JPS6118340B2 - - Google Patents

Info

Publication number
JPS6118340B2
JPS6118340B2 JP51114719A JP11471976A JPS6118340B2 JP S6118340 B2 JPS6118340 B2 JP S6118340B2 JP 51114719 A JP51114719 A JP 51114719A JP 11471976 A JP11471976 A JP 11471976A JP S6118340 B2 JPS6118340 B2 JP S6118340B2
Authority
JP
Japan
Prior art keywords
film
insulating film
silicon
substrate
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51114719A
Other languages
Japanese (ja)
Other versions
JPS5340291A (en
Inventor
Toshiaki Masuhara
Hideo Sunami
Yoshiaki Kamigaki
Tetsukazu Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11471976A priority Critical patent/JPS5340291A/en
Publication of JPS5340291A publication Critical patent/JPS5340291A/en
Publication of JPS6118340B2 publication Critical patent/JPS6118340B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置における電極上の層間絶縁
膜とチヤネル領域上のゲート絶縁膜との形成法に
関し、さらに詳しくはそれぞれ膜厚の異なる絶縁
膜を同時に形成しようとするものである。特に本
発明の適用により半導体装の高耐圧化ならびに配
線間容量の低減化を実現するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming an interlayer insulating film on an electrode and a gate insulating film on a channel region in a semiconductor device, and more specifically, a method for simultaneously forming insulating films having different thicknesses. It is. In particular, by applying the present invention, it is possible to increase the withstand voltage of a semiconductor device and reduce the capacitance between wirings.

第1図に本発明の実施例を示す。説明の便宜
上、基板にシリコンを用いる。第1図aに示すよ
うに第1導電型のシリコン基板1の表面全体に熱
酸化SiO2膜で代表されるフイールド絶縁膜2を
形成する。しかる後にトランジスタを形成する部
分の素子領域3の部分のフイールド絶縁膜をよく
知られた写真蝕刻法のエツチングによつて除去す
る。この時最初のフオトマスクを必要とする。さ
らに素子領域を覆うSiO2で代表されるゲート絶
縁膜2―1を形成し、さらに全体を覆う多結晶シ
リコンで代表されるゲート電極4を被着し、既知
の写真蝕刻法によつて後にゲートとする電極部4
を残して他を除去する。ここで第2のフオトマス
クを用いる。このときゲート部だけではなくフイ
ールド酸化膜2上にも残存せしめてこれを他の電
極として用いることもできる。
FIG. 1 shows an embodiment of the present invention. For convenience of explanation, silicon is used as the substrate. As shown in FIG. 1a, a field insulating film 2 typified by a thermally oxidized SiO 2 film is formed over the entire surface of a silicon substrate 1 of a first conductivity type. Thereafter, the field insulating film in the element region 3 where the transistor is to be formed is removed by etching using a well-known photolithography method. At this time, you will need your first photomask. Furthermore, a gate insulating film 2-1, typically made of SiO 2 , is formed to cover the device region, and a gate electrode 4, typically made of polycrystalline silicon, is deposited to cover the entire device area, and the gate electrode 4 is then deposited using known photolithography. Electrode section 4
Leave the remaining and remove the others. Here, a second photomask is used. At this time, it is possible to leave it not only on the gate portion but also on the field oxide film 2 and use it as another electrode.

