JPH0258267A - Manufacture of mis type semiconductor integrated circuit device - Google Patents

Manufacture of mis type semiconductor integrated circuit device

Info

Publication number
JPH0258267A
JPH0258267A JP63209037A JP20903788A JPH0258267A JP H0258267 A JPH0258267 A JP H0258267A JP 63209037 A JP63209037 A JP 63209037A JP 20903788 A JP20903788 A JP 20903788A JP H0258267 A JPH0258267 A JP H0258267A
Authority
JP
Japan
Prior art keywords
region
misfet
source
drain
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63209037A
Other languages
Japanese (ja)
Inventor
Kazuo Tanaka
和雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63209037A priority Critical patent/JPH0258267A/en
Publication of JPH0258267A publication Critical patent/JPH0258267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • H10B20/27ROM only
    • H10B20/30ROM only having the source region and the drain region on the same level, e.g. lateral transistors
    • H10B20/38Doping programmed, e.g. mask ROM
    • H10B20/387Source region or drain region doping programmed

Abstract

PURPOSE:To reduce the power consumption of a mask ROM, prevent latchup, and improve the reliability of an integrated circuit by forming an MISFET having a second threshold value by implanting oxygen in the source region, the drain region, etc., of the MISFET having a first threshold voltage. CONSTITUTION:When a semiconductor integrated circuit provided with a non- volatile storage function composed of an MISFET is manufactured, an MISFET having a first threshold voltage and an MISFET having a second threshold voltage are arranged. The first MISFET is consti//tued of the following; a source.drain region 105 of high impurity concentration, and a semiconductor region 103 which is formed between the source.drain region 105 and a channel forming region and has the same conductivity type as the source.drain region 105 and a concentration lower than the region 105. The second MISFET is formed by implanting oxygen in the source region, the drain region or the low concentration semiconductor region 103 of the above MISFET. For example, the semiconductor region 103 is turned into a state 107 where silicon and silicon oxide are mixed, by performing annealing after oxygen 106 is introduced in the semiconductor region 103 in order to write data.

Description

【発明の詳細な説明】 特に、読み出し専用の不揮発性記憶機能を有する半導体
集積回路装置(以下、マスクROMという)に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION In particular, the present invention relates to a semiconductor integrated circuit device (hereinafter referred to as a mask ROM) having a read-only nonvolatile memory function.

[従来の技術] マスクROMは、MISFETでメモリーセルを構成し
ている。メモリーセルの2′011  ′1′。
[Prior Art] A mask ROM has memory cells made up of MISFETs. 2'011'1' of memory cell.

の情報は、I情報書き込み工程でMISFETのしきい
値電圧を変化させることで得られる。
The information can be obtained by changing the threshold voltage of the MISFET in the I information writing process.

従来のMIS型半導体装置を、MO8型半導体装置の製
造方法を一例番ご取り概略を示そう。
Let us give an overview of a method of manufacturing a conventional MIS type semiconductor device and an MO8 type semiconductor device as an example.

まず、第1の閾値電圧を有するL D D (Ligh
tly Doped Drain)構造からなっている
MISFETを形成する。この後、MISFETを覆う
層間絶縁膜を形成し、MISFETに接続するデータ線
及びソース#I(アルミニウム膜)を形成する。この徨
、情報が書き込まれるMISFETのチャネル形成領域
上が開口されたフォトレジストマスクを形成する。そし
てこのフォトレジストマスクを用い、前記層間絶縁膜及
びゲート電極を通してチャネル形成領域に不純物(はう
素または燗)を導入する。この不純物の導入で第1の閾
値電圧と異なる第2閾値電圧を有するMISFETが形
成され、情報書き込み工程が行なわれる。この後、表面
保護膜を形成することでマスクROMの製造工程は終了
する。
First, L D D (Light
A MISFET having a doped drain structure is formed. After that, an interlayer insulating film covering the MISFET is formed, and a data line and source #I (aluminum film) connected to the MISFET are formed. After this, a photoresist mask is formed which has an opening above the channel formation region of the MISFET where information is to be written. Then, using this photoresist mask, an impurity (boron or impurity) is introduced into the channel forming region through the interlayer insulating film and the gate electrode. By introducing this impurity, a MISFET having a second threshold voltage different from the first threshold voltage is formed, and an information writing process is performed. Thereafter, the mask ROM manufacturing process is completed by forming a surface protection film.

