JPS6350862B2 - - Google Patents

Info

Publication number
JPS6350862B2
JPS6350862B2 JP23413782A JP23413782A JPS6350862B2 JP S6350862 B2 JPS6350862 B2 JP S6350862B2 JP 23413782 A JP23413782 A JP 23413782A JP 23413782 A JP23413782 A JP 23413782A JP S6350862 B2 JPS6350862 B2 JP S6350862B2
Authority
JP
Japan
Prior art keywords
hole
copper plating
plating film
chip carrier
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23413782A
Other languages
Japanese (ja)
Other versions
JPS59124794A (en
Inventor
Hiroaki Fujimoto
Tomio Wada
Tadaharu Kakizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23413782A priority Critical patent/JPS59124794A/en
Publication of JPS59124794A publication Critical patent/JPS59124794A/en
Publication of JPS6350862B2 publication Critical patent/JPS6350862B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、プリント基板を用いた、IC、LSI用
のチツプキヤリア基板や時計用回路基板等の電子
回路基板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing electronic circuit boards, such as chip carrier boards for ICs and LSIs, and circuit boards for watches, using printed circuit boards.

従来例の構成とその問題点 一般に両面又は多層プリント基板においては、
基板の両面にいわゆるスルーホールを形成し、基
板の面に対して垂直方向の接続導体を設けてい
る。ところがプリント基板を用いたIC、LSI用の
チツプキヤリア基板や時計用回路基板等において
は、基板の側面に接続、接触、ハンダづけ等の目
的のために導体を形成することがなされている。
これらのうち、チツプキヤリア基板を例にとつて
従来例を第1図〜第4図とともに説明する。
Conventional configurations and their problems Generally, in double-sided or multilayer printed circuit boards,
So-called through holes are formed on both sides of the substrate, and connection conductors are provided in a direction perpendicular to the surface of the substrate. However, in chip carrier boards for ICs and LSIs, circuit boards for watches, etc. that use printed circuit boards, conductors are formed on the sides of the board for purposes such as connection, contact, and soldering.
Among these, a conventional example will be explained with reference to FIGS. 1 to 4, taking a chip carrier board as an example.

第1図は従来例の完成後の上面図、第2図は断
面図、第3図はICチツプ実装後の断面図、また
第4図は、工程別の断面図を示したものである。
FIG. 1 is a top view of a conventional example after completion, FIG. 2 is a sectional view, FIG. 3 is a sectional view after an IC chip is mounted, and FIG. 4 is a sectional view of each process.

まず、第1図〜第3図と共にチツプキヤリア基
板の構造とIC、LSIチツプの基板へのくみこみ方
法について説明する。第1図、第2図に示すよう
な絶縁基板1、ダイパツド2、ワイヤボンデイン
グパツド3、導体配線4、側面導体5、側面溝
6、外部電極7よりなるチツプキヤリア基板に対
し、第3図に示すようにICチツプ8を、ダイパ
ツド2にダイボンデイングし、ボンデイングワイ
ヤ9を用いて、ワイヤボンデイングを行い、樹脂
10及び枠11を用いて封止するものである。外
部電極7と側面導体5は後に、マザー基板に接続
する際に、半田づけする部分である。
First, the structure of the chip carrier board and the method of incorporating IC and LSI chips into the board will be explained with reference to FIGS. 1 to 3. For a chip carrier board consisting of an insulating substrate 1, a die pad 2, a wire bonding pad 3, a conductor wiring 4, a side conductor 5, a side groove 6, and an external electrode 7 as shown in FIGS. 1 and 2, FIG. As shown, an IC chip 8 is die-bonded to a die pad 2, wire-bonded using a bonding wire 9, and sealed using a resin 10 and a frame 11. The external electrode 7 and the side conductor 5 are parts that will be soldered later when connecting to the motherboard.

次に、上記従来例のチツプキヤリア基板の製造
方法について第4図と共に説明する。
Next, a method of manufacturing the above conventional chip carrier substrate will be explained with reference to FIG. 4.

