JPS6331951B2 - - Google Patents

Info

Publication number
JPS6331951B2
JPS6331951B2 JP57218811A JP21881182A JPS6331951B2 JP S6331951 B2 JPS6331951 B2 JP S6331951B2 JP 57218811 A JP57218811 A JP 57218811A JP 21881182 A JP21881182 A JP 21881182A JP S6331951 B2 JPS6331951 B2 JP S6331951B2
Authority
JP
Japan
Prior art keywords
electrode
active region
photoelectric conversion
mask
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57218811A
Other languages
Japanese (ja)
Other versions
JPS59108374A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP57218811A priority Critical patent/JPS59108374A/en
Publication of JPS59108374A publication Critical patent/JPS59108374A/en
Publication of JPS6331951B2 publication Critical patent/JPS6331951B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 この発明は、光電変換セルを透光性基板上に複
数個配列して設けるハイブリツド型光電変換装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hybrid photoelectric conversion device in which a plurality of photoelectric conversion cells are arranged on a transparent substrate.

この発明は、光電変換セル(以下単にセルとい
う)を基板上に複合化するに関し、隣り合つたセ
ル間の距離を肉眼では十分見分けにくい300μ以
下とし、装置全体としての視覚的価値を上げるこ
とを目的としている。
This invention relates to combining photoelectric conversion cells (hereinafter simply referred to as cells) on a substrate, and aims to increase the visual value of the entire device by reducing the distance between adjacent cells to 300μ or less, which is difficult to distinguish with the naked eye. The purpose is

このため本発明においては活性領域に設けられ
たセルにおける透光性基板上の第1の電極と、こ
の電極上に光照射により光起電力を発生する非単
結晶半導体と、該半導体上の第2の電極とのそれ
ぞれを概略同一形状、概略同配置(セルフレジス
トレイシヨン)構造とすることにより、複合化の
合せ精度のズレによる製造上の歩留り低下をさけ
るとともに、このセルフレジストレイシヨン(以
下SGという)をレーザ光を用いたスクライブ方
式によるため、各セル間を300μ以下(0.3mm以下)
好ましくは30〜150μとすることができた。即ち
第1の電極、半導体および第2の電極を形成して
しまつた後、レーザ光を透光性基板側より照射し
て、これらすべてを同時に瞬時加熱気化除去して
しまうものである。
Therefore, in the present invention, a first electrode on a transparent substrate in a cell provided in an active region, a non-single crystal semiconductor on this electrode that generates a photovoltaic force by light irradiation, and a first electrode on the semiconductor. By making the two electrodes have approximately the same shape and approximately the same arrangement (self-registration) structure, it is possible to avoid a decrease in manufacturing yield due to deviations in the alignment accuracy of composite, and also to avoid this self-registration (hereinafter referred to as SG) structure. ) using a scribing method using laser light, the distance between each cell is 300μ or less (0.3mm or less)
Preferably, the thickness could be set to 30 to 150μ. That is, after the first electrode, semiconductor, and second electrode have been formed, laser light is irradiated from the transparent substrate side to instantaneously heat and vaporize all of them.

このため、複合化に関して必要なマスクを高精
度にそれぞれを合せる必要がなく、最後にすべて
を同時にSG法により形成してしまうことを特徴
としている。
For this reason, it is not necessary to match each mask with high precision, which is necessary for compounding, and the feature is that all the masks are finally formed simultaneously using the SG method.

従来非単結晶半導体即ちアモルフアスシリコン
を含む非単結晶シリコンを主成分としたPIN接合
ヘテロ接合またはPINPIN…PIN接合と複数の
PIN、PN接合を積層して設ける接合方式により
光起電力を光照射により発生させんとしていた。
しかしかかる接合を有する半導体の上下の電極は
直列接続をするため、1つのセルの下側電極と隣
りのセルの上側電極とを電気的に連結させなけれ
ばならず、かつ各セル間は互いに電気的にアイソ
レートされていることを必要な条件としていた。
Conventionally, PIN junction heterojunction or PINPIN...PIN junction and multiple
They attempted to generate photovoltaic force through light irradiation using a bonding method in which PIN and PN junctions were stacked.
However, since the upper and lower electrodes of a semiconductor having such a junction are connected in series, the lower electrode of one cell must be electrically connected to the upper electrode of the adjacent cell, and each cell is electrically connected to each other. The necessary condition was that the system be isolated from the outside.

