JPS6341063A - Manufacture of mos integrated circuit - Google Patents
Manufacture of mos integrated circuitInfo
- Publication number
- JPS6341063A JPS6341063A JP61185513A JP18551386A JPS6341063A JP S6341063 A JPS6341063 A JP S6341063A JP 61185513 A JP61185513 A JP 61185513A JP 18551386 A JP18551386 A JP 18551386A JP S6341063 A JPS6341063 A JP S6341063A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- transistors
- films
- mos transistors
- silicon nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 37
- 239000010703 silicon Substances 0.000 claims abstract description 37
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 19
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 15
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 238000002161 passivation Methods 0.000 claims abstract description 10
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- 238000010894 electron beam technology Methods 0.000 claims abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- 238000009834 vaporization Methods 0.000 claims 1
- 230000008016 vaporization Effects 0.000 claims 1
- 238000001259 photo etching Methods 0.000 abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 3
- 229910001873 dinitrogen Inorganic materials 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 238000000151 deposition Methods 0.000 abstract 1
- 150000004767 nitrides Chemical class 0.000 abstract 1
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 101100284769 Drosophila melanogaster hemo gene Proteins 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は単一シリコン基板上でしきい値電圧の異なるシ
リコンゲートMOSトランジスタを得ることを目的とす
るMO8集積回路の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing an MO8 integrated circuit, the purpose of which is to obtain silicon gate MOS transistors with different threshold voltages on a single silicon substrate.
従来の技術
従来の単一シリコン基板上でしきい値電圧の異なる二種
類のMOSトランジスタを得る方法としては、次のよう
なものがある。2. Description of the Related Art Conventional methods for obtaining two types of MOS transistors with different threshold voltages on a single silicon substrate include the following.
■不純物の添加によりゲート酸化膜直下のシリコン表面
の不純物濃度を異なる値とする方法■ゲート酸化膜の模
りを異なる値とする方法■ゲート電極材料として異なる
物質を用いる方法発明が解決しようとする問題点
このような従来の方法では、いずれもMO8集積回路の
製造工程の途中から、しきい値電圧を異なる値とするた
めにプロセス条件を追加設定しなければならなかった。■Method of making the impurity concentration on the silicon surface directly under the gate oxide film different values by adding impurities ■Method of making the pattern of the gate oxide film have different values ■Method of using different substances as gate electrode materials Problems In all of these conventional methods, process conditions must be additionally set in the middle of the manufacturing process of the MO8 integrated circuit in order to set the threshold voltage to a different value.
本発明は上記問題点を解決するため、単一シリコン基板
上でしきい値電圧の異なるシリコンゲートMO8トラン
ジスタを得るためのMO8集積回路の製造工程において
、しきい値電圧を異なる値とするためにプロセス条件を
追加設定することなく、通常のしきい値電圧が等しいシ
リコンゲートMoSトランジスタのMO8集積回路の製
造工程に簡単な工程を追加することにより、しきい値電
圧の異なるシリコンゲートMOSトランジスタのMO3
集積回路を得る製造方法を提供することを目的とするも
のである。In order to solve the above-mentioned problems, the present invention provides a method for setting threshold voltages to different values in the manufacturing process of an MO8 integrated circuit for obtaining silicon gate MO8 transistors with different threshold voltages on a single silicon substrate. By adding a simple process to the manufacturing process of a normal MO8 integrated circuit made of silicon gate MoS transistors with the same threshold voltage without setting any additional process conditions, MO3 of silicon gate MOS transistors with different threshold voltages can be manufactured.
The object is to provide a manufacturing method for obtaining integrated circuits.