まず、最初に第4図a,bに示す様に、ガラス
エポキシ等の絶縁基板1の両面に銅等の導体箔1
2が形成された基板に、ドリル加工等により、ス
ルーホール13を形成する。次に、第4図cに示
す様に、スルーホール13の内壁と導体箔12上
に、無電解銅メツキ膜14及び、電解銅メツキ膜
15を形成する。このとき、両面の導体箔12
が、スルーホール13の内壁に形成したメツキ膜
14,15により、電気的に接続される。通常無
電解銅メツキ膜14の厚みは、0.25〜1μ程度であ
り、電解銅メツキ膜15の厚みは、10〜25μm程
度である。次に第4図dに示す様に、導体箔1
2、無電解銅メツキ膜14、電解銅メツキ膜15
の不要部をエツチングにより除去し、ダイパツド
2、ワイヤボンデイングパツド3、導体配線4、
外部電極7を形成する。次に第4図eに示す様に
スルーホール13のほぼ中心で、不要部を切離
し、チツプキヤリア基板を得る。側面の溝6はス
ルーホール13の約半分が残つた部分である。第
4図dは、第1図のA−A′断面図を示すもので
ある。第4図eの工程における不要部の切離は、
金型を用いてプレスを打ち抜く方法、あるいは、
ダイシグソー等により切断する方法にてなされ
る。
First, as shown in FIG.
A through hole 13 is formed in the substrate 2 formed thereon by drilling or the like. Next, as shown in FIG. 4c, an electroless copper plating film 14 and an electrolytic copper plating film 15 are formed on the inner wall of the through hole 13 and the conductor foil 12. At this time, the conductor foil 12 on both sides
are electrically connected by plating films 14 and 15 formed on the inner wall of the through hole 13. Usually, the thickness of the electroless copper plating film 14 is about 0.25 to 1 μm, and the thickness of the electrolytic copper plating film 15 is about 10 to 25 μm. Next, as shown in FIG. 4d, conductor foil 1
2. Electroless copper plating film 14, electrolytic copper plating film 15
The unnecessary parts of the die pad 2, wire bonding pad 3, conductor wiring 4,
External electrodes 7 are formed. Next, as shown in FIG. 4e, an unnecessary portion is cut off approximately at the center of the through hole 13 to obtain a chip carrier substrate. The side groove 6 is a portion where about half of the through hole 13 remains. FIG. 4d shows a sectional view taken along line A-A' in FIG. The unnecessary parts are removed in the process shown in Figure 4 e.
A method of punching out a press using a mold, or
This is done by cutting with a die sig saw or the like.

前記従来例の欠点として、次に示すものがあ
る。
The disadvantages of the conventional example are as follows.

(1) 不要部の切離を、金型を用い、プレスで打ち
抜く方法で行なつた場合、打ち抜く時には、す
でに、スルーホール内壁に10〜25μmの厚くて
柔軟性に富む、電解銅メツキ膜15が形成され
ている為、プレス時のせん断力が、スルーホー
ル内壁の電解銅メツキ膜15に加わると、電解
銅メツキ膜15がはがれたり、スルーホール内
壁の電解銅メツキ膜の付着強度が下がることが
ある。はがれる割合は、スルーホールピツチ及
びスルーホール径が小さいほど、大きく、高密
度化に対しては非常に不利であり、歩留りが悪
く、信頼性も低下する。
(1) If unnecessary parts are separated by punching with a press using a mold, a 10 to 25 μm thick and flexible electrolytic copper plating film 15 is already formed on the inner wall of the through hole at the time of punching. is formed, so if shear force during pressing is applied to the electrolytic copper plating film 15 on the inner wall of the through hole, the electrolytic copper plating film 15 may peel off or the adhesion strength of the electrolytic copper plating film on the inner wall of the through hole may decrease. There is. The smaller the through-hole pitch and through-hole diameter, the greater the rate of peeling, which is very disadvantageous for high density, poor yield, and reduced reliability.