第1図は従来構造の代表的な例を示している。 FIG. 1 shows a typical example of a conventional structure.

第1図Aは光電変換装置30を透光性基板2を
下側にした背面よりみた平面図である。図面にお
いて光照射により光起電力を発生する活性領域1
0と各セル1,1′を連結する連結部18を有す
る非活性領域11とを有する。第1図のA−A′,
B−B′のたて断面図を対応させて第1図B,C
に示してある。このA,B,C対応させて明らか
な如く、従来例においては、活性領域において各
セル1,1′はガラス基板2上の第1の電極の透
光性導電膜CTFの3は各セル間で互いに分離さ
れている。また半導体4は互いに連結している。
また非活性領域においてセル1の上側電極はセル
1の下側電極と連結部18で連結し、これをくり
かえし5つのセルが外部電極8,9間にて直列接
続をさせている。このセルの数、大きさは設計仕
様によつて決められる。
FIG. 1A is a plan view of the photoelectric conversion device 30 viewed from the back with the transparent substrate 2 facing downward. In the drawing, active region 1 that generates photovoltaic force by light irradiation
0 and a non-active region 11 having a connecting portion 18 connecting each cell 1, 1'. A-A′ in Figure 1,
Figures 1B and C correspond to the vertical cross-sectional views of B-B'.
It is shown in As is clear from the correspondence between A, B, and C, in the conventional example, in the active region, each cell 1, 1' has a transparent conductive film CTF of the first electrode on the glass substrate 2. are separated from each other. Further, the semiconductors 4 are connected to each other.
Further, in the non-active region, the upper electrode of the cell 1 is connected to the lower electrode of the cell 1 by a connecting portion 18, and this is repeated to connect five cells in series between the external electrodes 8 and 9. The number and size of these cells are determined by design specifications.

しかしこの従来構造は一見半導体4が基板であ
るため製造歩留りが高いようにみえる。しかし実
際には3種類のマスクを用いるが、そのマスクに
おいて第1のマスクと第3のマスクとがわずかで
もずれると(即ち金属マスクにおいては1〜3mm
のずれはごく当然である)第1図Dの如きたて断
面図が作られてしまう。その結果Bにおいては、
12がセルであり、13がアイソレイシヨン領域
であるものが、Dの15のセルと14のアイソレ
イシヨンとなり、セルの面積が20〜40%も実質的
に減少してしまうことが判明した。さらにマスク
を用いるため、Bのアイソレイシヨン領域は1〜
2mm例えば1.5nmを有するため、セル巾を10mmと
する時2mmずれるとするとセル巾15は8mmとな
り、アイソレイシヨン巾14は3.5mmとなり、30
%近くも有効面積が減少してしまう。
However, at first glance, this conventional structure appears to have a high manufacturing yield because the semiconductor 4 is the substrate. However, in reality, three types of masks are used, and if there is even a slight deviation between the first mask and the third mask (i.e., 1 to 3 mm in the case of a metal mask).
(It is only natural that the difference in the angle of view is different) A vertical cross-sectional view as shown in FIG. 1D is created. As a result, in B,
It was found that what had 12 cells and 13 isolation areas became D's 15 cells and 14 isolations, effectively reducing the cell area by 20 to 40%. . Furthermore, since a mask is used, the isolation area of B is 1~
2mm, for example, 1.5nm, so if the cell width is 10mm and there is a deviation of 2mm, the cell width 15 will be 8mm, the isolation width 14 will be 3.5mm, and 30
The effective area decreases by nearly %.

このため上下の電極の組合せをセルフレジスト
レイシヨン化することがその効率の向上のために
きわめて求められていた。
Therefore, it has been extremely desirable to make the combination of the upper and lower electrodes self-registered in order to improve the efficiency.