[発明が解決しようとする課題] しかし、前述の従来技術によるマスクROMの製造工程
では、情報を書き込む工程では、不純物は、ゲート電極
層及びゲート絶縁膜を透過させて、MISI−ランシス
ターのチャネル領域に不純物を導入しているが不純物注
入の際の加速エネルギーは250〜350KeV程度の
高エネルギーで導入している。このため、ゲート絶縁膜
中やMISトランジスタのチャネル領域中に結晶欠陥を
生じる。この結晶欠陥は、アルミニウム膜からなる配線
層が変形したり、融けたりしないように450°C程度
の熱処理しか行なうことができないため、十分に回復さ
せることができない。トランジスターのチャネル領域の
結晶欠陥は、MIS)ランシスタのチャネル長が1.2
μm程度以下に微細化された場合特にトランジスター動
作時ドレイン領域の強電界で生まれるホットキャリアを
捕獲し捕獲された電子は正孔と再結合して゛1.リーク
電流として半導体基板側に流れるため消費電力の増大や
寄生サイリスタによるラッチアップという問題を生じる
[Problems to be Solved by the Invention] However, in the manufacturing process of the mask ROM according to the prior art described above, in the process of writing information, the impurity passes through the gate electrode layer and the gate insulating film, and the impurity penetrates the channel of the MISI-Run sister. Impurities are introduced into the region, and the acceleration energy at the time of impurity implantation is as high as about 250 to 350 KeV. Therefore, crystal defects occur in the gate insulating film and in the channel region of the MIS transistor. These crystal defects cannot be sufficiently recovered because heat treatment at only about 450° C. can be performed to prevent the wiring layer made of the aluminum film from deforming or melting. Crystal defects in the transistor channel region are caused by MIS) when the channel length of the transistor is 1.2.
When miniaturized to micrometers or less, hot carriers generated by the strong electric field in the drain region during transistor operation are captured, and the captured electrons recombine with holes.1. Since the leakage current flows to the semiconductor substrate side, problems such as increased power consumption and latch-up due to the parasitic thyristor occur.

また、素子の微細化が進みMIS)ランシスターのチャ
ネル長が1μm以下になった場合は特に、閾値電圧をあ
げるために行なうイオン注入によってトランジスターの
チャネル領域にはソース、ドレイン領域と異なる不純物
を導入するために、ソース、ドレイン間の耐圧が著しく
低下するとともに、トランジスター動作時にはドレイン
領域の高電界のために、2次降伏になり易く安定した動
作がむずかしかった。
In addition, as device miniaturization progresses and the channel length of a Runsistor (MIS) becomes less than 1 μm, impurities different from those in the source and drain regions are introduced into the transistor channel region through ion implantation to increase the threshold voltage. As a result, the withstand voltage between the source and drain is significantly lowered, and during transistor operation, secondary breakdown is likely to occur due to the high electric field in the drain region, making stable operation difficult.

本発明は、このような課題を解決するものでその目的と
するところは、マスクROMにおいて消費電力の低減、
ラッチアップの防止、さらには集積回路の信頼性の向上
に寄与する技術を提供することにある。
The present invention is intended to solve such problems, and its purpose is to reduce power consumption in mask ROM,
The object of the present invention is to provide a technology that contributes to preventing latch-up and further improving the reliability of integrated circuits.

