JPS5892268A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5892268A
JPS5892268A JP56191463A JP19146381A JPS5892268A JP S5892268 A JPS5892268 A JP S5892268A JP 56191463 A JP56191463 A JP 56191463A JP 19146381 A JP19146381 A JP 19146381A JP S5892268 A JPS5892268 A JP S5892268A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
oxide film
film
silicon film
oxidation treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56191463A
Other languages
Japanese (ja)
Other versions
JPH0586672B2 (en
Inventor
Jun Fukuchi
福地 順
Ichizo Kamei
亀井 市蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP56191463A priority Critical patent/JPS5892268A/en
Publication of JPS5892268A publication Critical patent/JPS5892268A/en
Publication of JPH0586672B2 publication Critical patent/JPH0586672B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To manufacture an extremely high density MOSIC, by making a polycrystalline silicon film an insulating material as an oxide (SiO2), thereby excluding leaking currents between cells and enhancing the insulating effect between layers. CONSTITUTION:A part of a second gate polycrystalline silicon film remains in a concave part 14 at the lower part of a first gate polycrystalline silicon film 5. This part acts as a source of the leaking currents. The remaining polycrystalline silicon material is all made to be SiO2, by performing the first oxidation treatment, in which heat treatment is performed for ten minutes in an dried oxygen at 900 deg.C, and further performing the second oxidation treatment for thirty minutes in steam atmosphere at 900 deg.C. At the same time, an oxide film is grown on the second gate polycrystalline silicon film, and the insulating property is enhanced.

Description

【発明の詳細な説明】 本発明は、多層多結晶ゲニト構造を有するMO8形半導
体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an MO8 type semiconductor integrated circuit having a multilayer polycrystalline structure.

MO8型トランジスタを用いて形成される半導体集積回
路(以下MO8ICと記す)、たとえば、ダイナミック
RAMあるいは電荷結合素子(COD)ではその集積度
が極めて高<6.2層あるいは3層の多結晶シリコンゲ
ートを具備するMO8形トランジスタ構造が用いられて
いる。また、設計のだめのデザインルールも6μmを基
準とするデザインルールから2〜3μmを基準色するデ
ザインルールへと移シ、さらに、MO8型トランジスタ
のゲ−ト酸化膜の厚みも1000人程度0厚みから40
0〜600人程度の厚みへと薄くなり、高集積化がます
ます進む方向にある。
Semiconductor integrated circuits (hereinafter referred to as MO8IC) formed using MO8 type transistors, such as dynamic RAM or charge-coupled devices (COD), have an extremely high degree of integration < 6.2 or 3 layer polycrystalline silicon gates. An MO8 type transistor structure is used. In addition, the design rule for design failures has been changed from a design rule based on 6 μm to a design rule based on 2 to 3 μm, and the thickness of the gate oxide film of MO8 type transistors has also changed from about 1000 to 0. 40
The thickness is decreasing to about 0 to 600 people, and the trend is toward higher integration.

第1図は従来のMO5ICたとえばダイナミックRAM
用として知られている基本セル断面構造を示す図であり
、図中1はシリコン基板、2はフィールド酸化膜、3は
第1ゲート酸化膜、4は第2ゲート酸化膜、6は第1ゲ
ート多結晶シリコン膜、6は第2ゲート多結晶シリコン
膜、7は絶縁ならびに表面保護用の5in2膜、8,9
.10はアルミニウム(A1)電極、11はソース、ド
レイン拡散部、12はチャンネルストッパ領域そして1
3は濃度コントロールのなされた表面層である。
Figure 1 shows a conventional MO5IC, for example, a dynamic RAM.
In the figure, 1 is a silicon substrate, 2 is a field oxide film, 3 is a first gate oxide film, 4 is a second gate oxide film, and 6 is a first gate oxide film. Polycrystalline silicon film, 6 is a second gate polycrystalline silicon film, 7 is a 5in2 film for insulation and surface protection, 8, 9
.. 10 is an aluminum (A1) electrode, 11 is a source and drain diffusion region, 12 is a channel stopper region, and 1
3 is a surface layer whose density is controlled.