問題点を解決するための手段
上記問題点を解決するため、本発明は、アルミニウム電
極を電子ビーム蒸気法によって形成した111−シリコ
ン基板上の複数のシリコンゲートMOSトランジスタ上
に二酸化シリコンをパッシベーション膜として形成し、
さらに所定のMOS トランジスタ上のパッシベーショ
ン膜上に窒化シリコン脱を部分的に形成し、その後に熱
処理を行い、しきい値電圧の異なる2種類のMOSトラ
ンジスタを単一シリコン基板に形成するものである。Means for Solving the Problems In order to solve the above problems, the present invention provides silicon dioxide as a passivation film on a plurality of silicon gate MOS transistors on a 111-silicon substrate in which aluminum electrodes are formed by an electron beam vapor method. form,
Furthermore, a silicon nitride layer is partially formed on a passivation film on a predetermined MOS transistor, and then heat treatment is performed to form two types of MOS transistors having different threshold voltages on a single silicon substrate.
作用
上記本発明による製造方法により、窒化シリコン嗅がパ
ッシベーション膜を介してゲート部上に形成されたシリ
コンゲートMoSトランジスタのしきい値電圧を窒化シ
リコン膜が形成されないシリコンゲートMOSトランジ
スタのしきい値電圧と異ならしめることができる。Effect: By using the manufacturing method according to the present invention described above, the threshold voltage of a silicon gate MoS transistor formed on the gate portion through a silicon nitride passivation film can be changed to the threshold voltage of a silicon gate MOS transistor on which no silicon nitride film is formed. It can be made different.
実施例 以下、本発明の一実施例を図面に基づいて説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.
第1図において、1はP型シリコン基板であり、このP
型シリコン基板1の上に、まず二酸化シリコンからなる
厚いフィールド絶縁rtA2を形成し、トランジスタを
形成する活性領域3 a、 3 bの窓を形成する〈第
1図(a))。その上全面に、二酸化シリコンを熱酸化
法で約1000人の厚さに形成し、さらにその上全面に
化学気相成長法により多結晶シリコンを3000〜50
00Aの厚さで形成した後、ホトエツチング法でパター
ニングして、シリコンゲート部としての二酸化シリコン
からなるゲート絶縁n 4 a、 4 bと多結晶シリ
コンからなるシリコンゲート5a、5bを形成し、次に
、既知のガス拡散法、イオン注入法などを用いて不純物
拡散によりP型シリコン・基板1の表面からソース領域
5 a、 5 bおよびドレン領域7 a、 7 bを
自己整合法で形成する(第1図(b))。さらに、その
上全面に、化学気相成長法により二酸化シリコン膜8を
形成し、ソース電極、ドレイン電極取り出し部分のみ二
酸化シリコンrfA8をエツチングで除去してコンタク
ト窓を形成したのち、全面に電子ビーム蒸着法でアルミ
ニウムをMMし、ホトエツチング法でバターニングを行
ないソースm#19a、9b 、ドレイン電極10a、
10bを形成する(第1図(C))。次に、水素ガス
を一部含んだ窒素ガス雰囲気中、温度450℃で20分
間の熱処理(へρシンター)を加えることにより、しき
い値電圧の等しい2個のシリコンゲートMOSトランジ
スタを得ることができる。In FIG. 1, 1 is a P-type silicon substrate, and this P
First, a thick field insulator rtA2 made of silicon dioxide is formed on a silicon substrate 1, and windows for active regions 3a and 3b in which transistors are to be formed are formed (FIG. 1(a)). On top of that, silicon dioxide is formed to a thickness of approximately 1,000 layers using thermal oxidation, and then polycrystalline silicon is formed on the entire surface using a chemical vapor deposition method to a thickness of 3,000 to 50 nm.
After forming to a thickness of 00A, patterning is performed using a photoetching method to form gate insulators n 4 a and 4 b made of silicon dioxide as silicon gate portions and silicon gates 5 a and 5 b made of polycrystalline silicon. , source regions 5 a, 5 b and drain regions 7 a, 7 b are formed from the surface of P-type silicon substrate 1 by self-alignment method by impurity diffusion using known gas diffusion method, ion implantation method, etc. Figure 1 (b)). Furthermore, a silicon dioxide film 8 is formed on the entire surface by chemical vapor deposition, and the silicon dioxide rfA 8 is removed by etching only at the source and drain electrode extraction portions to form a contact window, and then electron beam evaporation is performed on the entire surface. Aluminum is milled using a method and patterned using a photoetching method to form source m#19a, 9b, drain electrode 10a,
10b (FIG. 1(C)). Next, by applying heat treatment (hemo sintering) at a temperature of 450°C for 20 minutes in a nitrogen gas atmosphere containing a portion of hydrogen gas, it is possible to obtain two silicon gate MOS transistors with equal threshold voltages. can.