[課題を解決するための手段] 本発明のMIS型半導体集積回路装置の製造方法は、M
ISFETからなる不揮発性記憶機能を備えた半導体集
積回路の製造方法において高い不純物濃度のドレイン、
ソース領域と、該ドレイン、ソース領域とチャネル、形
成領域との間に設けられたドレイン、ソース領域と同一
導電型でかつそれよりも低い濃度の半導体領域とで構成
されている第1しきい値電圧を持つMISFETが構成
されており、前記MISFETのソース領域、ドレイン
領域、もしくは前記低い濃度の半導体領域に酸素を注入
することにより第2しきい値のMISFETを有するこ
とを特徴とする。
[Means for Solving the Problems] The method for manufacturing an MIS type semiconductor integrated circuit device of the present invention includes
In a method of manufacturing a semiconductor integrated circuit having a non-volatile memory function consisting of an ISFET, a drain with a high impurity concentration,
A first threshold comprising a source region and a semiconductor region of the same conductivity type as the drain and source region and with a lower concentration than the drain and source region provided between the drain and source region and the channel and formation region. A MISFET with a voltage is configured, and the MISFET has a second threshold voltage by injecting oxygen into the source region, drain region, or low concentration semiconductor region of the MISFET.

[実施例〕 第1図は、本発明のMIS型半導体装置の一実施例の主
要な工程における横断面図であり以下この図にしたがい
ながらマスクROMに適用した例を具体的に示す。
[Embodiment] FIG. 1 is a cross-sectional view of the main steps of an embodiment of the MIS type semiconductor device of the present invention, and an example in which the device is applied to a mask ROM will be specifically shown below with reference to this figure.

P型、比抵抗 8〜12(9cm)のシリコン基板10
0(またはウェル領域)上に、ゲート酸化膜として酸化
シリコン111101を1000℃○2 雰囲気中で 
200〜400 堆積度の膜厚で形成させたのち、ゲー
ト電極材102として、多結晶シリコンJfJ102を
CVD法により4000人程度堆積させた後イオン化リ
ン(P+)を50KeV程度の加速エネルギーで5xl
OI5(cm−2)程度注入した、ゲート電極材102
として単層の高融点シリサイド(M OS i 2  
、  T i S il T a S i2.  WS
 i2) II、高融点金属(Mo。
P-type, specific resistance 8-12 (9 cm) silicon substrate 10
0 (or well region) as a gate oxide film in a 1000℃○2 atmosphere.
After forming a film with a thickness of 200 to 400, polycrystalline silicon JfJ102 is deposited as the gate electrode material 102 by CVD method, and then 5xl of ionized phosphorus (P+) is deposited at an acceleration energy of about 50 KeV.
Gate electrode material 102 injected with approximately OI5 (cm-2)
As a single layer of high melting point silicide (MOS i 2
, T i S il T a S i2. WS
i2) II, refractory metal (Mo.

Ti、Ta、W)、  膜、あるいは、これらの下層に
多結晶シリコンを設けた複合膜(ポリサイド膜)で構成
してもよい。
It may be composed of a Ti, Ta, W) film, or a composite film (polycide film) in which polycrystalline silicon is provided as a layer below these films.

ついでフォトリソグラフィーによって 所望のバターニ
ングを行ない、ドライエツチングによって多結晶シリコ
ン層102を エツチングした。
Next, desired patterning was performed by photolithography, and polycrystalline silicon layer 102 was etched by dry etching.

このとき、多結晶シリコン層102のエツチング条件は
、SFa、CClF5ガス、150W 圧力0.6To
rrで 60秒程度エツチングした。
At this time, the etching conditions for the polycrystalline silicon layer 102 are SFa, CClF5 gas, 150W, pressure 0.6To
Etched with rr for about 60 seconds.