以上のような構造によって、第2図の等価回路であられ
される基本セルが得られる。
With the structure described above, a basic cell formed by the equivalent circuit shown in FIG. 2 can be obtained.

ところで、6μmを基準とするデザインルールにより、
たとえばゲート酸化膜厚が1oOO人の16にビットダ
イナミックRAMを製作するにあたり従来は第3図(a
)〜(0で示す製造工程の下で製作がなされていた。以
下に具体例を示して説明する。
By the way, due to the design rule based on 6μm,
For example, when manufacturing a 16-bit dynamic RAM with a gate oxide film thickness of 1oOO, the conventional method was as shown in Figure 3 (a).
) to (0) were manufactured under the manufacturing processes indicated by 0. Specific examples will be shown and explained below.

先ず、P型(1oO)、比抵抗15Ω−偏のシリコン基
板1を出発材料として用い、選択酸化法により1000
0人の厚みのフィールド酸化膜2とこの下部に深さが1
.5μmのP+形チャンネルストッパ領域12を形成す
る〔第3図(a)〕。次いで、第3図(b)で示すよう
に、フィールド酸化膜2によって覆われることなく露呈
するシリコン基板上に厚さ1Ooo人の第1ゲート酸化
膜3を形成し、さらにMO8形トランジスタのしきい値
(vT)を制御するためにボロンイオン(B+)をイオ
ン注入する。
First, using a P-type (1oO) silicon substrate 1 with a resistivity of 15Ω as a starting material, a 1000Ω
A field oxide film 2 with a thickness of 0 and a depth of 1 below this
.. A P+ type channel stopper region 12 of 5 μm is formed [FIG. 3(a)]. Next, as shown in FIG. 3(b), a first gate oxide film 3 with a thickness of 100 mm is formed on the exposed silicon substrate without being covered with the field oxide film 2, and the threshold of the MO8 transistor is Boron ions (B+) are implanted to control the value (vT).

次いで、リン乃をドープした多結晶シリコンを4000
人の厚さに蒸着したのち、所定の食刻処理を施し、第1
ゲート多結晶シリコン膜6を形成する〔第3図(C)〕
。なお、第1ゲート多結晶シリコン膜6の下部には適当
なしきい値電圧を得るだめの濃度に制御され九層13が
ある。
Next, 4000 ml of polycrystalline silicon doped with phosphorus
After being vapor-deposited to a human thickness, a predetermined etching process is performed, and the first
Forming gate polycrystalline silicon film 6 [Fig. 3(C)]
. Note that below the first gate polycrystalline silicon film 6 there are nine layers 13 whose concentration is controlled to obtain an appropriate threshold voltage.

次に、第3図(d)で示すように、厚さ1Ooo人の第
2ゲート酸化膜4を形成する。この後、前記と同様にし
て(P)をドープした厚さ4000人の第2ゲート多結
晶シリコン膜6を所定の部分に形成したのち、ソース、
ドレイン拡散部を形成するだめ砒素イオン(As”)を
矢印のごとくイオン注入する〔第3図(e)〕。そして
、最後に絶縁ならびに保護用の膜としてリンガラス膜7
を8000人の厚みで堆積し、さらに電極配線用の窓を
穿設することにより基本セルの要部が完成する〔第3図
(わ〕。
Next, as shown in FIG. 3(d), a second gate oxide film 4 having a thickness of 100 mm is formed. Thereafter, a second gate polycrystalline silicon film 6 doped with (P) and having a thickness of 4000 nm is formed in a predetermined portion in the same manner as described above, and then the source and
Arsenic ions (As'') to form the drain diffusion region are implanted as shown in the arrows [Fig. 3(e)].Finally, a phosphorus glass film 7 is added as an insulating and protective film.
The main part of the basic cell is completed by depositing 8,000 wafers thick and drilling a window for electrode wiring (Figure 3).

次に、約1μmの厚さのA1層を設け、これを電極8〜
1oとして独立させることにより第1図で示した構造が
得られる。
Next, an A1 layer with a thickness of about 1 μm is provided, and this is applied to the electrodes 8 to 8.
By making it independent as 1o, the structure shown in FIG. 1 can be obtained.