さらに第1図の従来例において、マスクは価格
を下げるため金属マスクを配置し、選択的に電極
3,5をセル領域12の部分のみ形成させる方法
を用いている。しかしかかる方法においては、マ
スクは10〜30回用いると、マスクの一方向のみに
同じ金属膜が形成されるためストレスを受け、被
形成面の密接性が欠け浮いてきてしまつた。その
結果マスクと基体との間金属、CTFの回りこみ
がおき、第1図5の如くこのまわりこみ17,1
6のため電気的絶縁分離(アイソレイシヨン)が
必要な部分において、隣りあつた各セルがシヨー
トまたはリークしてしまうことがわかつた。この
ためこの電極間の距離は広げる試みがあるが、こ
れを1〜2mm以上とすると、この間隙は有効面積
にならないばかりか視覚的にも商品価値を下げて
しまつていた。
Furthermore, in the conventional example shown in FIG. 1, a method is used in which a metal mask is arranged to reduce the cost, and the electrodes 3 and 5 are selectively formed only in the cell region 12. However, in such a method, when the mask is used 10 to 30 times, the same metal film is formed only in one direction of the mask, which causes stress, and the surface on which it is formed loses its closeness and starts to float. As a result, metal and CTF wrap around between the mask and the base, and as shown in FIG.
6, it was found that adjacent cells would shoot or leak in areas where electrical isolation was required. For this reason, attempts have been made to widen the distance between the electrodes, but if the distance is increased to 1 to 2 mm or more, this gap not only does not provide an effective area, but also visually reduces the commercial value.

さらにこのマスクのそりによる浮きをなくすた
め、マスクを300〜500μから3〜5mmと厚くする
ことが可能である。するとそりはなくなるが、厚
さのため電極3,5の形成の際、端部が薄くなり
かげになつてしまうという他の欠点が発生してし
まつた。
Furthermore, in order to eliminate floating due to warping of the mask, it is possible to increase the thickness of the mask from 300 to 500 μm to 3 to 5 mm. This eliminates the warpage, but due to the thickness, when forming the electrodes 3 and 5, another drawback arises in that the ends become thin and shaded.

これらのことより、連結部のマスク合せは低精
度でよく、活性領域において実質的に高精度マス
ク合せを行ない得る全く新しい構造および製造方
法に基ずく光電変換装置が求められていた。
For these reasons, there has been a need for a photoelectric conversion device based on a completely new structure and manufacturing method that allows mask alignment at the connecting portion to be performed with low precision and substantially high precision mask alignment in the active region.

本発明はかかる求めに応じてなされたものであ
つて、以下に図面に従つてその詳細を記す。
The present invention has been made in response to such a need, and details thereof will be described below with reference to the drawings.

第2図は本発明の光電変換装置の製造工程およ
び装置を示すものである。
FIG. 2 shows the manufacturing process and apparatus of the photoelectric conversion device of the present invention.

図面において基板は透光性基板(例えばガラ
ス)を用いた。この図面は5つのセルを直列接続
せしめた場合である。即ち本発明の光電変換装置
は活性領域10と非活性領域11とを有し、活性
領域のセルはすべてその下側の第1の電極と非単
結晶半導体、さらに上側の第2の電極とがセルフ
レジストレイシヨン(SG化)されており、概略
同一形状に同一配置を有していた。
In the drawings, a light-transmitting substrate (for example, glass) is used as the substrate. This drawing shows a case where five cells are connected in series. That is, the photoelectric conversion device of the present invention has an active region 10 and an inactive region 11, and all cells in the active region have a first electrode and a non-single crystal semiconductor on the lower side, and a second electrode on the upper side. They were self-registered (SG) and had approximately the same shape and arrangement.

これは活性領域に第1の電極、半導体、第2の
電極を全体に設けた後、一せいにこのすべてをレ
ーザ光によりスクライブしたことによる。特にこ
のレーザ(ここではYAGレーザ)スクライブを
透光性基板側よりマイクロコンピユータにより記
憶され制御されたパターンに従つてスクライブを
行なつた。その結果必然的にSG化が可能になつ
た。さらにレーザスポツトが一般的に30〜50μで
あるため(構造的には3μも可能であるが歩留り
を考慮して焦点距離の比較的長い30μを用いた)
その巾は10〜300μ好ましくは30〜50μψとさせた。
This is because the first electrode, the semiconductor, and the second electrode were provided all over the active region, and then all of them were scribed with a laser beam at the same time. In particular, this laser (here, a YAG laser) was used to scribe from the transparent substrate side according to a pattern stored and controlled by a microcomputer. As a result, SG became possible. Furthermore, since the laser spot is generally 30 to 50μ (3μ is possible due to its structure, but considering the yield, we used a relatively long focal length of 30μ).
Its width is 10 to 300μ, preferably 30 to 50μψ.

