、反転
させる前の起電力と、反転後の起電力とを相加平均する
ことにより行うことができる。
In such an electromotive force measuring system, for example, a noise voltage derived from a thermocouple based on the thermocouple is excluded based on a plurality of measured electromotive forces measured by the electromotive force measuring means under different measurement conditions. Is a state in which the temperature of the high temperature side heat source and the low temperature side heat source of the plurality of heat sources is reversed by the temperature control means to change the measurement condition, and the temperature of the high temperature side and the low temperature side of the thermoelectric material is reversed. Then, the electromotive force before the reversal and the electromotive force after the reversal can be arithmetically averaged.

【0017】あるいは、異なる測定条件下で前記起電力
測定手段により測定された複数の測定起電力に基づい
て、複数の前記熱源のうち高温側熱源と低温側熱源との
温度を、前記温度制御手段により同一温度に設定して前
記熱電材料に設けた温度差を解消し、前記熱電材料に温
度差を設けた状態で測定した起電力から、前記温度差を
解消した状態で測定した値を差し引くことによって行う
こともできる。
Alternatively, based on the plurality of measured electromotive forces measured by the electromotive force measuring means under different measurement conditions, the temperatures of the high temperature side heat source and the low temperature side heat source among the plurality of heat sources are controlled by the temperature control means. By setting the same temperature to eliminate the temperature difference provided in the thermoelectric material, from the electromotive force measured with the temperature difference provided in the thermoelectric material, subtract the value measured in the state where the temperature difference is eliminated It can also be done by.

【0018】また、熱電材料の正確な熱起電力の測定方
法としては、前記構成以外にも、例えば、当初より温度
測定系と起電力測定系とを別系統として設け、起電力測
定系では、従来より熱的化学的に安定な材質を使用する
ことで、熱電対由来のノイズ電圧の影響を排除するよう
にしてもよい。
As a method of accurately measuring the thermoelectromotive force of the thermoelectric material, in addition to the above configuration, for example, a temperature measuring system and an electromotive force measuring system are provided as separate systems from the beginning, and in the electromotive force measuring system, The influence of noise voltage derived from a thermocouple may be eliminated by using a material that is more thermochemically stable than before.

【0019】すなわち、前記低温側接触部と前記高温側
接触部とにおいてそれぞれ接触させる前記熱電対に、起
電力測定用の専用リード線を温度測定用とは別に設ける
ことにより、前記熱電対由来のノイズ電圧の影響を前記
熱電材料の前記高温側接触部と前記低温側接触部との間
で発生する起電力から排除するようにしてもよい。熱起
電力測定用のリード線は、例えば、Ag、Pt、Au、
Cuなどの熱的化学的に安定な材質を使用して形成して
おけばよい。
That is, by providing a dedicated lead wire for electromotive force measurement separately from that for temperature measurement, the thermocouples to be brought into contact with each other at the low temperature side contact portion and the high temperature side contact portion are provided separately from the thermocouple. The influence of noise voltage may be eliminated from the electromotive force generated between the high temperature side contact portion and the low temperature side contact portion of the thermoelectric material. The lead wire for thermoelectromotive force measurement is, for example, Ag, Pt, Au,
It may be formed by using a thermally and chemically stable material such as Cu.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0021】(実施の形態1)本実施の形態では、熱電
材料の熱起電力の測定に用いる熱電対に由来する熱電対
由来の電圧を、熱電材料の起電力測定系で計測して、そ
の熱電対由来の電圧をノイズとして除き較正することに
より、正確な熱電材料由来の熱起電力を測定する方法に
ついて説明する。
(Embodiment 1) In the present embodiment, a thermocouple-derived voltage derived from a thermocouple used for measuring a thermoelectromotive force of a thermoelectric material is measured by an electromotive force measuring system of the thermoelectric material, and A method for accurately measuring the thermoelectromotive force derived from the thermoelectric material by calibrating by removing the voltage derived from the thermocouple as noise will be described.

【0022】熱電対を利用して熱電材料の熱起電力を測
定する系では、正確には、熱電材料に由来する本来の熱
起電力である熱電材料由来熱起電力V1と、熱電材料の
測定に用いる熱電対自体に由来する熱電対由来のノイズ
電圧V2とが加算された総和としての起電力Vが測定さ
れることとなる。
In a system for measuring the thermoelectromotive force of a thermoelectric material using a thermocouple, to be precise, the thermoelectric material-derived thermoelectromotive force V1 which is the original thermoelectromotive force derived from the thermoelectric material and the thermoelectric material are measured. The electromotive force V as the sum of the addition of the thermocouple-derived noise voltage V2 derived from the thermocouple itself used in the above is measured.

【0023】従来の熱電材料の起電力測定においては、
熱電対自体により発生する熱電対由来のノイズ電圧V2
≒0との前提で測定が行なわれ、V1、V2が加算され
た起電力(以下、かかる加算された起電力を見かけの起
電力Vという場合がある)が、そのまま熱電材料由来熱
起電力V1と見做されていたことになる。
In measuring the electromotive force of a conventional thermoelectric material,
Thermocouple-derived noise voltage V2 generated by the thermocouple itself
The measurement is performed on the assumption that ≈0, and the electromotive force obtained by adding V1 and V2 (hereinafter, this added electromotive force may be referred to as apparent electromotive force V) is directly the thermoelectromotive force V1 derived from the thermoelectric material. It was considered to be.

【0024】しかし、本発明者により、V2≒0との前
提が成立しない場合があることが確認され、見かけの起
電力Vから、熱電対由来のノイズ電圧V2を差し引くこ
とにより熱電材料由来熱起電力(=熱起電力)V1が、
V−V2として正確に求められることが分かった。
However, the present inventor has confirmed that the assumption that V2≈0 may not be satisfied in some cases, and by subtracting the noise voltage V2 derived from the thermocouple from the apparent electromotive force V, the thermoelectric material-derived thermal induction is generated. Electric power (= thermoelectromotive force) V1
It was found that V-V2 was accurately obtained.

【0025】また、熱電対由来のノイズ電圧V2の測定
については、熱電材料の熱起電力自体が極めて微小な電
圧であることを考慮すると、熱電対由来のノイズ電圧V
2と見かけの起電力Vとの測定条件はできる限り測定条
件を同一にして、測定条件の差異に基づく微小なノイズ
を極力排除することが求められる。
Regarding the measurement of the noise voltage V2 derived from the thermocouple, considering that the thermoelectromotive force of the thermoelectric material itself is an extremely small voltage, the noise voltage V2 derived from the thermocouple is taken into consideration.
The measurement conditions of 2 and the apparent electromotive force V are required to be the same as much as possible, and it is required to eliminate the minute noise due to the difference of the measurement conditions as much as possible.