しかしながら、上記の基本セルの製造方法を駆使して、
2〜3μmを基準とするデザインルールに基づく、ゲー
ト酸化膜厚400〜600人、フィールド酸化膜厚60
00人の64にビットダイナミックRAMを製作した場
合、殆んどのウェーハにおいてメモリーセル(ビット)
間で500μA〜1mAにも達する太きなリーク電流が
観測され、しだところ、セルの第2ゲート多結晶シリコ
ン膜がリーク電流の発生源になっていることが判明した
。また、走査形電子顕微鏡による観察の結果、第4図で
示すように、第1ゲート多結晶/リコン膜6の下部の凹
所14に第2ゲート多結晶シリコン膜の一部が残留し、
これがリーク電流の発生源となっていることが明らかと
なった。さらに、図示した第2ゲート多結晶シリコン膜
の一部の残留は、第1ゲート多結晶シリコン膜5の形成
時に、しきい値電圧の制御精度を高めるだめに施される
エツチングにより形成されるフィールド酸化膜2のひさ
し状部分の下部にできる凹所14に第2ゲート多結晶シ
リコン膜が入り込み、これがエツチングにより除去され
ることなく残存することによることも判明した。この不
都合を除去するためには、第2ゲート多結晶シリコン膜
のエツチング時にオーバエツチングとなるようエツチン
グ処理を施せばよいところであるが、この場合、サイド
エツチングによるゲート幅の減少が発生し、このことに
より、しきい値電圧の制御精度が著しく損われてしまう
However, by making full use of the above basic cell manufacturing method,
Gate oxide thickness: 400-600 mm, field oxide thickness: 60 mm, based on design rules based on 2-3 μm
When manufacturing a bit dynamic RAM with 64 bits of 00 people, most of the wafers have memory cells (bits)
A large leakage current reaching 500 μA to 1 mA was observed between the cells, and it was found that the second gate polycrystalline silicon film of the cell was the source of the leakage current. Further, as a result of observation using a scanning electron microscope, as shown in FIG. 4, a portion of the second gate polycrystalline silicon film remains in the recess 14 under the first gate polycrystalline silicon film 6.
It became clear that this was the source of leakage current. Furthermore, the remaining part of the second gate polycrystalline silicon film shown in the figure is a field formed by etching to improve the control accuracy of the threshold voltage when forming the first gate polycrystalline silicon film 5. It has also been found that this is because the second gate polycrystalline silicon film enters the recess 14 formed under the eaves-like portion of the oxide film 2 and remains without being removed by etching. In order to eliminate this inconvenience, it would be possible to perform an etching process to cause over-etching when etching the second gate polycrystalline silicon film, but in this case, the gate width would be reduced due to side etching, and this problem would occur. As a result, the control accuracy of the threshold voltage is significantly impaired.

本発明は、以上説明してきた、不都合の排除を意図して
なされたもので、セル間のリーク電流を排除するととも
に、各層間の絶縁効果を高め、超高密度のMO3IC,
たとえば64にビットダイナミックRAMを高歩留で製
造することのできる方法を提供するものである。
The present invention was made with the intention of eliminating the above-mentioned disadvantages, and it eliminates leakage current between cells, improves the insulation effect between each layer, and improves ultra-high density MO3IC.
For example, the present invention provides a method for manufacturing a 64-bit dynamic RAM with high yield.

本発明では、リーク電流の発生原因となる部分の多結晶
シリコン膜を酸化物(S102)として絶縁物化し、リ
ーク電流を排除する・工程を従来の方法に追加するとと
もに、凹所14内の多結晶シリコン残留物を酸化するに
あたり、ドレイン、ソース拡散部の深さに大きな変化を
もたらすことのないよう好ましくは水蒸気雰囲気中で1
000℃以下の熱処理条件を設定したところに特徴があ
る。
In the present invention, the polycrystalline silicon film in the portion that causes leakage current is turned into an insulator using oxide (S102) to eliminate leakage current. When oxidizing the crystalline silicon residue, it is preferable to oxidize the crystalline silicon residue for 1 hour in a water vapor atmosphere so as not to cause a large change in the depth of the drain and source diffusion regions.
The feature is that the heat treatment conditions are set at 000°C or less.