次に、低い不純物濃度の半導体領域103(オフセット
領域とも呼ぶ)を形成させるためにフォトリソグラフィ
ーによって所望のバターニングを行なった後、例えばイ
オン化したリン(P゛)を30KeVの加速エネルギー
で 8×1012(個/cm2)イオン注入した。この
低い濃度の半導体領域はL D D (Lightly
 doped Drain)部として使用される。
Next, in order to form a semiconductor region 103 (also called an offset region) with a low impurity concentration, desired patterning is performed by photolithography, and then, for example, ionized phosphorus (P) is irradiated with 8×10 12 at an acceleration energy of 30 KeV. (pieces/cm2) ions were implanted. This low concentration semiconductor region is LDD (Lightly
(doped drain) section.

次に、多結晶シリコン層102の側壁部に、絶縁膜が残
った状態、いわゆる サイドウオール(Side  W
all)104を形成するためにCVD法によって 第
1酸化シリコン層104を5000人堆積させる。この
ときの堆積条件は、780°C雰囲気中 N20+CH
,ガス 200Paで30分間 熱処理を行うことによ
って得られる。
Next, the insulating film remains on the side wall of the polycrystalline silicon layer 102, which is the so-called side wall.
5,000 layers of first silicon oxide layer 104 are deposited by the CVD method to form all layers 104. The deposition conditions at this time were N20+CH in a 780°C atmosphere.
, by heat treatment at 200 Pa for 30 minutes.

次に、第1酸化シリコン層を RIE(Reactiv
e  Ion  Etching)モードで、DRYエ
ツチングした。この工程によってサイドウオール(Si
de  Wall)104が形成される。
Next, the first silicon oxide layer is subjected to RIE (Reactive
DRY etching was performed in the ion etching) mode. Through this process, the sidewall (Si
104 is formed.

次に、イオン化したリンをトランジスターのソース、ド
レインとなる部分105に自己整合的に60Keyの加
速エネルギーT5X101’(個/Cm2)イオン注入
した。 (第1図(a))こののち、ゲート電極層と配
線材(例えばアルミニウム)を絶縁するための酸化シリ
コンを堆積させ、ゲート電極材との接触を取るための孔
を開孔し配線材を堆積し、バターニングした。
Next, ionized phosphorus was implanted into the portion 105 that would become the source and drain of the transistor in a self-aligned manner at an acceleration energy of T5X101' (pieces/Cm2) of 60 keys. (Figure 1 (a)) After this, silicon oxide is deposited to insulate the gate electrode layer and the wiring material (for example, aluminum), and a hole is made to make contact with the gate electrode material, and the wiring material is It was deposited and buttered.

この後、マスクROMのデータを書き込むために酸素イ
オン106をドレイン、ソース側の低い濃度の半導体領
域103に160KeVの加速エネルギーでlXl0”
(個//)導入した。(第1図(b))次に、450″
Cアルゴン−水素(3%)雰囲気中にて40分間アニー
ルしてドレイン、ソース側の低い濃度の半導体領域10
3をシリコンとシリコン酸化物が混在した状態107を
形成してドレイン、ソース領域の抵抗値を高くすること
によってMISI−ランシスターの閾値を酸素注入しな
いM工Sトランジスターの閾値よりも高くした。 (第
1図(C))すなわち、トランジスターが選択状態にお
いてもトランジスターが動作しなくなるようにした。ま
た、チャネル領域にソース、ドレイン領域と異なる導電
型の不純物を注入する必要がなくなったために、ソース
、ドレイン間の耐圧は、書き込みをしないトランジスタ
ーの耐圧と同レベルにすることができた。この酸素イオ
ンの注入においては、上記の例ではドレイン、ソース側
に注入したが、ソース領域、 ドレイン領域、ソース側
の低い濃度の半導体領域、ドレイン側の低い濃度の半導
体領域、またそれらを組み合わせても効果は同じである
After this, in order to write data in the mask ROM, oxygen ions 106 are applied to the low concentration semiconductor region 103 on the drain and source sides with an acceleration energy of 160 KeV.
(individuals//) introduced. (Figure 1(b)) Next, 450″
Low concentration semiconductor regions 10 on the drain and source sides were annealed for 40 minutes in an argon-hydrogen (3%) atmosphere.
By forming a state 107 in which silicon and silicon oxide are mixed in 3 to increase the resistance value of the drain and source regions, the threshold of the MISI-Run Sister is made higher than that of the M-S transistor without oxygen implantation. (FIG. 1(C)) That is, the transistor is made inoperative even when it is in the selected state. In addition, because there is no need to implant impurities of a conductivity type different from that of the source and drain regions into the channel region, the breakdown voltage between the source and drain can be made to the same level as the breakdown voltage of a transistor that does not write. In the above example, oxygen ions were implanted into the drain and source sides, but the oxygen ions were implanted into the source region, drain region, low concentration semiconductor region on the source side, low concentration semiconductor region on the drain side, or a combination of these. The effect is the same.