第2図A,A−1,A−2において、活性領域
10および非活性領域の連結部用電極6を第1の
マスクを用いて第1の透光性導電膜による電極3
を基板2上に形成させた。
In FIGS. 2A, A-1, and A-2, the active region 10 and the non-active region connecting electrode 6 are connected to the electrode 3 formed by the first light-transmitting conductive film using the first mask.
was formed on the substrate 2.

このCTFはITO(酸化スズを10%以下含有した
酸化インジユーム)または酸化スズを単層または
多層に積層し形成している。一般には電子ビーム
蒸着法を用いて1500〜2500Åの厚さに形成させ
た。
This CTF is formed by laminating ITO (indium oxide containing 10% or less of tin oxide) or tin oxide in a single layer or multiple layers. Generally, it is formed to a thickness of 1500 to 2500 Å using electron beam evaporation.

図面でAにおけるA−A′,B−B′のたて断面
図をA−1,B−1にそれぞれ対応して示してあ
る。かかる図面においてマスクはAの非単結晶領
域11における斜線領域のみであり、かつパター
ンも簡単であるため、マスクが本来基板から浮き
にくい。加えてこのマスクは合せ精度が低くても
よく、多少基板2より浮いても全くさしつかえな
いという特徴を有する。
In the drawing, vertical sectional views taken along lines A-A' and B-B' at A are shown corresponding to A-1 and B-1, respectively. In this drawing, the mask is only the shaded area in the non-single-crystal region 11 of A, and the pattern is simple, so the mask is inherently difficult to lift off the substrate. In addition, this mask has the feature that it does not require low alignment accuracy and there is no problem even if it is slightly lifted from the substrate 2.

次に第2図Bに示す如く非単結晶半導体を活性
領域10に形成させる。この時のマスクは斜線の
みであり、単純なパターンである。第2図BのC
−C′,D−D′のたて断面図をB−1,B−2に対
応して示している。
Next, as shown in FIG. 2B, a non-single crystal semiconductor is formed in the active region 10. The mask at this time has only diagonal lines and is a simple pattern. Figure 2 B C
-C' and D-D' vertical cross-sectional views are shown corresponding to B-1 and B-2.

かくして活性領域にはB−1に示す如く基板2
上にCTFよりなる第1の電極、光照射により光
起電力を発生する非単結晶半導体4を形成させ
た。
Thus, the active region has a substrate 2 as shown in B-1.
A first electrode made of CTF and a non-single crystal semiconductor 4 that generates a photovoltaic force upon irradiation with light were formed thereon.

この半導体4は例えばSixC1-x(0<x<1一般
にはx=0.7〜0.8)のP型を約100Åの厚さに、
さらにI型の水素またはハロゲン元素が添加され
た珪素を主成分とする半導体を0.4〜0.6μの厚さ
に、さらにN型の微結晶化した珪素を主成分とす
る半導体のPIN接合構造とした。もちろんこれを
P(SixC1-x x=0.7〜0.8)−I(Si)−N(μCSi)
−P(SixC1-x x=0.7〜0.8)−I(SixGe1-x
=0.6〜0.8)−N(μCSi)といつたPINPIN構造の
タンデム構造としてもよい。
This semiconductor 4 is, for example, a P type of SixC 1-x (0<x<1 generally x=0.7 to 0.8) with a thickness of about 100 Å.
Furthermore, we created a PIN junction structure of an I-type semiconductor mainly composed of silicon doped with hydrogen or halogen elements to a thickness of 0.4 to 0.6μ, and an N-type semiconductor mainly composed of microcrystalline silicon. . Of course, this is P(SixC 1-x x=0.7~0.8)-I(Si)-N(μCSi)
-P(SixC 1-x x=0.7~0.8)-I(SixGe 1-x x
It may be a tandem structure of PINPIN structure such as =0.6 to 0.8)-N(μCSi).