【0026】そこで、極力、同一条件下での両測定を考
えると、熱電材料の熱起電力測定系と、熱電対由来のノ
イズ電圧V2の測定系とを物理的に独立して構成するこ
とは好ましくなく、熱電材料の熱起電力測定系で、熱電
対由来のノイズ電圧の測定が行えるようにすることが好
ましいと本発明者は考えた。本発明者は、同一測定系に
おいて、見かけの起電力Vの測定と、熱電対由来のノイ
ズ電圧V2とを測定し得る方法を案出し本発明に至っ
た。
Therefore, considering both measurements under the same conditions as much as possible, the thermoelectromotive force measurement system of the thermoelectric material and the measurement system of the noise voltage V2 derived from the thermocouple should not be physically independent. The present inventor considered that it is not preferable, and that it is preferable to be able to measure the noise voltage derived from the thermocouple in the thermoelectromotive force measurement system of the thermoelectric material. The present inventor has devised a method capable of measuring an apparent electromotive force V and a thermocouple-derived noise voltage V2 in the same measurement system, and arrived at the present invention.

【0027】かかる熱電材料の熱起電力測定方法は、図
1に示すような測定系を構成して行なう。測定しようと
する熱電材料10は、その上端側と下端側とを、それぞ
れ独立してヒータ11、12に接触させて加熱すること
ができるようになっている。図1(A)に示す状態で
は、ヒータ11が設けられている上端側は低温TLに設
定され、下端側は高温THに設定されている。
The thermoelectromotive force measuring method for such a thermoelectric material is carried out by constructing a measuring system as shown in FIG. The thermoelectric material 10 to be measured can be heated by bringing its upper end side and lower end side into contact with the heaters 11 and 12 independently. In the state shown in FIG. 1A, the upper end side where the heater 11 is provided is set to the low temperature TL and the lower end side is set to the high temperature TH.

【0028】併せて、熱電材料10には、一対の熱電対
21、22が設けられ、熱電材料10の低温側に熱電対
21が接触させられ、高温側に熱電対22が接触されて
いる。両熱電対21、22の間には電圧計30が介在さ
れている。熱電対21により熱電材料10の低温側の温
度測定が、熱電対22により高温側の温度測定がそれぞ
れ行われ、併せて熱電対21、22に介在させた電圧計
30により、低温側接触部と高温側接触部とに温度差を
設けた状態における熱電材料10の見かけの起電力Vの
測定が行われる。
In addition, the thermoelectric material 10 is provided with a pair of thermocouples 21 and 22, the thermocouple 21 is brought into contact with the low temperature side of the thermoelectric material 10, and the thermocouple 22 is brought into contact with the high temperature side thereof. A voltmeter 30 is interposed between both thermocouples 21 and 22. The temperature of the low temperature side of the thermoelectric material 10 is measured by the thermocouple 21, and the temperature of the high temperature side is measured by the thermocouple 22, and the voltmeter 30 interposed between the thermocouples 21 and 22 also makes contact with the low temperature side contact portion. The apparent electromotive force V of the thermoelectric material 10 in the state where a temperature difference is provided between the high temperature side contact portion is measured.

【0029】図1(A)に示す状態で測定される起電力
は、熱電材料由来熱起電力V1と熱電対由来のノイズ電
圧V2とが加算された見かけの起電力V(=V1+V
2)である。
The electromotive force measured in the state shown in FIG. 1A is an apparent electromotive force V (= V1 + V) obtained by adding the thermoelectromotive force V1 derived from the thermoelectric material and the noise voltage V2 derived from the thermocouple.
2).

【0030】一方、図1(A)に示した測定系におい
て、図1(B)に示すように、ヒータ11、12の温度
制御を行なって、ヒータ11、12の温度を同じ温度、
すなわち等温TEに設定すると、熱電材料10内には温
度差がない状態が発生する。かかる状態で、起電力を電
圧計30で測定すれば、熱電材料10の温度差に基づく
熱電材料由来熱起電力V1=0となり、測定された見か
けの起電力Vが熱電対由来のノイズ電圧V2となる筈で
ある。
On the other hand, in the measurement system shown in FIG. 1 (A), as shown in FIG. 1 (B), the temperature of the heaters 11 and 12 is controlled so that the heaters 11 and 12 are kept at the same temperature.
That is, when the isothermal TE is set, a state in which there is no temperature difference occurs in the thermoelectric material 10. When the electromotive force is measured by the voltmeter 30 in this state, the thermoelectric material-derived thermoelectromotive force V1 based on the temperature difference of the thermoelectric material 10 becomes V1 = 0, and the measured apparent electromotive force V is the thermocouple-derived noise voltage V2. It should be.

【0031】そこで、同一測定系において、図1(A)
に示す状態と、図1(B)に示す状態とを形成すること
により、同一測定系で同様な測定条件で、見かけの起電
力Vと、熱電対由来のノイズ電圧V2とを併せて測定す
ることができ、両測定値に基づき熱電材料由来熱起電力
V1を、V−V2として正確に求めることができる。
Therefore, in the same measurement system, as shown in FIG.
By forming the state shown in FIG. 1 and the state shown in FIG. 1B, the apparent electromotive force V and the noise voltage V2 derived from the thermocouple are collectively measured under the same measurement conditions in the same measurement system. The thermoelectromotive force V1 derived from the thermoelectric material can be accurately determined as V-V2 based on both measured values.

【0032】例えば、かかる測定系は、ヒータ11、1
2の温度制御、熱電対における各温度における温度、見
かけの起電力Vの測定を、コンピュータで予め設定した
制御プログラムで行なえるようにしておけばよい。コン
ピュータにより、ヒータ11、12に温度差がある状態
でのみかけの起電力Vを測定して記憶させ、併せてヒー
タ11、12の温度制御により両ヒータ間に温度差を設
けない状態での見かけの起電力V(=熱電対由来のノイ
ズ電圧V2)を測定して記憶させ、出力時に見かけの起
電力Vから熱電対由来起電力V2を差し引き表示するよ
うにすれば、熱電材料10に由来する熱起電力が高精度
に測定できることとなる。
For example, such a measurement system includes heaters 11 and 1
The temperature control of 2 and the temperature at each temperature in the thermocouple and the apparent electromotive force V may be measured by a control program preset by a computer. The apparent electromotive force V is measured and stored by the computer when there is a temperature difference between the heaters 11 and 12, and it is also apparent that the temperature difference between the heaters 11 and 12 is not controlled by controlling the temperature of the heaters 11 and 12. Of the electromotive force V (= noise voltage V2 derived from the thermocouple) is stored, and when the electromotive force V2 derived from the thermocouple is subtracted from the apparent electromotive force V at the time of output, it is derived from the thermoelectric material 10. The thermoelectromotive force can be measured with high accuracy.