次に、全面に、二酸化シリコンを化学気相成長法で形成
してパッシベーション膜11を形成し、さらにその上全
面に、窒化シリコンをプラズマ化学気相成長法で形成し
、ホトエツチング法により所定のトランジスタのシリコ
ンゲート部上のみに窒化シリコン膜12を残す(第1図
(d))。その後、たとえば、水素ガスを一部含んだ窒
素ガス雰囲気中、温度410℃で30分間熱処理を加え
る。以上により、窒化シリコン膜12を残したシリコン
ゲートMOSトランジスタのしきい値電圧を所定の高い
電圧とすることができる。Next, silicon dioxide is formed on the entire surface by chemical vapor deposition to form a passivation film 11, and silicon nitride is further formed on the entire surface by plasma chemical vapor deposition, and predetermined transistors are formed by photoetching. The silicon nitride film 12 is left only on the silicon gate portion (FIG. 1(d)). Thereafter, for example, heat treatment is applied at a temperature of 410° C. for 30 minutes in a nitrogen gas atmosphere containing a portion of hydrogen gas. As described above, the threshold voltage of the silicon gate MOS transistor in which the silicon nitride film 12 remains can be set to a predetermined high voltage.
次にその作用について説明する。Next, its effect will be explained.
電子ビーム蒸着法でアルミニウムをMoSトランジスタ
のソース電極9 a、 9 bおよびドレイン電極10
a、10bとして形成したとき、蒸着時の放射線損傷に
起因してシリコンゲート部のゲート絶縁膜4 a、 4
b中の界面単位密度が増加する。すなわち、MOSト
ランジスタのしきい値電圧vthは増加した界面単位密
度NSSのため、理想的なN SS= OのMOSトラ
ンジスタのしきい値電圧より低い値を示す。これをアル
ミニウム電極のパターニング俊の熱処理(へρシンター
)で回復させても、450℃で20分間の熱処理(Aρ
シンター)では理想的なしきい値電圧より約0.5V低
い値になる。そして窒化シリコン膜12を残していない
シリコンゲートMOSトランジスタでは最終工程の41
0℃で30分間の熱処理によっても、第2図(a)に実
線で示すように、約0.1V上昇するだけであり、一方
窒化シリコン膜12を有するシリコンゲートMOSトラ
ンジスタでは最終工程の410℃で30分間の熱処理に
より、第2図(b)に実、I5aで示すように、理想的
なしきい値電圧近くまで約0.5V上昇して安定する。The source electrodes 9a, 9b and the drain electrode 10 of the MoS transistor are coated with aluminum using an electron beam evaporation method.
a, 10b, the gate insulating film 4a, 4 of the silicon gate portion is damaged due to radiation damage during vapor deposition.
The interfacial unit density in b increases. That is, the threshold voltage vth of the MOS transistor has a value lower than the threshold voltage of an ideal MOS transistor with N SS = O due to the increased interfacial unit density NSS. Even if this can be recovered by patterning aluminum electrode heat treatment (Aρ sintering), heat treatment at 450℃ for 20 minutes (Aρ sintering)
sinter), the value is about 0.5 V lower than the ideal threshold voltage. In a silicon gate MOS transistor in which the silicon nitride film 12 is not left, the final step 41 is performed.
Even with heat treatment at 0°C for 30 minutes, the voltage increases by only about 0.1V, as shown by the solid line in FIG. After heat treatment for 30 minutes, the voltage rises by about 0.5 V to near the ideal threshold voltage and becomes stable, as shown by I5a in FIG. 2(b).