(2) 不要部の切離の他の方法として、ダイシング
ソー等により切断した場合は、チツプキヤリア
基板の4辺を一度に切断できない為、生産性が
悪くコスト高となる。また、この場合もすで
に、スルーホール内壁に、電解銅メツキ膜15
が形成されている為、プレス法に比べれば程度
は小さいがスルーホール内壁の電解銅メツキ膜
15を引きはがすことがある。また、この方法
では、電解銅メツキ膜のバリが発生する。この
バリは折れやすいため、基板上に落下し回路の
シヨートの原因となり、品質が悪く、信頼性の
低いものとなる。
(2) Another method for cutting off unnecessary parts is to use a dicing saw or the like, but since it is not possible to cut all four sides of the chip carrier board at once, productivity is low and costs are high. Also, in this case, the electrolytic copper plating film 15 has already been applied to the inner wall of the through hole.
is formed, the electrolytic copper plating film 15 on the inner wall of the through-hole may be peeled off, although the extent is smaller than in the pressing method. Further, in this method, burrs are generated in the electrolytic copper plating film. Since these burrs break easily, they fall onto the board and cause short circuits, resulting in poor quality and low reliability.

(3) 高密度化を図る為に、スルーホール径を小さ
くした場合は、無解銅メツキ時のメツキ液のス
ルーホール内への循環が非常に悪くなり、また
メツキのつきまわりが悪くなつて穴内の銅メツ
キ厚はうすく、不均一なものとなつて、チツプ
キヤリア基板の側面導体は、非常に信頼性の低
いものとなる。
(3) If the diameter of the through-hole is made smaller in order to achieve higher density, the circulation of the plating liquid into the through-hole during non-resolved copper plating becomes very poor, and the plating coverage becomes poor. The thickness of the copper plating in the holes is thin and uneven, making the side conductors of the chip carrier board very unreliable.

発明の目的 本発明は、上記従来例の欠点を除去するもので
あり、スルーホール内壁の電解銅メツキ膜を引き
はがすことなく、信頼性の高いチツプキヤリア基
板等の電子回路基板を得ることを目的とするもの
である。
OBJECTS OF THE INVENTION The present invention eliminates the drawbacks of the above-mentioned conventional examples, and aims to obtain a highly reliable electronic circuit board such as a chip carrier board without peeling off the electrolytic copper plating film on the inner wall of the through hole. It is something to do.

発明の構成 本発明は、上記目的を達成する為に、スルーホ
ール穴あけ後、スルーホール内壁の無電解銅メツ
キを行なつた後に、不要部をプレスにより打ち抜
き、その後、電解銅メツキを行なうものである。
Structure of the Invention In order to achieve the above object, the present invention is a method in which after drilling a through hole, electroless copper plating is performed on the inner wall of the through hole, unnecessary parts are punched out using a press, and then electrolytic copper plating is performed. be.

実施例の説明 本発明の一実施例を、第5図、第6図と共に説
明する。本実施例はIC、LSIチツプ等の実装を目
的としたチツプキヤリア基板であり、第5図a〜
iは工程別断面図、第6図は工程別上面図であ
る。また第5図bと第6図a、第5図dと第6図
b、第5図gと第6図cはそれぞれ対応する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 5 and 6. This embodiment is a chip carrier board intended for mounting IC, LSI chips, etc.
i is a sectional view for each step, and FIG. 6 is a top view for each step. Further, FIG. 5b and FIG. 6a, FIG. 5d and FIG. 6b, and FIG. 5g and FIG. 6c correspond, respectively.

まず、第5図aに示す様に、ガラスエポキシ、
ポリクミド等よりなる絶縁基板21の両面に、銅
等よりなる導体箔32を固着する。絶縁基板21
の厚みは、通常0.2〜1.6μm程度である。また、導
体箔32の厚みは、9〜35μ程度である。
First, as shown in Figure 5a, glass epoxy,
Conductor foils 32 made of copper or the like are fixed to both sides of an insulating substrate 21 made of polyamide or the like. Insulating substrate 21
The thickness is usually about 0.2 to 1.6 μm. Further, the thickness of the conductor foil 32 is approximately 9 to 35 μm.