【0033】なお、熱電対由来のノイズ電圧V2の測定
に際しては、ヒータ11、12間に温度差を設けないよ
うにするが、かかる温度差を設けないヒータ11、12
は、低温側のヒータ11を高温側のヒータ12の高温T
Hに合わせるように設定しても良いし、あるいは、高温
側のヒータ12の温度を低温側のヒータ11の低温TL
に合わせるようにしてもよい。さらには、ヒータ11、
12の等温設定温度は、必要に応じて、上記高温TH、
あるいは低温TL以外の温度、例えば、THとTLとの
間の温度、あるいはTHよりも高温、あるいはTLより
低温に設定しても構わない。
When measuring the noise voltage V2 derived from the thermocouple, a temperature difference is not provided between the heaters 11 and 12, but the heaters 11 and 12 are not provided with such a temperature difference.
Is the high temperature T of the heater 12 on the high temperature side.
It may be set so as to match H, or the temperature of the high temperature side heater 12 may be set to the low temperature TL of the low temperature side heater 11.
May be adjusted to. Furthermore, the heater 11,
The isothermal set temperature of 12 is the high temperature TH,
Alternatively, a temperature other than the low temperature TL, for example, a temperature between TH and TL, a temperature higher than TH, or a temperature lower than TL may be set.

【0034】本実施の形態に説明の熱電材料の熱起電力
測定方法の有効性を、以下に示す実験により検証した。
The effectiveness of the thermoelectromotive force measuring method of the thermoelectric material described in the present embodiment was verified by the following experiments.

【0035】実験では、図1に示す構成で、熱電材料1
0として、既に熱起電力の値が分かっている標準試料の
クロメルコンスタンタンを使用した。ヒータ11、12
により上記標準試料に4℃の温度差を付け、その状態で
測定した各温度における見かけの起電力Vの様子を図2
に値110で示した。なお、図2では、縦軸に起電力
(μv)を、横軸に試料温度(℃)を示した。
In the experiment, the thermoelectric material 1 having the structure shown in FIG.
As 0, a standard sample chromel constantan whose thermoelectromotive force value was already known was used. Heaters 11 and 12
By applying a temperature difference of 4 ° C. to the standard sample, the apparent electromotive force V at each temperature measured in that state is shown in FIG.
Value 110. In FIG. 2, the vertical axis represents the electromotive force (μv) and the horizontal axis represents the sample temperature (° C.).

【0036】併せて、ヒータ11、12の温度調節によ
り、温度差を0とした状態での見かけの起電力(=熱電
対由来のノイズ電圧V2)を値120で示した。このよ
うにしてそれぞれ測定されたV、V2から、V−V2と
して、熱電対由来のノイズ電圧V2を較正して得られた
熱電材料由来熱起電力V1(■印)を値130で示し
た。
In addition, the apparent electromotive force (= noise voltage V2 derived from thermocouple) when the temperature difference between the heaters 11 and 12 was set to 0 was indicated by a value 120. The thermoelectric material-derived thermoelectromotive force V1 (marked by black squares) obtained by calibrating the noise voltage V2 derived from the thermocouple is shown as a value V-V2 from V and V2 measured in this way as a value 130.

【0037】かかる熱電材料来熱起電力V1を示す値1
30は、文献記載の標準試料の熱起電力(破線点線で示
される値)と良好な一致を示していた。しかし、熱電対
由来のノイズ電圧V2を考慮しない見かけの起電力Vを
示す値110は、値130に比べて、試料温度800℃
で約70μv程度も高く起電力が測定され、ノイズ電圧
V2による大きな測定誤差が発生していることが確認さ
れた。
A value 1 indicating the thermoelectromotive force V1 of the thermoelectric material.
No. 30 showed a good agreement with the thermoelectromotive force of the standard sample described in the literature (the value shown by the dotted dotted line). However, the value 110 indicating the apparent electromotive force V without considering the noise voltage V2 derived from the thermocouple is 800 ° C. higher than the value 130.
Then, the electromotive force was measured as high as about 70 μv, and it was confirmed that a large measurement error occurred due to the noise voltage V2.

【0038】これにより、本実施の形態1で提案した熱
電材料の熱起電力の測定方法が、正確な熱電材料の起電
力測定に有効に使用できることが確認された。
From this, it was confirmed that the method for measuring the thermoelectromotive force of the thermoelectric material proposed in the first embodiment can be effectively used for accurate measurement of the electromotive force of the thermoelectric material.

【0039】(実施の形態2)本実施の形態の熱電材料
の熱起電力測定方法では、熱電材料の高温側条件と低温
側条件とを入れ替えることにより、熱電対由来の電圧は
極性、すなわちプラス、マイナスが逆転するため、入れ
替えた状態と入れ替える前の状態とでの双方の見かけの
起電力Vを測定して、それぞれの状態で測定した見かけ
の起電力Vの相加平均を求める。それぞれの状態で測定
された見かけの起電力Vに含まれる熱電対由来のノイズ
電圧V2は、それぞれの異なる状態での見かけの起電力
を相加平均することにより計算上相殺させることがで
き、熱電材料由来の熱起電力を高精度に求める方法であ
る。
(Embodiment 2) In the thermoelectromotive force measuring method of the thermoelectric material of the present embodiment, the voltage derived from the thermocouple is positive, that is, positive, by exchanging the high temperature side condition and the low temperature side condition of the thermoelectric material. , And minus are reversed, the apparent electromotive force V of both the exchanged state and the state before the exchange is measured, and the arithmetic mean of the apparent electromotive force V measured in each state is obtained. The noise voltage V2 derived from the thermocouple contained in the apparent electromotive force V measured in each state can be canceled out by calculation by arithmetically averaging the apparent electromotive forces in the different states. This is a method for obtaining the thermoelectromotive force derived from the material with high accuracy.