次に第3のマスクを用いて第2図Cのパターン
を形成させた。第2図CのE−E′,F−F′に対応
したたて断面図をC−1,C−2に示している。
この図面より明らかな如く、下側の連結部の電極
6と上側の連結部の電極7がオーム接触をして連
結部18を構成している。この状態においては活
性領域は単一の積層構造を構成しているのみであ
り、C−1のたて断面図より明らかな如く、半導
体4上に第2の電極5が形成されているにすぎな
い。この第2の電極はITOを900〜1300Å例えば
1050Åの厚さに設け、さらに珪素またはクロム、
チタンが添加されたアルミニユームを主成分とす
る金属を1000〜2000Åの厚さに形成させた。もち
ろん信頼性を重視しない場合はITOを除去しても
よい。またこの電極はITOのみでも十分であつ
た。
Next, the pattern shown in FIG. 2C was formed using a third mask. Vertical sectional views corresponding to lines E-E' and F-F' in FIG. 2C are shown in C-1 and C-2.
As is clear from this drawing, the electrode 6 of the lower connecting portion and the electrode 7 of the upper connecting portion are in ohmic contact to form the connecting portion 18. In this state, the active region only constitutes a single layered structure, and as is clear from the vertical cross-sectional view of C-1, only the second electrode 5 is formed on the semiconductor 4. do not have. This second electrode is made of ITO with a thickness of 900 to 1300 Å, e.g.
Provided with a thickness of 1050Å, and further coated with silicon or chromium,
A metal mainly composed of aluminum doped with titanium was formed to a thickness of 1000 to 2000 Å. Of course, if reliability is not important, ITO may be removed. Moreover, ITO alone was sufficient for this electrode.

裏面電極の反射光を利用して特性改良を計るに
は、前記したITO+A1が好ましかつた。信頼性
の向上はさらにITOのみが好ましかつた。それは
裏面電極の金属と半導体とが反応しやすいためで
ある。
In order to improve the characteristics by utilizing the reflected light from the back electrode, the above-mentioned ITO+A1 was preferable. Furthermore, only ITO was preferred for improved reliability. This is because the metal of the back electrode and the semiconductor tend to react.

この後第2図Bにおいてレーザスクライブ20
を行なつた。これはYAGレーザ(波長約1μ)を
ガラス基板側より平均出力3〜5Wとし、ビーム
径30〜50ビーム走査スピード1〜10m/分一般に
は3m/分として行なつた。
After this, in FIG. 2B, the laser scribe 20
I did this. This was done using a YAG laser (wavelength: about 1 .mu.m) with an average output of 3 to 5 W from the glass substrate side, a beam diameter of 30 to 50, and a beam scanning speed of 1 to 10 m/min, generally 3 m/min.

かくして第2図DのG−G′,H−H′,I−I′,
J−J′に対応して第2図D−1,D−2,D−
3,D−4を有せしめることができた。
Thus, G-G', H-H', I-I',
Corresponding to J-J', Fig. 2 D-1, D-2, D-
3, D-4.

この図面で明らかな如く、透光性基板2上に第
1の電極3、半導体4、第2の電極5が巾10〜
300μ好ましくは30〜100μのスクライブライン2
0により概略同一形状に同一配置を有して設けら
れている。
As is clear from this drawing, a first electrode 3, a semiconductor 4, and a second electrode 5 are arranged on a transparent substrate 2 with a width of 10 to 10 mm.
300μ preferably 30~100μ scribe line 2
0, they are provided in approximately the same shape and in the same arrangement.

第2図D〜D−4において、これらの上面に有
機樹脂22例えばシリコーン、エポキシまたはポ
リイミドを1〜20μの厚さにコーテイングして完
成させている。このDのレーザスクライブ工程は
ガラス側より行なうことは本発明の他の特徴であ
る。それはレーザ照射により加熱されて外部に噴
出する如くにして飛び散らせてスクライブするこ
とにより、薄膜状の第1および第2の電極が互い
にシヨートまたはリークするのを防ぐためであ
る。
In FIGS. 2D to D-4, these upper surfaces are coated with an organic resin 22 such as silicone, epoxy, or polyimide to a thickness of 1 to 20 μm. Another feature of the present invention is that this laser scribing step D is performed from the glass side. This is to prevent the thin film-shaped first and second electrodes from shooting or leaking from each other by being heated by laser irradiation and being spattered and scribed to the outside.