すなわち、窒化シリコン膿12の有無により、しきい値
電圧が約0.4V程度異なる2g!類のMOSトランジ
スタが実現できる。このようにして形成された2種類の
シリコンゲートMOSトランジスタは実使用の状態では
全く安定した特性を示している。In other words, the threshold voltage differs by about 0.4V depending on the presence or absence of silicon nitride pus 12! Similar MOS transistors can be realized. The two types of silicon gate MOS transistors formed in this manner exhibit completely stable characteristics in actual use.
なお、本実施例ではNチャネル型MOSトランジスタに
ついて述べたがPチャネル型MOSトランジスタを用い
ても同様に実現できることはいうまでもない。Pチャネ
ル型MOSトランジスタの場合の、R終工程の熱処理に
よるしきい(ia雷電圧絶対値)の変化を同様に第2図
(a)、 (b)に破線で示す。Although this embodiment has been described using an N-channel MOS transistor, it goes without saying that the same implementation can be achieved using a P-channel MOS transistor. In the case of a P-channel type MOS transistor, the change in the threshold (absolute value of ia lightning voltage) due to the heat treatment in the R final step is similarly shown by broken lines in FIGS. 2(a) and 2(b).
発明の効果
以上のように本発明によれば、シリコンゲートMO8ト
ランジスタの製造工程に、パッシベーション膜を形成し
、その上に部分的に窒化シリコン膜を形成し、熱処理を
行なう工程を追加することにより、異なるしきい値電圧
を有する2種類のシリコンゲート、〜10Sトランジス
タを容易に得ることができる。Effects of the Invention As described above, according to the present invention, the steps of forming a passivation film, partially forming a silicon nitride film thereon, and performing heat treatment are added to the manufacturing process of a silicon gate MO8 transistor. , two types of silicon gate, ~10S transistors with different threshold voltages can be easily obtained.
第1図(a)〜(d)は本発明の一実施例を示す製造工
程の順に並べたシリコンゲートMOSトランジスタの断
面構造図、第2図(a)は窒化シリコン膜を有しないシ
リコンゲートMOSトランジスタの、第2図(b)は窒
化シリコン膜を有するシリコンゲートMOSトランジス
タのR終工程の熱処理によるしきいFi雷電圧変化をそ
れぞれ示ず特性図である。
1・・・P型シリコン基板、2・・・フィールド絶縁膜
、3・・・MOSトランジスタの活性領域、4・・・グ
ー1−絶n躾、5・・・ゲート、6・・・ソース領域、
7・・・ドレイン領域、8・・・二酸化シリコン膜、9
・・・ソース電極、10・・・ドレイン電極、11・・
・パッシベーション膜、12・・・窒化シリコン模。FIGS. 1(a) to 1(d) are cross-sectional structural diagrams of silicon gate MOS transistors arranged in the order of manufacturing steps showing one embodiment of the present invention, and FIG. 2(a) is a silicon gate MOS transistor without a silicon nitride film. FIG. 2(b) is a characteristic diagram of a silicon gate MOS transistor having a silicon nitride film, without showing changes in threshold Fi lightning voltage due to heat treatment in the R final step. DESCRIPTION OF SYMBOLS 1...P-type silicon substrate, 2...Field insulating film, 3...Active region of MOS transistor, 4...Goo 1-Zetsun control, 5...Gate, 6...Source region ,
7... Drain region, 8... Silicon dioxide film, 9
...Source electrode, 10...Drain electrode, 11...
- Passivation film, 12... silicon nitride model.