【0040】本実施の形態でも、図3(A)に示すよう
な構成の測定系を用いて測定を行なう。すなわち、かか
る測定系は、熱電材料10の上端側に温度制御可能なヒ
ータ11と、下端側に温度制御可能なヒータ12とを設
けておき、熱電材料10の上端、下端側をそれぞれ低温
側、高温側に設定できるように構成されている。ヒータ
11、12は、それぞれ入れ替えることができるように
しておく。
Also in this embodiment, the measurement is performed using the measurement system having the structure shown in FIG. That is, in such a measurement system, the temperature controllable heater 11 and the temperature controllable heater 12 are provided on the upper end side of the thermoelectric material 10 and the temperature controllable heater 12 on the lower end side of the thermoelectric material 10. It is configured so that it can be set to the high temperature side. The heaters 11 and 12 are arranged so that they can be interchanged.

【0041】図3(A)に示す測定系で測定される熱電
材料の起電力は、前記実施の形態1で述べたように、V
(見かけの起電力)=V1(熱電材料由来熱起電力)+
V2(熱電対由来のノイズ電圧)となる。
The electromotive force of the thermoelectric material measured by the measuring system shown in FIG. 3A is V as described in the first embodiment.
(Apparent electromotive force) = V1 (thermoelectromotive force derived from thermoelectric material) +
It becomes V2 (noise voltage derived from thermocouple).

【0042】そこで、図3(A)に示す熱電材料10に
対する熱電対11、12の設定状況を変更することな
く、ヒータ11、12の熱電材料10における接触位置
を入れ替えれば、すなわち、図3(B)に示すように、
上下のヒータ11、12を図3(A)の矢印のように回
転させるなどして入れ替える。このようにして熱電材料
10の低温側を高温THに、高温側を低温TLに設定替
えする。このようにして熱電材料10と熱電対21、2
2との測定環境を殆ど変化させることなく、熱電材料1
0の高温側と低温側とを入れ替えた状態で測定される見
かけの起電力Vは、熱電材料由来熱起電力V1、熱電対
由来起電力V2とするとき、V=V1−V2となる筈で
ある。
Therefore, if the contact positions of the heaters 11 and 12 on the thermoelectric material 10 are exchanged without changing the setting conditions of the thermocouples 11 and 12 for the thermoelectric material 10 shown in FIG. As shown in B),
The upper and lower heaters 11 and 12 are exchanged by rotating them as shown by arrows in FIG. In this way, the low temperature side of the thermoelectric material 10 is set to the high temperature TH and the high temperature side is set to the low temperature TL. In this way, the thermoelectric material 10 and the thermocouples 21, 2
Thermoelectric material 1 without changing the measurement environment with 2
The apparent electromotive force V measured in the state where the high temperature side and the low temperature side of 0 are exchanged should be V = V1-V2 when the thermoelectric material-derived thermoelectromotive force V1 and the thermocouple-derived electromotive force V2 are set. is there.

【0043】そこで、図3(A)の状態で測定された見
かけの起電力Vと、図3(B)の状態で測定された起電
力Vとで、両者の相加平均を算出することにより、熱電
対由来のノイズ電圧V2が相殺され、正確な熱電材料由
来熱起電力V1を求めることができる。すなわち、
{(V1+V2)+(V1−V2)}/2なる式より、
相加平均を求めればよい。かかる式の(V1+V2)に
は図3(A)で測定した見かけの起電力を、(V1−V
2)には図3(B)で測定した見かけの起電力を代入し
て、計算を行なえばよい。
Then, by calculating the arithmetic mean of the apparent electromotive force V measured in the state of FIG. 3A and the electromotive force V measured in the state of FIG. 3B. , The noise voltage V2 derived from the thermocouple is canceled out, and an accurate thermoelectromotive force V1 derived from the thermoelectric material can be obtained. That is,
From the expression {(V1 + V2) + (V1-V2)} / 2,
The arithmetic mean should be calculated. In (V1 + V2) of this equation, the apparent electromotive force measured in FIG.
The apparent electromotive force measured in FIG. 3B may be substituted in 2) to perform the calculation.

【0044】例えば、かかる測定系は、ヒーター11、
12の温度制御、熱電対における各温度における温度、
起電力Vの測定を、コンピュータで予め設定した制御プ
ログラムで行なえるようにしておけばよい。すなわち、
コンピュータにより、図3(A)のヒーター11、12
の状態で測定した見かけの起電力Vを記憶させ、その
後、図3(B)に示すようにヒータ11、12を入れ替
えた状態で見かけの起電力を記憶させ、両見かけの起電
力をコンピュータに予め熱電対由来のノイズ電圧補正手
段としてプログラムされた相加平均算出式により演算し
て熱電対由来のノイズ電圧V2が相殺された状態での起
電力を出力するようにすればよい。
For example, such a measuring system includes a heater 11,
12 temperature control, temperature at each temperature in thermocouple,
The electromotive force V may be measured by a control program preset by a computer. That is,
By the computer, the heaters 11 and 12 shown in FIG.
The apparent electromotive force V measured in the state is stored, and then the apparent electromotive force is stored in a state where the heaters 11 and 12 are exchanged as shown in FIG. 3B, and the apparent electromotive force is stored in the computer. The electromotive force may be output in a state where the noise voltage V2 derived from the thermocouple is canceled by performing calculation by an arithmetic mean calculation formula programmed in advance as the noise voltage correction unit derived from the thermocouple.

【0045】なお、上記説明では、それぞれ1回の測定
の相加平均を求めた場合について説明したが、当然に、
複数回の測定の相加平均を求めるようにしても構わな
い。
In the above description, the case where the arithmetic mean of one measurement is obtained is explained, but naturally,
The arithmetic mean of a plurality of measurements may be obtained.

【0046】上記説明の熱電材料の熱起電力測定方法の
有効性を、以下に示す実験により検証した。
The effectiveness of the thermoelectromotive force measuring method for the thermoelectric material described above was verified by the following experiments.

【0047】実験では、図3に示す構成で、熱電材料1
0として、既に熱起電力の値が分かっている標準試料の
クロメルコンスタンタンを使用した。ヒータ11、12
により上記標準試料に4℃の温度差を付け、その状態で
測定した各温度における見かけの起電力Vの様子を図4
に、値210、220で示した。値210、220は、
図3(A)、(B)に示すそれぞれの構成に対応した測
定値である。
In the experiment, the thermoelectric material 1 having the structure shown in FIG.
As 0, a standard sample chromel constantan whose thermoelectromotive force value was already known was used. Heaters 11 and 12
By applying a temperature difference of 4 ° C. to the standard sample, the apparent electromotive force V at each temperature measured in that state is shown in FIG.
The values 210 and 220 are shown. The values 210 and 220 are
The measured values correspond to the respective configurations shown in FIGS. 3 (A) and 3 (B).