次に、第5図b、第6図aに示す様に、後にチ
ツプキヤリア基板の側面となる部分に、スルーホ
ール33をドリル加工、レーザー加工、パンチン
グ等により形成する。スルーホール33の径は、
チツプキヤリア基板の外部電極のピツチ等により
選択されるが、通常0.2〜1.0mmφ程度である。形
成するスルーホール33の数は、実装するIC、
LSIチツプのピン数により決定される。また、ス
ルーホール33のピツチは、0.3〜2.54mm程度で
あり、IC、LSIチツプのピン数及びチツプサイ
ズ、チツプキヤリア基板の外形寸法等から定めら
れる。
Next, as shown in FIGS. 5B and 6A, a through hole 33 is formed in a portion that will later become the side surface of the chip carrier substrate by drilling, laser processing, punching, or the like. The diameter of the through hole 33 is
Although it is selected depending on the pitch of the external electrodes of the chip carrier substrate, it is usually about 0.2 to 1.0 mmφ. The number of through holes 33 to be formed depends on the IC to be mounted,
Determined by the number of pins on the LSI chip. The pitch of the through holes 33 is approximately 0.3 to 2.54 mm, and is determined based on the number of pins and chip size of the IC or LSI chip, the external dimensions of the chip carrier board, etc.

次に、第5図cに示す様にスルーホール33の
内壁及び導体箔32上に無電解銅メツキ膜34を
形成する。この時、両面の導体箔32が無電解銅
メツキ膜を介して電気的に接続される。無電解銅
メツキは一般にスルーホール基板の製造に用いら
れている方法でなされ、通常その厚みは0.25〜1μ
程度である。
Next, as shown in FIG. 5c, an electroless copper plating film 34 is formed on the inner wall of the through hole 33 and the conductive foil 32. At this time, the conductor foils 32 on both sides are electrically connected via the electroless copper plating film. Electroless copper plating is generally done by the method used for manufacturing through-hole boards, and the thickness is usually 0.25 to 1μ.
That's about it.

次に、第5図d、第6図bに示す様に、スルー
ホール33のほぼ中心で、金型を用いてプレスに
より打ちぬき、不要部を切離する。この時、スル
ーホール33の一部が、チツプキヤリア基板の側
面の溝26となる。また、第6図bに示す様に、
チツプキヤリア基板41は、支持部40によつて
外周部の絶縁基板21に接続されており、また一
枚の絶縁基板21に複数個形成する。支持部40
は、チツプキヤリア基板完成後、あるいはIC、
LSIチツプの実装後切離する。通常チツプキヤリ
ア基板41は、5〜20mm角程度と非常に小さい
為、支持部40により、絶縁基板21に複数個接
続することにより、ハンドリングが容易となり生
産性が向上する。無電解銅メツキ膜は、0.25〜1μ
と非常に薄く、また非常にもろい性質のため、プ
レスによる打ち抜き時に、従来のようにせん断力
が、スルーホール内壁のメツキ膜に加わつた場合
でも、スルーホール内壁の無電解銅メツキ膜がは
がれることはない。
Next, as shown in FIGS. 5 d and 6 b, the through hole 33 is punched out using a press at approximately the center thereof, and unnecessary parts are cut off. At this time, a part of the through hole 33 becomes the groove 26 on the side surface of the chip carrier board. Also, as shown in Figure 6b,
The chip carrier substrate 41 is connected to the insulating substrate 21 on the outer periphery by the support portion 40, and a plurality of chip carrier substrates 41 are formed on one insulating substrate 21. Support part 40
After the chip carrier board is completed, or the IC,
Disconnect after mounting the LSI chip. Since the chip carrier substrate 41 is usually very small, about 5 to 20 mm square, by connecting a plurality of them to the insulating substrate 21 using the support portion 40, handling becomes easier and productivity is improved. Electroless copper plating film is 0.25~1μ
Because it is extremely thin and extremely brittle, even if shearing force is applied to the plating film on the inner wall of the through hole during punching using a press, the electroless copper plating film on the inner wall of the through hole may peel off. There isn't.