Claims (1)
した単一シリコン基板上の複数のシリコンゲートMOS
トランジスタ上に二酸化シリコンをパッシベーション膜
として形成し、さらに所定のMOSトランジスタ上のパ
ッシベーション膜上に窒化シリコン膜を部分的に形成し
、その後に熱処理を行い、しきい値電圧の異なる2種類
のMOSトランジスタを単一シリコン基板に形成するM
OS集積回路の製造方法。1. Multiple silicon gate MOSs on a single silicon substrate with aluminum electrodes formed by electron beam vaporization
Silicon dioxide is formed as a passivation film on the transistor, and then a silicon nitride film is partially formed on the passivation film on a predetermined MOS transistor, and then heat treatment is performed to create two types of MOS transistors with different threshold voltages. M formed on a single silicon substrate
A method for manufacturing an OS integrated circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61185513A JPS6341063A (en) | 1986-08-07 | 1986-08-07 | Manufacture of mos integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61185513A JPS6341063A (en) | 1986-08-07 | 1986-08-07 | Manufacture of mos integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6341063A true JPS6341063A (en) | 1988-02-22 |
Family
ID=16172097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61185513A Pending JPS6341063A (en) | 1986-08-07 | 1986-08-07 | Manufacture of mos integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6341063A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01204433A (en) * | 1988-02-09 | 1989-08-17 | Seiko Instr & Electron Ltd | Semiconductor device |
JP2006054265A (en) * | 2004-08-10 | 2006-02-23 | Seiko Instruments Inc | Method of manufacturing semiconductor integrated circuit device |
JP2006054264A (en) * | 2004-08-10 | 2006-02-23 | Seiko Instruments Inc | Semiconductor integrated circuit device |
-
1986
- 1986-08-07 JP JP61185513A patent/JPS6341063A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01204433A (en) * | 1988-02-09 | 1989-08-17 | Seiko Instr & Electron Ltd | Semiconductor device |
JP2006054265A (en) * | 2004-08-10 | 2006-02-23 | Seiko Instruments Inc | Method of manufacturing semiconductor integrated circuit device |
JP2006054264A (en) * | 2004-08-10 | 2006-02-23 | Seiko Instruments Inc | Semiconductor integrated circuit device |
JP4567396B2 (en) * | 2004-08-10 | 2010-10-20 | セイコーインスツル株式会社 | Semiconductor integrated circuit device |
JP4575079B2 (en) * | 2004-08-10 | 2010-11-04 | セイコーインスツル株式会社 | Semiconductor integrated circuit device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6656804B2 (en) | Semiconductor device and production method thereof | |
JP3007437B2 (en) | Method for manufacturing CMOS device | |
US4268321A (en) | Method of fabricating a semiconductor device having channel stoppers | |
US7208360B2 (en) | Semiconductor device and method of manufacturing the same | |
JPS58148445A (en) | Method of producing complementary field effect transistor | |
JPH0374878A (en) | Manufacturing method of semiconductor device | |
JPH0794503A (en) | Oxidizing method for silicon substrate | |
JPS6341063A (en) | Manufacture of mos integrated circuit | |
JPH03227516A (en) | Manufacture of semiconductor device | |
JPS5923476B2 (en) | Manufacturing method of semiconductor device | |
JPH0342868A (en) | C-mos thin film transistor device and manufacture thereof | |
JP3140023B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH0196960A (en) | Semiconductor device | |
JPH0231468A (en) | Manufacture of floating gate type semiconductor memory device | |
JPS5892268A (en) | Manufacture of semiconductor device | |
JPS61239671A (en) | Manufacture of semiconductor memory device | |
JP2990806B2 (en) | Method for manufacturing semiconductor device | |
JPS6097662A (en) | Manufacture of semiconductor device | |
JPS60133755A (en) | Manufacture of semiconductor device | |
JPH03293724A (en) | Manufacture of semiconductor element | |
JPH0427166A (en) | Manufacture of semiconductor nonvolatile memory | |
JPH0258267A (en) | Manufacture of mis type semiconductor integrated circuit device | |
JPS60134469A (en) | Manufacture of semiconductor device | |
JPS59150477A (en) | Manufacture of semiconductor device | |
JPS63184365A (en) | Manufacture of mos type semiconductor device |