【0048】併せて、値210、220でそれぞれ示さ
れる見かけの起電力Vの相加平均をとって求められた熱
電材料由来起電力V1を、値230(■印)で示した。
In addition, the thermoelectric material-derived electromotive force V1 obtained by taking the arithmetic mean of the apparent electromotive forces V shown by the values 210 and 220, respectively, is shown by the value 230 (marked by ■).

【0049】かかる熱電材料来熱起電力V1を示す値2
30は、文献記載の標準試料の熱起電力(破線で示され
る値)と良好な一致を示していた。しかし、熱電対由来
のノイズ電圧V2を考慮しない見かけの起電力Vを示す
値210、220は、値230に比べて、試料温度80
0℃で±約70μv程度のノイズ電圧V2による大きな
測定誤差が発生していることが確認された。
A value of 2 indicating the thermoelectromotive force V1 of the thermoelectric material.
No. 30 showed a good agreement with the thermoelectromotive force (value indicated by the broken line) of the standard sample described in the literature. However, the values 210 and 220 indicating the apparent electromotive force V not considering the noise voltage V2 derived from the thermocouple are 80
It was confirmed that a large measurement error occurred due to the noise voltage V2 of about ± 70 μv at 0 ° C.

【0050】これにより、本実施の形態2で提案した熱
電材料の熱起電力の測定方法が、正確な熱電材料の起電
力測定に有効に使用できることが確認された。
From this, it was confirmed that the method for measuring the thermoelectromotive force of the thermoelectric material proposed in the second embodiment can be effectively used for accurate electromotive force measurement of the thermoelectric material.

【0051】本実施の形態2で述べた測定方法は、上記
の如く、ヒータ11、12の接触位置の入れ替えを行う
構成で測定が行えるが、実施の形態1で述べた構成の温
度制御可能に構成したヒータ11、12を設けた測定系
を使用して行うこともできる。
In the measuring method described in the second embodiment, the measurement can be performed with the configuration in which the contact positions of the heaters 11 and 12 are exchanged as described above, but the temperature control of the configuration described in the first embodiment can be performed. It is also possible to use a measurement system provided with the configured heaters 11 and 12.

【0052】すなわち、図1(A)に示す状態で、上記
要領で見かけの起電力Vを測定する。その後、ヒータ1
1、12の温度制御を行い、図5(A)に示すように、
低温側のヒータ11を高温THになるように、高温側の
ヒータ12を低温TLになるようにする。それぞれのヒ
ータ11、12の温度の設定替えが完了して、熱電材料
10の低温側と高温側とがそれぞれ入れ代わった状態
で、見かけの起電力Vを測定する。このようにして測定
された図1(A)の状態、図5(A)の状態の2種の見
かけの起電力Vの相加平均を求めることにより、上記の
如く、熱電材料由来熱起電力V1を高精度に求めるよう
にしてもよい。
That is, in the state shown in FIG. 1 (A), the apparent electromotive force V is measured as described above. After that, heater 1
By controlling the temperatures 1 and 12, as shown in FIG.
The heater 11 on the low temperature side is set to the high temperature TH, and the heater 12 on the high temperature side is set to the low temperature TL. The apparent electromotive force V is measured in a state where the temperature settings of the respective heaters 11 and 12 have been changed and the low temperature side and the high temperature side of the thermoelectric material 10 have been interchanged. By obtaining the arithmetic mean of the two types of apparent electromotive force V in the state of FIG. 1 (A) and the state of FIG. 5 (A) thus measured, the thermoelectromotive force derived from the thermoelectric material is calculated as described above. V1 may be obtained with high accuracy.

【0053】さらには、ヒータ11、12の入れ替え
や、ヒータ11、12の温度変更などを行わずに、熱電
材料10とヒータ11、12の側との設定状況を図1
(A)に示す状態で維持しつつ、熱電材料10に対する
熱電対21、22の接触位置を入れ替えるようにしても
本実施の形態2で説明する相加平均を利用した起電力の
測定が行える。
Furthermore, without changing the heaters 11 and 12 or changing the temperature of the heaters 11 and 12, the setting condition of the thermoelectric material 10 and the heaters 11 and 12 is shown in FIG.
Even when the contact positions of the thermocouples 21 and 22 with respect to the thermoelectric material 10 are switched while maintaining the state shown in (A), the electromotive force can be measured using the arithmetic mean described in the second embodiment.

【0054】すなわち、熱電材料10の高温側に接触さ
せていた熱電対21と、熱電材料10の低温側に接触さ
せていた熱電対22とを入れ替え、図5(B)に示すよ
うに、熱電対21を高温側に、熱電対22を低温側に接
触替えするようにして測定するようにしてもよい。
That is, the thermocouple 21 that was in contact with the high temperature side of the thermoelectric material 10 and the thermocouple 22 that was in contact with the low temperature side of the thermoelectric material 10 were replaced with each other, and as shown in FIG. Alternatively, the pair 21 may be replaced with the high temperature side and the thermocouple 22 may be replaced with the low temperature side for the measurement.

【0055】図1(A)に示す構成で見かけの起電力V
を測定し、その後、図5(B)に示すように、熱電対2
1、22の熱電材料10に対する接触位置を取り替え、
その取り替えた状態での見かけの起電力Vを測定する。
両見かけの起電力の相加平均を求めれば、やはり、両見
かけの起電力に含まれていた熱電対由来のノイズ電圧2
が相殺され、熱電材料由来熱起電力V1を高精度に求め
ることができる。
The apparent electromotive force V in the configuration shown in FIG.
Of the thermocouple 2 as shown in FIG. 5 (B).
Replace the contact position of the thermoelectric material 10 of 1 and 22,
The apparent electromotive force V in the replaced state is measured.
If the arithmetic mean of the apparent electromotive forces is calculated, the noise voltage 2 from the thermocouple included in the apparent electromotive forces is 2
Are canceled out, and the thermoelectromotive force V1 derived from the thermoelectric material can be obtained with high accuracy.

【0056】また、図1(A)、図5(A)に示す両状
態を利用して、それぞれの状態における相加平均により
精確な熱電材料由来熱起電力V1を求めるに際しては、
ヒータ11をTL側からTH側に昇温させ、並行にヒー
タ12を高温THから低温TLに降温させて行えばよい
が、昇温と降温とを並行して行う間には、両ヒータ1
1、12が、低温TLと、高温THとの間の温度で温度
が一致する状態が発生する筈である。そこで、かかる等
温時点で、見かけの起電力を測定することにより、前記
実施の形態1で説明したように熱電対由来起電力V2の
測定が行えることとなる。
Further, in obtaining the accurate thermoelectromotive force V1 derived from the thermoelectric material by using the arithmetic mean in each of the states shown in FIGS. 1 (A) and 5 (A),
The heater 11 may be heated from the TL side to the TH side, and the heater 12 may be cooled in parallel from the high temperature TH to the low temperature TL in parallel.
Nos. 1 and 12 should generate a state where the temperatures are the same between the low temperature TL and the high temperature TH. Therefore, by measuring the apparent electromotive force at this isothermal point, the thermocouple-derived electromotive force V2 can be measured as described in the first embodiment.