因に、ゲート酸化膜厚を600人とする2〜3μ基準の
プロセスでは、凹所14内の多結晶シリコン残留物の大
きさは600Å以下であるが、600人の多結晶シリコ
ンを酸化物とするだめの処理として、乾燥02雰囲気中
、1000℃の熱処理を施した場合には約10分間の処
理時間が、また、水蒸気雰囲気中1000℃の熱処理に
よると、約13分間の処理時間が必要とされる。これら
の熱処理を追加すると、ソース、ドレイン拡散部は約0
.2〜0.4μm深くなり、短チャンネル効果が助長さ
れてしまう。ところで、Pあるいはボロン(B)のドー
プされた多結晶シリコンの水蒸気雰囲気中での酸化速度
がこれらのドープされていないも900℃で2.0.8
50℃では2.6と1000℃より低いところで大きく
なることも知られている。
Incidentally, in a 2-3μ standard process with a gate oxide film thickness of 600 μm, the size of the polycrystalline silicon residue in the recess 14 is less than 600 Å, but if the 600 μm polycrystalline silicon is When heat treatment is performed at 1000°C in a dry 02 atmosphere, the treatment time is about 10 minutes, and when heat treatment is performed at 1000°C in a steam atmosphere, the treatment time is about 13 minutes. be done. When these heat treatments are added, the source and drain diffusion regions become approximately 0.
.. The depth becomes 2 to 0.4 μm, and the short channel effect is promoted. By the way, the oxidation rate of polycrystalline silicon doped with P or boron (B) in a water vapor atmosphere is 2.0.8 at 900°C for undoped polycrystalline silicon.
It is also known that at 50°C, it becomes 2.6, which increases at temperatures lower than 1000°C.

本発明では、かかる水蒸気雰囲気中での低温処理による
酸化の選択性と拡散長への影響度の低さを積極的に利用
して凹所内の多結晶シリコン残留物を効果的に酸化物化
するとともに併せて、第2ゲート多結晶シリコン膜上に
も酸化膜を成長させ絶縁性を高めている。
In the present invention, the polycrystalline silicon residue in the recess is effectively converted into oxide by actively utilizing the selectivity of oxidation and the low influence on the diffusion length due to such low-temperature treatment in a steam atmosphere. At the same time, an oxide film is also grown on the second gate polycrystalline silicon film to improve insulation.

以下に実施例に参照して本発明の製造方法を説する。第
3図(a)〜(el)で示した従来の製造工程を同一構
造の基本セル構造をうる。なお、従来の基本セルとは、
フィールド酸化膜2の厚みが6000人、第1.第2ゲ
ート酸化膜3,4の厚みが600人、P+形チャンネル
ストッパ領域12の深さが0.8μm1  ソース、ド
レイン拡散部の深さが0.4μ■であることの4点で相
違している。かかる製造工程を経ることによって、第4
図で示したように凹所14に多結晶シリコン残留物が残
る。
The manufacturing method of the present invention will be described below with reference to Examples. A basic cell structure having the same structure is obtained through the conventional manufacturing process shown in FIGS. 3(a) to 3(el). Furthermore, the conventional basic cell is
The thickness of the field oxide film 2 is 6000, and the first. There are four differences: the thickness of the second gate oxide films 3 and 4 is 600 mm, the depth of the P+ type channel stopper region 12 is 0.8 μm, and the depth of the source and drain diffusion portions is 0.4 μm. There is. By going through this manufacturing process, the fourth
Polycrystalline silicon residue remains in the recess 14 as shown.

次いで、流量をs l/f+とじた乾燥酸素中で900
℃の熱処理を10分間施す第1の酸化処理を行い、引き
続いて水蒸気雰囲気(バブラ一温度90’C。
Then, in dry oxygen with a flow rate of s l/f + 900
A first oxidation treatment was carried out by heat treatment at 10°C for 10 minutes, followed by a steam atmosphere (bubbler temperature 90'C).