このレーザ光を逆に図面で上方より照射するこ
とによつて第2の電極をレーザアニールをし、第
1の電極と半導体中を蒸発拡散してシヨートして
しまい、全くの使用に耐えないことが本発明人に
より実験的に判明している。
By irradiating this laser light from above in the drawing, the second electrode is laser annealed, and the first electrode and the semiconductor are evaporated and diffused, causing them to be completely unusable. has been experimentally determined by the present inventor.

即ち本発明は透光性のある程度の耐熱性の基板
例えばガラス基板を用いることにより、このガラ
ス基板側よりレーザ光を照射して初めて可能とな
る。その結果スクライブ巾を10〜300μ好まくは
30〜100μと肉眼では観察不可能または困難な巾
となり、これは各セル間のレーザ20のみではな
く、各光電変換装置間のスクライブ21に対して
も全く同様に応用が可能であつた。
That is, the present invention is only possible by using a light-transmitting and somewhat heat-resistant substrate, such as a glass substrate, and by irradiating laser light from the glass substrate side. As a result, the scribe width is preferably 10 to 300μ.
The width is 30 to 100 μm, which is impossible or difficult to observe with the naked eye, and this can be applied not only to the laser 20 between each cell, but also to the scribe 21 between each photoelectric conversion device.

その結果この図面より明らかな如く、この光電
変換装置は例えば図面に示される如く、1.5cm×
5.4cmの活性領域と5mm×5.4cmの非活性領域を有
する1つの光電変換装置を12cm×5.4cmの大きさ
のガラス基板上に1つ作るのではなく、20cm×40
cmまたは20cm×60cmまたは40cm×120cmの大きな
ガラス板に一度に多数の光電変換装置を作ること
が可能である。そして最後にこれらを1つずつの
光電変換装置に分割すればよいことがわかる。
As a result, as is clear from this drawing, this photoelectric conversion device is, for example, 1.5 cm x 1.5 cm as shown in the drawing.
Instead of making one photovoltaic device with an active area of 5.4 cm and a non-active area of 5 mm x 5.4 cm on a glass substrate measuring 12 cm x 5.4 cm, a 20 cm x 40
It is possible to make a large number of photoelectric conversion devices at once on a large glass plate of cm or 20 cm x 60 cm or 40 cm x 120 cm. Finally, it can be seen that it is sufficient to divide these into individual photoelectric conversion devices.

もちろん大面積の同一基板上に多数(100〜
1000個)の光電変換装置を作製し、最後に分割す
ることは第1図の従来例においても不可能ではな
い。しかしかかる場合はマスクが高度の合せ精度
を要求したり、またマスクの基板との浮きが発生
することがきわめてきらわれるため、従来方法に
おいてはおのずからの限界がある。
Of course, a large number (100~
Even in the conventional example shown in FIG. 1, it is not impossible to produce 1,000 photoelectric conversion devices and finally divide them. However, in such a case, the conventional method has its own limitations because the mask requires a high degree of alignment accuracy, and the possibility of the mask lifting off from the substrate is extremely problematic.

第3図A,B,C,Dはそれぞれ第2図A,
B,C,Dに対応して大面積のパターンの概要を
示している。
Figure 3 A, B, C, and D are Figure 2 A, respectively.
The outline of large-area patterns corresponding to B, C, and D is shown.

図面において一点鎖線でかこまれた領域30…
30がそれぞれ独立した光電変換装置を示す。
活性領域は10,10′であり、非活性領域11
と帯状にきわめて単純に設けられている。このた
めこの帯状のラフ(ルーズ)な単に隣り合つたセ
ルと連結するためにだけマスクを用いるため、こ
の合せ精度はゆるくてもよく、量産はきわめて容
易である。
Area 30 surrounded by a dashed line in the drawing...
30 indicates independent photoelectric conversion devices.
The active area is 10,10' and the inactive area is 11.
It is very simply arranged in the form of a strip. For this reason, since a mask is used only to connect the band-like rough (loose) adjacent cells, the accuracy of this alignment may be loose, and mass production is extremely easy.