その後ゲート4をマスクとしてゲート絶縁膜2
―1をエツチングによつて除去し、しかる後に水
蒸気を含んだO2中で酸化するとbに示すように
シリコン基板1上にはSiO2の絶縁膜2―2が、
多結晶シリコン4上にはSiO2のゲート保護膜6
が形成される。あらかじめゲート電極には高濃度
のリンを添加しておくと、ゲート保護膜6が絶縁
膜2―2より厚く形成される。不純物濃度として
は1018/cm3以上、より好ましくは1020/cm3以上で
ある。たとえば、700℃で7時間上記の酸化を行
なうと、ゲート多結晶Si上には2800ÅのSiO2膜6
が、基板上には500ÅのSiO2膜を成長することが
できる。
After that, using the gate 4 as a mask, the gate insulating film 2 is
-1 is removed by etching and then oxidized in O2 containing water vapor, an insulating film 2-2 of SiO2 is formed on the silicon substrate 1 as shown in b.
A gate protective film 6 of SiO 2 is formed on the polycrystalline silicon 4.
is formed. If a high concentration of phosphorus is added to the gate electrode in advance, the gate protective film 6 is formed thicker than the insulating film 2-2. The impurity concentration is 10 18 /cm 3 or more, more preferably 10 20 /cm 3 or more. For example, if the above oxidation is carried out at 700°C for 7 hours, a 2800 Å thick SiO 2 film 6 will be formed on the gate polycrystalline Si.
However, a 500 Å SiO 2 film can be grown on the substrate.

しかる後に、Si―SiO2界面を良好なものとする
ため乾燥酸素中1000℃で10分熱処理し、基板上の
SiO2膜厚を600Åとする。
After that, heat treatment was performed at 1000℃ for 10 minutes in dry oxygen to improve the Si-SiO 2 interface.
The SiO 2 film thickness is 600 Å.

本方法を適用することにより電極上の層とチヤ
ネル領域上のゲート絶縁膜の形成が同時に行なえ
るため第1層と第2層の多結晶Si間の容量が小さ
くかつ耐圧の高い構造を得ることができる。たと
えば実験により耐圧40V以上が得られている。
By applying this method, the layer on the electrode and the gate insulating film on the channel region can be formed simultaneously, resulting in a structure with low capacitance between the first and second polycrystalline Si layers and a high breakdown voltage. I can do it. For example, experiments have shown that a breakdown voltage of 40V or more has been achieved.

しかる後にcに示すように、第2の多結晶Si8
を被着し、写真蝕刻法によつて一部を残し他は除
去する。このとき第3のフオトマスクを必要とす
る。このとき電極8に多結晶シリコンを用いる
と、多結晶シリコンに添加した不純物によつてあ
るいは多結晶シリコン上から不純物を添加するこ
とによつて第2導電型の領域9を形成することが
できる。また電極8を被着する前に既知の熱拡散
法やイオン打込み法によつてあらかじめ領域9を
形成しておくこともできる。本発明ではどちらで
も可能である。
Thereafter, as shown in c, the second polycrystalline Si8
Then, using photolithography, some parts are left and the others are removed. At this time, a third photomask is required. If polycrystalline silicon is used for the electrode 8 at this time, the second conductivity type region 9 can be formed by adding an impurity to the polycrystalline silicon or by adding an impurity from above the polycrystalline silicon. Further, before depositing the electrode 8, the region 9 can be formed in advance by a known thermal diffusion method or ion implantation method. In the present invention, either is possible.

さらにその後にdに示すように、コンタクト穴
11を形成して、最後に金属配線10を形成す
る。ここで第4、第5のフオトマスクを要する。
Further thereafter, as shown in d, contact holes 11 are formed, and finally metal wiring 10 is formed. Here, fourth and fifth photomasks are required.

なお、第1図で示されている構造は、多結晶
Si4の直下のSi表面の反転層を蓄積電極、多結晶
Si8の直下のSi表面を転送電極、9をデータ線1
0をワード線とするメモリ・セルを形成している
が、本発明の骨子は、他の素子、たとえば、ソー
スおよびドレインの2つの拡散層をもち、その間
に第1図4,8で示された2種類以上の多結晶Si
によるゲート電極が介在することを特徴とする
MOSトランジスタ、あるいは電荷転送装置
(CTD)などに用いることができる。
The structure shown in Figure 1 is polycrystalline.
The inversion layer on the Si surface directly under Si4 is used as a storage electrode, and polycrystalline
The Si surface directly under Si8 is the transfer electrode, and 9 is the data line 1.
Although a memory cell with 0 as a word line is formed, the gist of the present invention is to have two diffusion layers for other elements, such as a source and a drain, between which the memory cell shown in FIGS. 4 and 8 is formed. Two or more types of polycrystalline Si
characterized by the presence of a gate electrode
It can be used for MOS transistors, charge transfer devices (CTD), etc.