次に、第5図eに示す様に側面溝26及び無電
解銅メツキ膜34上に、電解銅メツキ膜35を形
成する。電解銅メツキ膜35の厚みは10〜25μ程
度である。この時、スルーホール33はすでに、
側面の溝26となつており、大孔36と連なつて
いる為、側面の溝26へのメツキ液の循環が非常
に良く、スルーホール径が小さい場合でも、ピン
ホールがなく、均一な厚みで信頼性の高い電解銅
メツキ膜を形成することができる。
Next, as shown in FIG. 5e, an electrolytic copper plating film 35 is formed on the side grooves 26 and the electroless copper plating film 34. The thickness of the electrolytic copper plating film 35 is approximately 10 to 25 μm. At this time, the through hole 33 has already been
Since the groove 26 on the side is continuous with the large hole 36, the circulation of the plating liquid to the groove 26 on the side is very good, and even if the through hole diameter is small, there are no pinholes and the thickness is uniform. It is possible to form a highly reliable electrolytic copper plating film.

次に、第5図fに示す様に、後に除去する部分
上に、メツキレジスト膜37をフオトエツチング
により形成し、メツキレジスト膜37をマスクと
し、エツチングレジスト膜38を形成する。エツ
チングレジスト膜38には、半田メツキ膜等を用
いる。その後、第5図g及び第6図cに示す様に
メツキレジスト37を除去した後、エツチングレ
ジスト膜38をマスクとし、エツチングにより不
要部を除去し、ダイパツド22、ワイヤボンデイ
ングパツド23、導体配線24、外部電極27、
側面溝の導体層25を形成する。エツチングは、
過硫酸アンモニウム等の溶液を用いて行う。本実
施例では、エツチングレジスト膜38に、半田等
のメツキ膜を用いる方法について述べたが、ドラ
クフイルムや液状レジスト等を用いてもよい。た
だし、この場合は側面の溝26及び、不要部の切
離により形成された大孔36の部分に、樹脂等を
充填し、側面溝の導体部をエツチング時に保護す
る必要がある。
Next, as shown in FIG. 5f, a plating resist film 37 is formed by photo-etching on the portion to be removed later, and using the plating resist film 37 as a mask, an etching resist film 38 is formed. As the etching resist film 38, a solder plating film or the like is used. Thereafter, as shown in FIG. 5g and FIG. 6c, after removing the plating resist 37, using the etching resist film 38 as a mask, unnecessary parts are removed by etching, and the die pad 22, wire bonding pad 23, and conductor wiring are removed. 24, external electrode 27,
A conductor layer 25 of side grooves is formed. Etching is
This is done using a solution such as ammonium persulfate. In this embodiment, a method is described in which a plating film such as solder is used as the etching resist film 38, but Drac film, liquid resist, etc. may also be used. However, in this case, it is necessary to fill the side grooves 26 and the large holes 36 formed by cutting off unnecessary parts with resin or the like to protect the conductor portions of the side grooves during etching.

次に、第5図h,iに示す様にエツチングレジ
スト膜38を除去した後、IC、LSIチツプの実装
時に行うワイヤボンデイングのボンデイング性の
向上を図る為、Auメツキを行い、Auメツキ膜3
9を形成する。Auメツキは、電解メツキにより
行い、その厚みは0.1〜1.5μ程度である。また通
常Auメツキを行う場合は、下地に1〜4μのNiメ
ツキを行う。
Next, after removing the etching resist film 38 as shown in FIG.
form 9. Au plating is performed by electrolytic plating, and its thickness is approximately 0.1 to 1.5 μm. In addition, when normally performing Au plating, 1 to 4μ Ni plating is applied to the base.

不要部をエツチングにより除去する際の、エツ
チングレジスト膜に、Auメツキ膜を用いてもよ
く、その場合はエツチングレジスト膜の除去は行
わなくてもよく、エツチングレジスト膜が第5図
iで示したAuメツキ膜39となる。
An Au plating film may be used as the etching resist film when unnecessary parts are removed by etching.In that case, the etching resist film does not need to be removed, and the etching resist film is as shown in Figure 5i. This becomes an Au plating film 39.