工程は、素子表面保護膜を堆積させ、最後に配線材と外
部端子との接触を取るための孔を開孔した。
The process involved depositing a protective film on the element surface, and finally drilling holes for contacting the wiring material with the external terminals.

以上、本発明の実施例を具体的にしめした。しかし、こ
の実施例は、あくまで一実施例であり例えば、pチャネ
ルMISFETに適用してもその効果は同じである。
The embodiments of the present invention have been specifically shown above. However, this embodiment is just one example, and the effect is the same even if it is applied to, for example, a p-channel MISFET.

[発明の効果] 以上本発明によれば、酸素を注入することによりMOS
トランジスターのオフセット領域をシリコン酸化物リッ
チの状態にすることにより抵抗を高くしデーターの書き
込みを行なうとともに、ソース、ドレイン間の耐圧をデ
ータ書き込みしないトランジスターと同レベルにするこ
とができた。
[Effects of the Invention] According to the present invention, by injecting oxygen, MOS
By making the offset region of the transistor rich in silicon oxide, we were able to increase the resistance and write data, while also making the withstand voltage between the source and drain the same level as a transistor that does not write data.

また、ドレイン領域の酸化シリコンによって空乏層の広
がりが阻止されるためホットキャリアの発生を抑制でき
リーク電流も減少させることができた。  また、本発
明のMO8型半導体装置の製造方法によって作られた4
MビットのMASKR○Mは従来の半導体装置に比べて
歩留まりを20%増加させることが出来た。
Furthermore, since the silicon oxide in the drain region prevents the depletion layer from expanding, the generation of hot carriers can be suppressed and leakage current can also be reduced. In addition, 4
The M-bit MASKR○M was able to increase yield by 20% compared to conventional semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)、本発明のMO3型半導体装置の
一実施例の工程断面図である。 100  ・・・第1導電型不純物を含むシリコン基板 101 ・・・ゲート酸化膜 102  ・・・ゲート電極材 103 ・・・第2導電型の低い不純物濃度の半導体領
域 104 ・・・第1酸化シリコン層、 サイドウオール 105  ・・・第2導電型の濃い不純物濃度の半導体
領域 ソース、 ドレイン領域 ・酸素注入層 シリコン、 シリコン酸化物混 布層 以上
FIGS. 1A to 1C are process cross-sectional views of an embodiment of the MO3 type semiconductor device of the present invention. 100...Silicon substrate 101 containing first conductivity type impurity...Gate oxide film 102...Gate electrode material 103...Semiconductor region 104 with low impurity concentration of second conductivity type...First silicon oxide Layer, sidewall 105...Second conductivity type semiconductor region with high impurity concentration Source, drain region/oxygen implantation layer silicon, silicon oxide mixed layer or higher

Claims (1)