第2図は、横軸に酸化温度をとり、たて軸に高
濃度にリンがドープされた多結晶シリコン4の表
面に形成される湿式酸化膜6の膜厚をとつた図で
ある。パラメータとして、 10Ω・cm、P型シリコン基板の(100)面上に
形成される酸化膜2―2の膜厚を用いている。す
なわち、500Åと表示された曲線は、シリコン基
板表面上に500Åの酸化膜2―2を形成したと
き、多結晶シリコン4上に形成される酸化膜6の
膜厚の変化を示す。同様に、1000Å、1500Åと表
示された曲線も、それぞれ、シリコン基板表面上
に1000Å,1500Åの酸化膜2―2を形成したと
き、多結晶シリコン4上に形成される酸化膜6の
膜厚の変化を示している。第2図から明らかなよ
うに、不純物濃度によつて酸化速度が異なる選択
酸化は酸化温度が900℃以下の場合について著し
い。またこのような特性が得られる不純物濃度と
して1×1020cm-3以上が望ましい。
FIG. 2 is a diagram in which the horizontal axis represents the oxidation temperature and the vertical axis represents the thickness of the wet oxide film 6 formed on the surface of the polycrystalline silicon 4 doped with a high concentration of phosphorus. As a parameter, 10 Ω·cm and the thickness of the oxide film 2-2 formed on the (100) plane of the P-type silicon substrate are used. That is, the curve labeled 500 Å shows the change in the thickness of the oxide film 6 formed on the polycrystalline silicon 4 when the oxide film 2-2 of 500 Å is formed on the surface of the silicon substrate. Similarly, the curves labeled 1000 Å and 1500 Å indicate the thickness of the oxide film 6 formed on the polycrystalline silicon 4 when the oxide films 2-2 of 1000 Å and 1500 Å are formed on the silicon substrate surface, respectively. It shows change. As is clear from FIG. 2, selective oxidation, in which the oxidation rate varies depending on the impurity concentration, is significant when the oxidation temperature is 900° C. or lower. Further, it is desirable that the impurity concentration to obtain such characteristics is 1×10 20 cm −3 or more.

このように膜厚が異なりそれぞれ別の役割をも
つ絶縁膜を同時に形成することは、従来おこなわ
れてこなかつた。そのためにこのような選択酸化
法を用いることは半導体装置を実現するプロセス
工程においてその工程数が減少し従来の製造方法
にくらべて経済的効果は極めて大きい。また従来
ゲート絶縁膜として湿式酸化膜を用いることもそ
の酸化膜の性質が半導体装置の特性上好ましくな
いことからおこなわれてこなかつた。しかしなが
ら今回湿式熱酸化膜もその後の熱処理工程を経る
ことにより、従来の乾式熱酸化膜とほとんどかわ
らない性質のゲート絶縁膜を実現し得ることが分
つた。
In the past, it has not been possible to simultaneously form insulating films having different thicknesses and each having a different role. Therefore, the use of such a selective oxidation method reduces the number of steps in the process steps for realizing a semiconductor device, and has an extremely large economic effect compared to conventional manufacturing methods. Further, conventionally, the use of a wet oxide film as a gate insulating film has not been carried out because the properties of the oxide film are unfavorable in view of the characteristics of the semiconductor device. However, it has now been discovered that by applying a subsequent heat treatment process to the wet thermal oxide film, it is possible to create a gate insulating film with properties that are almost the same as those of conventional dry thermal oxide films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す図である。第2
図は本発明に用いた選択酸化法の条件を示す図で
ある。
FIG. 1 is a diagram showing an embodiment of the present invention. Second
The figure shows the conditions of the selective oxidation method used in the present invention.