【0057】(実施の形態3)本実施の形態の熱電材料
の熱起電力の測定方法では、熱電対の温度測定系とは別
に、熱電対に起電力測定用の系を付加することにより、
熱電対由来のノイズ電圧の影響を排除した状態での正確
な熱電材料由来熱起電力を求める方法である。
(Embodiment 3) In the method for measuring thermoelectromotive force of a thermoelectric material of the present embodiment, a system for measuring electromotive force is added to the thermocouple in addition to the temperature measuring system for the thermocouple.
This is a method for obtaining an accurate thermoelectromotive force derived from a thermoelectric material in a state where the influence of noise voltage derived from a thermocouple is excluded.

【0058】かかる方法は、図6に示す構成の測定系を
使用して行えばよい。測定系は、熱電材料10は、その
上端側を低温熱源13に、下端側を高温熱源14に接触
させられている。このようにして内部に温度差がつけら
れた熱電材料10の高温側と低温側とに、一対の熱電対
23、24が設けられ、低温側の温度を熱電対23によ
り、高温側の温度を熱電対24により測定できるように
なっている。
This method may be carried out by using the measuring system having the structure shown in FIG. In the measurement system, the thermoelectric material 10 is in contact with the low temperature heat source 13 at the upper end side and the high temperature heat source 14 at the lower end side. In this way, a pair of thermocouples 23 and 24 are provided on the high temperature side and the low temperature side of the thermoelectric material 10 having a temperature difference inside, and the temperature on the low temperature side is controlled by the thermocouple 23. It can be measured by the thermocouple 24.

【0059】熱電対23、24には、その熱電材料10
の低温側接触部、高温側接触部に接触するように、熱起
電力測定用の熱的化学的に安定な材質で形成したリード
線25が設けられている。両熱電対23、24にそれぞ
れ設けた熱起電力測定用の上記専用のリード線25間
に、電圧計30が介在させられ、熱電材料10の起電力
を、熱電対23、24の影響を受けずに測定できるよう
になっている。
The thermocouples 23, 24 have the thermoelectric material 10
A lead wire 25 made of a thermochemically stable material for thermoelectromotive force measurement is provided so as to contact the low temperature side contact portion and the high temperature side contact portion. A voltmeter 30 is interposed between the dedicated lead wires 25 for thermoelectromotive force measurement provided on both thermocouples 23 and 24, and the electromotive force of the thermoelectric material 10 is influenced by the thermocouples 23 and 24. It can be measured without.

【0060】リード線25の材質としては、例えば、A
g、Pt、Au、Cuなどの熱的化学的に安定な材質を
使用して形成しておけばよい。かかる熱起電力測定用の
リード線25を熱電対23、24にそれぞれ設けておく
ことにより、実施の形態1、2とは異なり、熱電対由来
起電力の影響を当初より排除した状態での熱電材料の熱
起電力の測定が行える。
The material of the lead wire 25 is, for example, A
It may be formed using a thermally and chemically stable material such as g, Pt, Au, and Cu. By providing the thermocouple electromotive force measurement lead wires 25 to the thermocouples 23 and 24, respectively, unlike the first and second embodiments, the thermocouple in a state in which the influence of the thermocouple-derived electromotive force is eliminated from the beginning. The thermoelectromotive force of the material can be measured.

【0061】上記説明の実施の形態3に基づく熱電材料
の熱起電力測定方法の有効性を、以下に示す実験により
検証した。
The effectiveness of the thermoelectromotive force measuring method for the thermoelectric material based on the third embodiment described above was verified by the following experiments.

【0062】実験では、図6に示す構成で、熱電材料1
0として、既に熱起電力の値が分かっている標準試料の
クロメルコンスタンタンを使用した。ヒータ13、14
により上記標準試料に4℃の温度差を付け、その状態で
熱起電力測定用の専用のリード線25で各温度において
測定した起電力の様子を図7の値310(■印)で示し
た。値300は、文献記載の標準試料の熱起電力(破線
で示される値)と良好な一致を示しており、本実施の形
態3で提案した熱電材料の熱起電力の測定方法が、正確
な熱電材料の起電力測定に有効に使用できることが確認
された。
In the experiment, the thermoelectric material 1 having the structure shown in FIG.
As 0, a standard sample chromel constantan whose thermoelectromotive force value was already known was used. Heaters 13 and 14
A temperature difference of 4 ° C. was applied to the above standard sample, and the state of the electromotive force measured at each temperature with the lead wire 25 dedicated for thermoelectromotive force measurement in that state is shown by the value 310 (marked by ■) in FIG. . The value 300 shows a good agreement with the thermoelectromotive force (the value indicated by the broken line) of the standard sample described in the literature, and the method for measuring the thermoelectromotive force of the thermoelectric material proposed in the third embodiment is accurate. It was confirmed that it can be effectively used for measuring electromotive force of thermoelectric materials.

【0063】本発明は、上記実施の形態に限定されるも
のではなく、その要旨を逸脱しない範囲で必要に応じて
変更してもよい。
The present invention is not limited to the above-mentioned embodiments, but may be modified as necessary without departing from the scope of the invention.

【0064】例えば、前記説明では、ヒータ、あるいは
熱電対の入れ替えを行って熱電対由来のノイズ電圧の測
定あるいはその相殺を行う測定方法について述べたが、
熱電対を設けた状態の熱電材料自体を回転させるなどし
て、熱電材料の低温側と、高温側とを入れ換えるように
しても構わない。
For example, in the above description, the method of measuring the noise voltage derived from the thermocouple or canceling it by replacing the heater or the thermocouple has been described.
The low temperature side and the high temperature side of the thermoelectric material may be interchanged by rotating the thermoelectric material itself in the state where the thermocouple is provided.