流量41/% )中で90Q°Cの第2酸化処理を30
分間施す。かかる酸化処理によって多結晶シリコンは6
60人酸化され、凹所14内の多結晶シリコン残留物は
全て5102となった。また、第2ゲート多結晶シリコ
ン膜の上には約13oO人の酸化膜が形成された。第5
図(&)は以上の過程を経た基本セルの断面構造を示す
。なお、上記の酸化処理で乾燥酸素中での処理を施した
のは、多結晶シところで、水蒸気雰囲気中での酸化条件
は、酸化時間を極力短くするとともにソース、ドレイン
拡散部の拡散長の増加を避けることを考慮して決定する
必要がある。このためには不純物ドープ多結晶シリコン
と非不純物ドープ多結晶シリコンとの酸化速度比が大き
い温度、すなわち、1000℃以下、のぞましくは8o
o〜900’Cの処理温度とするのがよい。8oO〜9
00℃のは上記のように酸化速度比が2.0〜3.0と
大きく、また、酸化時間も最大で40分程度で足りる。
The second oxidation treatment at 90Q°C was carried out at a flow rate of 41/% for 30 minutes.
Apply for minutes. Through such oxidation treatment, polycrystalline silicon becomes 6
The polycrystalline silicon residue in the recess 14 was all oxidized to 5102. Further, an oxide film of approximately 13000 μm was formed on the second gate polycrystalline silicon film. Fifth
The figure (&) shows the cross-sectional structure of a basic cell that has gone through the above process. Note that the above oxidation treatment in dry oxygen was performed on polycrystalline crystals, but the oxidation conditions in a steam atmosphere were to shorten the oxidation time as much as possible and to increase the diffusion length of the source and drain diffusion regions. Decisions need to be taken into consideration to avoid. For this purpose, the temperature at which the oxidation rate ratio of impurity-doped polycrystalline silicon and non-impurity-doped polycrystalline silicon is large is required, that is, 1000°C or less, preferably 8°C.
It is preferable to set the treatment temperature to 900'C. 8oO~9
As mentioned above, at 00°C, the oxidation rate ratio is as large as 2.0 to 3.0, and the oxidation time is only about 40 minutes at maximum.

さらに、酸化膜耐圧もsoV以上は保証できる。かかる
条件設定の酸化処理後にソース、ドレイン拡散部の拡散
長を測定したところ、0.4μmであり、酸化処理前の
拡散長に保たれていることが確認できた。
Furthermore, the oxide film breakdown voltage can be guaranteed to be at least soV. When the diffusion length of the source and drain diffusion portions was measured after the oxidation treatment under these conditions, it was found to be 0.4 μm, which confirmed that the diffusion length was maintained at the same value as before the oxidation treatment.

次いで、第5図(b)で示すように表面保護膜となるS
iO2膜7を形成したのち、所定の部分にコンタクト窓
を穿設する。そして最後にA1膜を1μmの厚さに蒸着
し、ム1配線層を形成することにより、本発明の方法に
よる基本セルの形成が完了す次に示す表は、本発明の方
法と従来法により形成したMO3ICのセル間のリーク
不良々らびにム1配線−多結晶シリコン間のリーク不良
の比較検討結果を示す。
Next, as shown in FIG. 5(b), S is applied to form a surface protective film.
After forming the iO2 film 7, contact windows are formed in predetermined portions. Finally, an A1 film is deposited to a thickness of 1 μm to form a M1 wiring layer, thereby completing the basic cell formation according to the method of the present invention. The results of a comparative study of leakage defects between cells of the formed MO3IC and leakage defects between M1 wiring and polycrystalline silicon are shown.

なお、不良とみなす基準は、測定系のリーク電流100
nA以上を超えるリーク電流のあるチップとした。この
表から明らかなように、多結晶シリコン残留物を絶縁化
するだめの酸化処理を施す本発明の製造方法によれば1
.双方のリーク不良が激減していることが明らかである
。なお、上表の測定チップ数には、ウエーノ・周辺に位
置するものが含まれているため、これを除外するならば
本発明の製造方法ではリーク不良は殆んど零とみなすこ
とができる。
The criteria for determining defectiveness is that the leakage current of the measurement system is 100%.
The chip had a leakage current exceeding nA or more. As is clear from this table, according to the manufacturing method of the present invention, which performs oxidation treatment to insulate the polycrystalline silicon residue,
.. It is clear that leak defects on both sides have been drastically reduced. Note that the number of measurement chips in the above table includes those located in the wafer and surrounding areas, so if these are excluded, it can be considered that leak defects are almost zero in the manufacturing method of the present invention.