Claims (1)

【特許請求の範囲】 1 一主表面をもつシリコン基板の該主表面上
に、絶縁膜を形成する工程と、 1018/cm3以上の不純物濃度のリンがドープさ
れ、前記シリコン基板の不純物濃度より高い不純
物濃度をもつシリコン膜を、前記絶縁膜上に所定
の一部をおおうように被着する工程と、 前記絶縁膜の一部をエツチングして、前記基板
主表面の一部を露出する工程と、 700℃以上1000℃以下の酸化温度にて湿式酸化
することにより、前記露出部と前記シリコン膜上
に、前記シリコン膜上での膜厚が前記露出部での
膜厚よりも厚くなるように熱酸化膜を形成する工
程と、 該熱酸化膜上に電極膜を被着する工程とを有
し、前記基板上に二層の電極を含む半導体装置の
製造方法。
[Claims] 1. A step of forming an insulating film on the main surface of a silicon substrate having one main surface, doping with phosphorus at an impurity concentration of 10 18 /cm 3 or more, and increasing the impurity concentration of the silicon substrate. A step of depositing a silicon film having a higher impurity concentration on the insulating film so as to cover a predetermined part thereof, and etching a part of the insulating film to expose a part of the main surface of the substrate. and wet oxidation at an oxidation temperature of 700°C or more and 1000°C or less, so that the film thickness on the silicon film becomes thicker than the film thickness on the exposed part on the exposed part and the silicon film. A method for manufacturing a semiconductor device including two layers of electrodes on the substrate, the method comprising: forming a thermal oxide film as described above; and depositing an electrode film on the thermal oxide film.
JP11471976A 1976-09-27 1976-09-27 Manufacture of semiconductor device Granted JPS5340291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11471976A JPS5340291A (en) 1976-09-27 1976-09-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11471976A JPS5340291A (en) 1976-09-27 1976-09-27 Manufacture of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9360485A Division JPS6110255A (en) 1985-05-02 1985-05-02 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5340291A JPS5340291A (en) 1978-04-12
JPS6118340B2 true JPS6118340B2 (en) 1986-05-12

Family

ID=14644897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11471976A Granted JPS5340291A (en) 1976-09-27 1976-09-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5340291A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927102B2 (en) * 1979-12-24 1984-07-03 富士通株式会社 semiconductor storage device
JPS6044823B2 (en) * 1980-11-05 1985-10-05 富士通株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPS5340291A (en) 1978-04-12

Similar Documents

Publication Publication Date Title
JPS61136274A (en) Semiconductor device
JPH0326547B2 (en)
JPH0638496B2 (en) Semiconductor device
JPS6228591B2 (en)
JPS6118340B2 (en)
JP3140023B2 (en) Semiconductor device and manufacturing method thereof
JPS61107768A (en) Semiconductor memory device
JPS623587B2 (en)
JPS6216013B2 (en)
JPS605074B2 (en) Manufacturing method of semiconductor device
JPS5892268A (en) Manufacture of semiconductor device
JPH02130852A (en) Semiconductor device
JPH0329186B2 (en)
JPH04286152A (en) Manufacture of semiconductor memory
JPS628956B2 (en)
JP2661778B2 (en) Electrically erasable nonvolatile semiconductor memory device and method of manufacturing the same
JPS6178138A (en) Manufacture of semiconductor device
JPH0794721A (en) Semiconductor device and manufacture thereof
JPH04107840U (en) semiconductor equipment
JP2972270B2 (en) Method for manufacturing semiconductor device
JPH01260857A (en) Semiconductor device and manufacture thereof
JPS647511B2 (en)
JPH11145425A (en) Manufacture of semiconductor element and semiconductor device
JPS61269363A (en) Semiconductor memory device and manufacture thereof
JPS592191B2 (en) Method for manufacturing electrodes for semiconductor devices