【0065】[0065]

【発明の効果】本発明によれば、熱電材料の起電力測定
において、熱電対由来のノイズ電圧の影響を排除するこ
とができるので、従来とは異なり、正確な熱電材料由来
の熱起電力を測定することができる。
EFFECTS OF THE INVENTION According to the present invention, in measuring the electromotive force of a thermoelectric material, it is possible to eliminate the influence of noise voltage derived from a thermocouple. Can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の実施の形態1に示す測定方法
に関し、温度差をつけた状態での熱電材料の起電力測定
系の様子を示す要部説明図であり、(B)は、熱電材料
の温度差をなくした状態での(A)に示す起電力測定系
の要部説明図である。
FIG. 1A is an explanatory view of relevant parts showing a state of an electromotive force measuring system of a thermoelectric material in a state where a temperature difference is applied, in relation to the measuring method shown in the first embodiment of the present invention; FIG. 4 is an explanatory view of a main part of the electromotive force measurement system shown in (A) in a state in which a temperature difference between thermoelectric materials is eliminated.

【図2】実施の形態1で示す起電力の測定方法の有効性
を示す図である。
FIG. 2 is a diagram showing the effectiveness of the electromotive force measurement method described in the first embodiment.

【図3】(A)は、本発明の実施の形態2に示す測定方
法に関し、温度差を設けた状態での熱電材料の起電力測
定系の要部説明図であり、(B)は高温側と低温側との
ヒータを入れ替えた状態の(A)に示す起電力測定系の
要部説明図である。
FIG. 3A is an explanatory view of a main part of an electromotive force measuring system of a thermoelectric material in a state in which a temperature difference is provided, regarding a measuring method shown in a second embodiment of the present invention, and FIG. It is a principal part explanatory view of the electromotive force measurement system shown to (A) in the state which replaced the heater of the side and low temperature side.

【図4】実施の形態2で示す起電力の測定方法の有効性
を示す図である。
FIG. 4 is a diagram showing the effectiveness of the electromotive force measurement method shown in the second embodiment.

【図5】(A)、(B)は、起電力測定系の変形例を示
す要部説明図である。
5 (A) and 5 (B) are principal part explanatory views showing a modified example of the electromotive force measurement system.

【図6】本発明の実施の形態3に示す測定方法に関し、
温度測定用の熱電対に熱起電力測定用のリード線を別途
設けた構成を示す起電力測定系の要部説明図である。
FIG. 6 relates to a measuring method according to a third embodiment of the present invention,
It is a principal part explanatory drawing of the electromotive force measurement system which shows the structure which provided the lead wire for thermoelectromotive force measurement separately in the thermocouple for temperature measurement.

【図7】実施の形態3で示す起電力の測定方法の有効性
を示す図である。
FIG. 7 is a diagram showing the effectiveness of the electromotive force measurement method shown in the third embodiment.

【図8】従来の熱電材料の熱起電力の測定系の構成を示
す説明図である。
FIG. 8 is an explanatory diagram showing the configuration of a conventional thermoelectromotive force measuring system for thermoelectric materials.

【符号の説明】[Explanation of symbols]

1 熱電材料 2 ヒータ 3 熱電対 3a リード線 4 熱電対 4a リード線 5 電圧計 10 熱電材料 11 ヒータ 12 ヒータ 13 ヒータ 14 ヒータ 21 熱電対 22 熱電対 23 熱電対 24 熱電対 25 リード線 30 電圧計 110 値 120 値 130 値 210 値 220 値 230 値 310 値 TE 等温 TH 高温 TL 低温 V 見かけの起電力 V1 熱電材料由来熱起電力 V2 ノイズ電圧 1 Thermoelectric material 2 heater 3 thermocouple 3a lead wire 4 thermocouple 4a lead wire 5 Voltmeter 10 thermoelectric materials 11 heater 12 heater 13 heater 14 heater 21 thermocouple 22 thermocouple 23 thermocouple 24 thermocouple 25 lead wire 30 voltmeter 110 value 120 values 130 values 210 value 220 value 230 value 310 value TE isothermal TH high temperature TL low temperature V Apparent electromotive force V1 Thermoelectric power derived from thermoelectric material V2 noise voltage

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 温度差をつけた熱電材料の高温側と低温
側とにそれぞれ熱電対を接触させた測定系で、高温側接
触部と低温側接触部との間の起電力を計測して前記熱電
材料の熱起電力を求める熱電材料の熱起電力測定方法で
あって、 熱電対自体により発生するノイズとなる熱電対由来のノ
イズ電圧を前記起電力から除くことにより前記熱電材料
の熱起電力を求めることを特徴とする熱電材料の熱起電
力測定方法。
1. An electromotive force between a high temperature side contact portion and a low temperature side contact portion is measured by a measuring system in which thermocouples are brought into contact with the high temperature side and the low temperature side of a thermoelectric material having a temperature difference. A thermoelectromotive force measuring method of a thermoelectric material for obtaining a thermoelectromotive force of the thermoelectric material, wherein a thermovoltage of the thermoelectric material is generated by removing from the electromotive force a noise voltage derived from the thermocouple which becomes noise generated by the thermocouple itself. A method for measuring a thermoelectromotive force of a thermoelectric material, characterized by obtaining electric power.
【請求項2】 請求項1記載の熱電材料の熱起電力測定
方法において、 前記熱電対由来のノイズ電圧を、前記測定系で、前記高
温側接触部と前記低温側接触部との間の起電力の計測と
併せて計測することを特徴とする熱電材料の熱起電力測
定方法。
2. The thermoelectromotive force measuring method for a thermoelectric material according to claim 1, wherein a noise voltage derived from the thermocouple is generated between the high temperature side contact portion and the low temperature side contact portion in the measurement system. A method for measuring a thermoelectromotive force of a thermoelectric material, characterized by measuring the electric power as well as measuring the electric power.
【請求項3】 請求項1または2記載の熱電材料の熱起
電力測定方法において、 前記熱電対由来のノイズ電圧は、温度差をつけた前記熱
電材料の前記高温側接触部と前記低温側接触部との間の
起電力の計測において、前記熱電材料の前記高温側接触
部と前記低温側接触部との間の温度差なしの状態を少な
くとも1回は発生させて、その状態で前記起電力の計測
を行うことにより求められることを特徴とする熱電材料
の熱起電力測定方法。
3. The method for measuring thermoelectromotive force of a thermoelectric material according to claim 1 or 2, wherein the noise voltage derived from the thermocouple has a temperature difference between the high temperature side contact portion and the low temperature side contact portion of the thermoelectric material. In the measurement of the electromotive force between the thermoelectric material and the high temperature side contact portion of the thermoelectric material, a state without a temperature difference between the high temperature side contact portion and the low temperature side contact portion is generated at least once, and the electromotive force is maintained in that state. A method for measuring a thermoelectromotive force of a thermoelectric material, which is obtained by measuring
【請求項4】 請求項1または2記載の熱電材料の熱起
電力測定方法において、 前記熱電材料の前記高温側接触部と前記低温側接触部と
の間の起電力の計測を、前記高温側接触部と前記低温側
接触部とを互いに入れ替えた状態と、入れ替えない状態
とで行い、 入れ替えた状態での起電力と、入れ替えない状態での起
電力との相加平均値を求めることにより前記熱電材料の
前記高温側接触部と前記低温側接触部との間の起電力か
ら前記熱電対由来のノイズ電圧を除くことを特徴とする
熱電材料の熱起電力測定方法。
4. The thermoelectromotive force measuring method for a thermoelectric material according to claim 1, wherein the electromotive force between the high temperature side contact portion and the low temperature side contact portion of the thermoelectric material is measured by the high temperature side. The contact portion and the low temperature side contact portion are exchanged with each other and with no exchange, and by calculating an arithmetic mean value of electromotive force in the exchanged state and electromotive force in the non-exchanged state, A thermoelectromotive force measuring method for a thermoelectric material, wherein noise voltage derived from the thermocouple is removed from electromotive force between the high temperature side contact portion and the low temperature side contact portion of the thermoelectric material.
【請求項5】 請求項1記載の熱電材料の熱起電力測定
方法において、前記低温側接触部と前記高温側接触部と
においてそれぞれ接触させる前記熱電対に、起電力測定
用のリード線を温度測定用とは別に設けることにより、
前記熱電対由来のノイズ電圧を前記熱電材料の前記高温
側接触部と前記低温側接触部との間で発生する起電力よ
り除くことを特徴とする熱電材料の熱起電力測定方法。
5. The method for measuring thermoelectromotive force of a thermoelectric material according to claim 1, wherein a lead wire for measuring electromotive force is attached to each of the thermocouples to be brought into contact with each of the low temperature side contact portion and the high temperature side contact portion. By providing separately from the one for measurement,
A thermoelectromotive force measuring method for a thermoelectric material, wherein the noise voltage derived from the thermocouple is excluded from the electromotive force generated between the high temperature side contact portion and the low temperature side contact portion of the thermoelectric material.
JP2001242149A 2001-08-09 2001-08-09 Method for measuring thermoelectromotive force of thermoelectric material Pending JP2003057121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001242149A JP2003057121A (en) 2001-08-09 2001-08-09 Method for measuring thermoelectromotive force of thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001242149A JP2003057121A (en) 2001-08-09 2001-08-09 Method for measuring thermoelectromotive force of thermoelectric material