発明の効果 本発明は不要部の切離を、無電解銅メツキを行
つた後に行う為次に示す効果がある。
Effects of the Invention The present invention has the following effects because unnecessary parts are separated after electroless copper plating.

(1) プレスにより打ち抜いても、スルーホール内
の無電解銅メツキ膜は、0.25〜1μと非常に薄
く、またもろい性質である為、打ち抜き時のせ
ん断力が加わつてもスルーホール内の無電解銅
メツキ膜がはがれることがなく、非常に高信頼
性のチツプキヤリア基板等の電子回路基板を得
ることができる。
(1) Even when punched with a press, the electroless copper plating film inside the through hole is extremely thin (0.25 to 1μ) and brittle, so even if shear force is applied during punching, the electroless copper plating inside the through hole will The copper plating film does not peel off, and an extremely reliable electronic circuit board such as a chip carrier board can be obtained.

(2) 上に示した理由により、スルーホールピツチ
が、0.4mm、0.51mm、0.635mm等の非常に小さい
場合でも、容易に切離できる為、高密度なチツ
プキヤリア基板等の電子回路基板を得ることが
できる。
(2) For the reason shown above, even if the through-hole pitch is very small, such as 0.4 mm, 0.51 mm, or 0.635 mm, it can be easily separated, resulting in a high-density electronic circuit board such as a chip carrier board. be able to.

(3) 切離方法として、金型を用いプレスにより行
える為、非常に生産性が高く、コストが安い。
(3) As the cutting method is performed by pressing using a mold, productivity is extremely high and costs are low.

(4) 電解銅メツキを行う時は、すでにスルーホー
ル部が溝状態となつており、不要部の切離によ
り形成された、大孔と連なつている為、側面の
溝へのメツキのつきまわりがよく、高密度化を
図る為に、スルーホール径を小さくしても側面
の溝の電解銅メツキ膜は、ピンホールもなく均
一な厚みとなり、信頼性の高い側面溝の導体を
得ることができる。
(4) When performing electrolytic copper plating, the through-hole area is already in the groove state and is connected to the large hole formed by cutting off the unnecessary part, so it is difficult to plate the side groove. Even if the diameter of the through-hole is made small in order to achieve good circumference and high density, the electrolytic copper plating film in the side groove has no pinholes and has a uniform thickness, making it possible to obtain a highly reliable conductor in the side groove. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のチツプキヤリア基板完成後の上
面図、第2図は第1図のA−A′断面図、第3図
はチツプキヤリア基板にICチツプを実装した後
の断面図、第4図a〜eは従来の製造方法におけ
る工程別の断面図、第5図a〜iは本発明の一実
施例における電子回路基板の製造方法の工程別断
面図、第6図a〜cは同製造方法における工程別
上面図である。 21……絶縁基板、22……ダイパツド、23
……ワイヤボンデイングパツド、24……導体配
線、25……側面溝の導体、26……側面の溝、
27……外部電極、32……導体箔、33……ス
ルーホール、34……無電解銅メツキ膜、35…
…電解銅メツキ膜、36……大孔、37……メツ
キレジスト膜、38……エツチングレジスト膜、
39……Auメツキ、40……支持部、41……
チツプキヤリア基板。
Figure 1 is a top view after completing a conventional chip carrier board, Figure 2 is a sectional view taken along line A-A' in Figure 1, Figure 3 is a sectional view after an IC chip is mounted on the chip carrier board, and Figure 4 a. - e are cross-sectional views of each step in a conventional manufacturing method, FIGS. It is a top view according to process in . 21...Insulating substrate, 22...Die pad, 23
... wire bonding pad, 24 ... conductor wiring, 25 ... conductor in side groove, 26 ... side groove,
27...External electrode, 32...Conductor foil, 33...Through hole, 34...Electroless copper plating film, 35...
... Electrolytic copper plating film, 36 ... Large hole, 37 ... Plating resist film, 38 ... Etching resist film,
39... Au plating, 40... Support part, 41...
Chip carrier board.