以上説明したように、本発明によれば、多結晶シリコン
の残留物に起因するリーク不良が排除されるところとな
り、超高集積度の多層多結晶ゲートのMO8ICを高い
歩留りで製作することができる0
As explained above, according to the present invention, leakage defects caused by polycrystalline silicon residue can be eliminated, and MO8ICs with ultra-high integration multilayer polycrystalline gates can be manufactured with high yield. 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2−トランジスタ形ダイナミックRAMの基本
セルの断面構造を示す図、第2図はその等価回路図、第
3図(&)〜(f)は従来の製造方法による基本セルの
製造過程金示す図、第4図はリーク不良原因となる多結
晶シリコン残留物の存在するセル部分を拡大して示す図
、第5図(IL)および(′b)は本発明の方法の特徴
である酸化処理後のセルの拡大断面図ならびに表面絶縁
膜形成後のセル構造を示す拡大断面図である。 1・・・・・・シリコン基板、2・・・・・・フィール
ド酸化膜、3・・・・・・第1ゲート酸化膜、4・・・
・・第2ゲート酸化藤、5・・・・・・第1ゲート多結
晶シ1丁コン膜、6・・・・・・第2ゲート多結晶シリ
コン膜、7・・・・・・5i02膜、8.9.10・・
・・・・アルミニウム電極、11・・・・・・ソース、
ドレイン拡散部、12・・・・・・チャンネルストッパ
ー領域、13・・・・・・表面層、14・・・・・・凹
所。 □ 代理人の氏名 弁理士 中 尾 敏 男 ほか1名
t#14図 5図
Figure 1 is a diagram showing the cross-sectional structure of a basic cell of a two-transistor type dynamic RAM, Figure 2 is its equivalent circuit diagram, and Figures 3 (&) to (f) are the manufacturing process of the basic cell using the conventional manufacturing method. FIG. 4 is an enlarged view of the cell portion where polycrystalline silicon residue, which causes leakage defects, is present. FIG. 5 (IL) and ('b) are characteristics of the method of the present invention. FIG. 2 is an enlarged cross-sectional view of a cell after oxidation treatment and an enlarged cross-sectional view showing the cell structure after formation of a surface insulating film. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Field oxide film, 3... First gate oxide film, 4...
...Second gate oxidized rattan, 5...First gate polycrystalline silicon film, 6...Second gate polycrystalline silicon film, 7...5i02 film , 8.9.10...
... Aluminum electrode, 11 ... Source,
Drain diffusion section, 12...Channel stopper region, 13...Surface layer, 14...Recess. □ Name of agent: Patent attorney Toshio Nakao and one other person t#14 Figure 5

Claims (1)

【特許請求の範囲】 (1)半導体基板の一方の主面側に第1酸化膜を選択的
に形成する工程、前記主面側環1酸化膜形成部を除く部
分に同第1酸化膜より薄い第2酸化膜を形成する工程、
前記第2酸化膜上に不純物のドープされた第1の多結晶
シリコン膜を選択的に形成する工程、同工程で形成した
第1の多結晶シリコン膜下の前記第2酸化膜を除く残部
の前記第2酸化膜を除去する工程、前記第2酸化膜の除
去部に露呈する半導体基板主面に前記第1酸化膜より薄
い第3酸化膜を形成する工程、同工程で形成した第3酸
化膜上に不純物のドープされた第2の多結晶シリコン膜
を形成する工程、同工程を経た半導体基板に、水蒸気雰
囲気中で1ooO℃以下の加熱酸化処理を施す工程およ
び同処理を施した半導体基板上に酸化膜を形成する工程
を具備することを特徴とする半導体装置の製造方法。 (至)加熱酸化処理温度が8oO〜900 ℃であるこ
とを特徴とする特許請求の範囲第1項に記載の半導体装
置の製造方法。 (3)水蒸気雰囲気中での加熱酸化処理の前に乾燥雰囲
気中での酸化処理が設けられていることを特徴とする特
許請求の範囲第1項に記載の半導体装置の製造方法。
[Scope of Claims] (1) A step of selectively forming a first oxide film on one main surface side of a semiconductor substrate; forming a thin second oxide film;
selectively forming a first polycrystalline silicon film doped with impurities on the second oxide film; a step of removing the second oxide film, a step of forming a third oxide film thinner than the first oxide film on the main surface of the semiconductor substrate exposed in the removed portion of the second oxide film, and a third oxide film formed in the same step. A step of forming a second polycrystalline silicon film doped with impurities on the film, a step of subjecting the semiconductor substrate that has undergone the same step to a thermal oxidation treatment at 100° C. or less in a water vapor atmosphere, and a semiconductor substrate subjected to the same treatment. 1. A method of manufacturing a semiconductor device, comprising the step of forming an oxide film thereon. (to) The method for manufacturing a semiconductor device according to claim 1, wherein the heating oxidation treatment temperature is 8oO to 900°C. (3) The method for manufacturing a semiconductor device according to claim 1, characterized in that an oxidation treatment in a dry atmosphere is provided before the heating oxidation treatment in a steam atmosphere.
JP56191463A 1981-11-27 1981-11-27 Manufacture of semiconductor device Granted JPS5892268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56191463A JPS5892268A (en) 1981-11-27 1981-11-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56191463A JPS5892268A (en) 1981-11-27 1981-11-27 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5892268A true JPS5892268A (en) 1983-06-01
JPH0586672B2 JPH0586672B2 (en) 1993-12-13