Publications (1)

Publication Number Publication Date
JP2003057121A true JP2003057121A (en) 2003-02-26

Family

ID=19072473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001242149A Pending JP2003057121A (en) 2001-08-09 2001-08-09 Method for measuring thermoelectromotive force of thermoelectric material

Country Status (1)

Country Link
JP (1) JP2003057121A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165233A (en) * 2002-11-11 2004-06-10 National Institute Of Advanced Industrial & Technology Seebeck coefficient measuring device
JP2009258032A (en) * 2008-04-21 2009-11-05 Ulvac-Riko Inc Measuring instrument of seebeck coefficient and heat permeability and measuring instrument of heat permeability
JP2013214642A (en) * 2012-04-03 2013-10-17 Ulvac-Riko Inc Thermoelectric material measurement device
JP2020516871A (en) * 2017-04-03 2020-06-11 韓国原子力研究院Korea Atomic Energy Research Institute Heat transfer coefficient measuring element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165233A (en) * 2002-11-11 2004-06-10 National Institute Of Advanced Industrial & Technology Seebeck coefficient measuring device
JP2009258032A (en) * 2008-04-21 2009-11-05 Ulvac-Riko Inc Measuring instrument of seebeck coefficient and heat permeability and measuring instrument of heat permeability
JP2013214642A (en) * 2012-04-03 2013-10-17 Ulvac-Riko Inc Thermoelectric material measurement device
JP2020516871A (en) * 2017-04-03 2020-06-11 韓国原子力研究院Korea Atomic Energy Research Institute Heat transfer coefficient measuring element
US11221261B2 (en) 2017-04-03 2022-01-11 Korea Atomic Energy Research Institute Device for measuring heat transfer rate
JP7032432B2 (en) 2017-04-03 2022-03-08 韓国原子力研究院 Heat transfer coefficient measuring element

Similar Documents

Publication Publication Date Title
JP5735484B2 (en) Thermocouple assembly and cold junction compensation using the same
JP4284545B2 (en) Specific heat capacity measuring method and apparatus
JP2003057121A (en) Method for measuring thermoelectromotive force of thermoelectric material
RU2577389C1 (en) Method of calibrating thermoelectric heat flux sensors
JP2013170946A (en) Temperature measurement method and temperature measurement system using radiation thermometer
JP2007218591A (en) Hybrid-type surface thermometer, apparatus, and method for measuring temperature distribution
US6983223B2 (en) Detecting thermocouple failure using loop resistance
JP4982766B2 (en) Sensor for thermoelectric property measurement
JP3418407B2 (en) Temperature measurement type external connection mechanism for printed wiring boards
JPH0552666A (en) Plane temperature measurement sensor
De Lucas et al. Measurement and analysis of the temperature gradient of blackbody cavities, for use in radiation thermometry
JP2004037139A (en) Temperature measuring system and temperature regulator
RU2727564C1 (en) Self-calibrating temperature sensor
El Matarawy et al. New adiabatic calorimeter for realization the triple point of water in metallic-sealed cell at NIS-Egypt
JPH06151537A (en) Evaluation for life of wiring
RU2724247C1 (en) Method of diagnosing temperature measurement circuits
Jones et al. The Suitability of Tungsten Strip Lamps as Secondary Standard Sources below 1064 C
JP2001284693A (en) Semiconductor laser element as well as apparatus and method for measuring the same
US8814425B1 (en) Power measurement transducer
Jimenez et al. Device for simultaneous measurement of the Peltier and Seebeck coefficients: Verification of the Kelvin relation
JP2000275261A (en) Scanning microscope with temperature correcting mechanism
Kostkowski et al. 3-THERMOCOUPLE AND RADIATION THERMOMETRY ABOVE 900 K'
JPH04125458A (en) Device and method for measuring thermoelectric capacity
KR20220117574A (en) Measurement method of infrared thermometer with improved measurement reliability
JP6056441B2 (en) Input module capable of measuring temperature by thermocouple