Claims (1)

【特許請求の範囲】[Claims] 1 片面あるいは両面に導体箔を有する絶縁基板
に貫通孔を形成し、前記貫通孔の内壁を含み前記
導体箔上に無電解メツキを施した後に、前記貫通
孔の一部を残し不要部を切離し、前記貫通孔の一
部の内壁を含み、前記導体箔上に電解メツキを施
し、前記導体箔と貫通孔の一部の内壁のメツキ膜
を用い導体配線を形成することを特徴とする、電
子回路基板の製造方法。
1. After forming a through hole in an insulating substrate having conductive foil on one or both sides, electroless plating is performed on the conductive foil including the inner wall of the through hole, and then cutting off unnecessary parts leaving a part of the through hole. , comprising a part of the inner wall of the through hole, electroplating is performed on the conductor foil, and a conductor wiring is formed using the conductor foil and the plating film of the part of the inner wall of the through hole. Method of manufacturing circuit boards.
JP23413782A 1982-12-29 1982-12-29 Method of producing electronic circuit board Granted JPS59124794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23413782A JPS59124794A (en) 1982-12-29 1982-12-29 Method of producing electronic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23413782A JPS59124794A (en) 1982-12-29 1982-12-29 Method of producing electronic circuit board

Publications (2)

Publication Number Publication Date
JPS59124794A JPS59124794A (en) 1984-07-18
JPS6350862B2 true JPS6350862B2 (en) 1988-10-12

Family

ID=16966212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23413782A Granted JPS59124794A (en) 1982-12-29 1982-12-29 Method of producing electronic circuit board

Country Status (1)

Country Link
JP (1) JPS59124794A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115393A (en) * 1984-06-30 1986-01-23 イビデン株式会社 Method of producing printed circuit board
JPS6472592A (en) * 1987-09-12 1989-03-17 Ngk Insulators Ltd Manufacture of ceramic leadless package
JP5650186B2 (en) * 2012-12-12 2015-01-07 タツタ電線株式会社 Shield film for printed wiring board and method for producing the same
CN113518515B (en) * 2021-03-15 2023-09-08 江西宇睿电子科技有限公司 Method for manufacturing broken joint metalized edge and circuit board

Also Published As

Publication number Publication date
JPS59124794A (en) 1984-07-18

Similar Documents

Publication Publication Date Title
US5976912A (en) Fabrication process of semiconductor package and semiconductor package
US6420664B1 (en) Metal foil having bumps, circuit substrate having the metal foil, and semiconductor device having the circuit substrate
JP2001345414A (en) Lead frame, semiconductor device and its manufacturing method, circuit board, and electronic equipment
JPH0922963A (en) Manufacture of board frame for mounting of semiconductor circuit element
KR100346899B1 (en) A Semiconductor device and a method of making the same
JPH11176885A (en) Semiconductor device and manufacture thereof, film carrier tape, circuit board and the electronic device
US6207354B1 (en) Method of making an organic chip carrier package
US7171744B2 (en) Substrate frame
JPS6350862B2 (en)
JPH11340609A (en) Manufacture of printed wiring board and manufacture of unit wiring board
JPH0897330A (en) Chip carrier and manufacture thereof
JP2784248B2 (en) Method for manufacturing semiconductor device
JP2623980B2 (en) Manufacturing method of substrate with lead for semiconductor mounting
JPH1074859A (en) Qfn semiconductor package
JPH06112395A (en) Hybrid integrated circuit device
JPH08102583A (en) Wiring circuit substrate
JP2819321B2 (en) Electronic component mounting substrate and method of manufacturing the electronic component mounting substrate
JP2872531B2 (en) Semiconductor module substrate and semiconductor device using the same
JP4021115B2 (en) Resin-sealed semiconductor device and manufacturing method thereof
JPH11345895A (en) Semiconductor device, lead frame and manufacturing method thereof
JP4137295B2 (en) CSP tape carrier manufacturing method
JP3383597B2 (en) Method for manufacturing semiconductor device
JPS59152656A (en) Semiconductor device
JPH02252251A (en) Film carrier tape
JP2739123B2 (en) Manufacturing method of electronic component mounting board