【特許請求の範囲】[Claims] MISFETからなる不揮発性記憶機能を備えた半導体
集積回路の製造方法において高い不純物濃度のドレイン
、ソース領域と、該ドレイン、ソース領域とチャネル形
成領域との間に設けられたドレイン、ソース領域と同一
導電型でかつそれよりも低い濃度の半導体領域とで構成
されている第1しきい値電圧を持つMISFETが構成
されており、前記MISFETのソース領域、ドレイン
領域、もしくは前記低い濃度の半導体領域に酸素を注入
することにより第2しきい値のMISFETを有するこ
とを特徴とするMIS型半導体集積回路装置の製造方法
In a method of manufacturing a semiconductor integrated circuit having a non-volatile memory function consisting of a MISFET, a drain and source region having a high impurity concentration and a conductivity same as that of the drain and source region provided between the drain and source region and a channel forming region are used. A MISFET having a first threshold voltage is constructed of a semiconductor region of a type and a lower concentration than the semiconductor region, and the source region, the drain region of the MISFET, or the semiconductor region of a lower concentration is provided with oxygen. 1. A method of manufacturing an MIS type semiconductor integrated circuit device, characterized in that it has a MISFET with a second threshold value by implanting.
JP63209037A 1988-08-23 1988-08-23 Manufacture of mis type semiconductor integrated circuit device Pending JPH0258267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63209037A JPH0258267A (en) 1988-08-23 1988-08-23 Manufacture of mis type semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63209037A JPH0258267A (en) 1988-08-23 1988-08-23 Manufacture of mis type semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0258267A true JPH0258267A (en) 1990-02-27

Family

ID=16566208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63209037A Pending JPH0258267A (en) 1988-08-23 1988-08-23 Manufacture of mis type semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0258267A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286874A (en) * 1991-11-28 1994-02-15 Lonza Ltd. Process for the production of bismaleinimide derivatives
US5565375A (en) * 1993-12-01 1996-10-15 Imp, Inc. Method of fabricating a self-cascoding CMOS device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286874A (en) * 1991-11-28 1994-02-15 Lonza Ltd. Process for the production of bismaleinimide derivatives
US5565375A (en) * 1993-12-01 1996-10-15 Imp, Inc. Method of fabricating a self-cascoding CMOS device

Similar Documents

Publication Publication Date Title
US4554572A (en) Self-aligned stacked CMOS
US4642881A (en) Method of manufacturing nonvolatile semiconductor memory device by forming additional impurity doped region under the floating gate
US6849513B2 (en) Semiconductor device and production method thereof
KR100243497B1 (en) Semiconductor device and method of manufacturing the same
JPS58148445A (en) Method of producing complementary field effect transistor
JPS62131561A (en) Manufacture of high density integrated circuit
US5911105A (en) Flash memory manufacturing method
JPH11265987A (en) Nonvolatile memory and its manufacture
JP4093855B2 (en) Manufacturing method of semiconductor device
TW519735B (en) Method of forming an embedded memory
JPH0258267A (en) Manufacture of mis type semiconductor integrated circuit device
JP3665183B2 (en) Semiconductor device and manufacturing method thereof
JPH04316333A (en) Manufacture of thin-film transistor
JPH0831539B2 (en) Non-volatile memory manufacturing method
JPH0666327B2 (en) MOS semiconductor device and method of manufacturing the same
JPH05218355A (en) Mis semiconductor device and manufacture of the same
JPH05291573A (en) Semiconductor device and manufacture thereof
JP3141520B2 (en) Method for manufacturing nonvolatile memory element
JPH05251712A (en) Manufacture of nonvolatile semiconductor memory
JPH11186548A (en) Semiconductor device and manufacture thereof
JPS6155965A (en) Manufacture of nonvolatile semiconductor memory device
JPH11345947A (en) Semiconductor integrated circuit device and manufacture thereof
JPS63117470A (en) Mos-type semiconductor device and manufacture thereof
JP3371169B2 (en) Method for manufacturing semiconductor device
JPH1131814A (en) Manufacture of semiconductor device