Family

ID=16275060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56191463A Granted JPS5892268A (en) 1981-11-27 1981-11-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5892268A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229759A (en) * 1986-03-21 1987-10-08 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Battery with one or more electrochemical cells with alkali metal cathodes
US4888298A (en) * 1988-12-23 1989-12-19 Eastman Kodak Company Process to eliminate the re-entrant profile in a double polysilicon gate structure
US5686333A (en) * 1994-07-08 1997-11-11 Nippon Steel Corporation Nonvolatile semiconductor memory device and method of producing the same
US5830771A (en) * 1994-09-09 1998-11-03 Nippondenso Co., Ltd. Manufacturing method for semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111247A (en) * 1980-01-24 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Preparation of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111247A (en) * 1980-01-24 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Preparation of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229759A (en) * 1986-03-21 1987-10-08 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Battery with one or more electrochemical cells with alkali metal cathodes
US4888298A (en) * 1988-12-23 1989-12-19 Eastman Kodak Company Process to eliminate the re-entrant profile in a double polysilicon gate structure
US5686333A (en) * 1994-07-08 1997-11-11 Nippon Steel Corporation Nonvolatile semiconductor memory device and method of producing the same
US5830771A (en) * 1994-09-09 1998-11-03 Nippondenso Co., Ltd. Manufacturing method for semiconductor device

Also Published As

Publication number Publication date
JPH0586672B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
KR910007097B1 (en) Manufacturing method of semiconductor device
US4549340A (en) Method of making CMOS semiconductor device using specially positioned, retained masks, and product formed thereby
JPH0638496B2 (en) Semiconductor device
JP2816192B2 (en) Method for manufacturing semiconductor device
JPH10233505A (en) Manufacturing method of semiconductor device
JPS5892268A (en) Manufacture of semiconductor device
JPH0763060B2 (en) Method for manufacturing semiconductor device
JPH1064898A (en) Manufacturing method of semiconductor device
JPH06252345A (en) Manufacture of semiconductor integrated circuit
JPH0196960A (en) Semiconductor device
JPH0454390B2 (en)
JPH03165066A (en) Polycrystalline silicon thin film transistor and manufacture thereof
JPS61268043A (en) Semiconductor device and manufacture thereof
JPS6118340B2 (en)
JP2972270B2 (en) Method for manufacturing semiconductor device
JPH06302779A (en) Semiconductor device and manufacture thereof
JP3371169B2 (en) Method for manufacturing semiconductor device
JPH01298758A (en) Manufacture of semiconductor device
JPS6341063A (en) Manufacture of mos integrated circuit
JPS6160578B2 (en)
JPS6244700B2 (en)
JPS6237546B2 (en)
JPH0231467A (en) Manufacture of non-volatile semiconductor memory device
JPS6239833B2 (en)
JP3147374B2 (en) Semiconductor device