また第2図Dにおいて明らかな如く、セルの有
効面積は活性領域のうちの10〜300μ巾のきわめ
てわずかな部分を除いて有効であり、実効面積は
95±2%以上を得ることができ、従来例の80±30
%に比べ本発明構造は格段にすぐれたものであ
る。
Furthermore, as is clear from FIG. 2D, the effective area of the cell is effective except for a very small part of the active region with a width of 10 to 300 μm;
95±2% or more can be obtained, compared to the conventional example of 80±30.
%, the structure of the present invention is much superior.

以上のことより、本発明は大面積化をして最
終的に各光電変換装置に分割すればよいため、従
来よりも1/3〜1/5の価格での製造が可能である
活性領域がセルフレジストレイシヨン方式のため
セルの有効効率が高くかつそのバラツキが少ない
マスクの高い合せ精度を必要としないため製造
歩留りが高い各セル間のスクライブラインがセ
ルフレジストレイシヨンであり、かつレーザビー
ムスポツト径を変更させて、従来の1〜1.5mmよ
りその1/10〜1/50の10〜300μ好ましくは30〜
100μとすることができた。その結果肉眼により
ハイブリツド化を確認させず、高付加価値を与え
ることができたマスクの浮きによるセルの周辺
部でボケが発生することがなく、従来例の周辺部
のふといにじ構造がみられなくなり、高付加価値
を与えた、等多くの特徴を有している。
From the above, the present invention has a large active area that can be manufactured at 1/3 to 1/5 of the cost compared to conventional methods, since it is only necessary to increase the area and finally divide it into each photoelectric conversion device. Due to the self-registration method, the effective efficiency of cells is high and there is little variation.The production yield is high because high mask alignment accuracy is not required.The scribe line between each cell is self-registration, and the laser beam spot diameter is Change it to 10-300μ, preferably 30-300μ, which is 1/10 to 1/50 of the conventional 1-1.5mm.
It was possible to make it 100μ. As a result, hybridization was not visible to the naked eye, and high added value was achieved.There was no blurring at the periphery of the cell due to mask lifting, and the ridged rainbow structure at the periphery of the conventional example was not seen. It has many features, such as the ability to reduce the amount of waste and give it high added value.

以上の説明は本発明の第2図第3図のパターン
には限定されない。セルの数、大きさはその設計
仕様によつて定められるものである。また半導体
はプラズマCVD法または減圧CVD法を用いた。
非単結晶シリコンを主成分とするPIN接合、ヘテ
ロ接合、タンデム接合のみに限らず多くの構造へ
の応用が可能である。
The above description is not limited to the patterns of FIGS. 2 and 3 of the present invention. The number and size of cells are determined by the design specifications. For semiconductors, plasma CVD method or low pressure CVD method was used.
Applications are possible not only to PIN junctions, heterojunctions, and tandem junctions, but also to many structures whose main component is non-single-crystal silicon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光電変換装置のたて断面図であ
る。第2図、第3図は本発明の光電変換装置の平
面図およびたて断面図を製造工程に従つて示した
ものである。
FIG. 1 is a vertical sectional view of a conventional photoelectric conversion device. FIGS. 2 and 3 show a plan view and a vertical sectional view of the photoelectric conversion device of the present invention according to the manufacturing process.

Claims (1)

【特許請求の範囲】 1 透光性基板上に光照射により光起電力を発生
する活性領域と、該活性領域に設けられた複数の
光電変換セルを互いに連結する連結部と外部電極
とを有する光電変換装置を作製する方法において
透光性基板上の非活性領域に連結部を構成する第
1のマスクを配置して選択的に透光性と透光性導
電膜を有する第1の電極を前記活性領域に形成す
る工程と、光照射により光起電力を発生する非単
結晶半導体装置を前記活性領域上に形成する工程
と、前記非活性領域上に連結部を構成する第2の
マスクを配置して選択的に第2の電極を非単結晶
半導体上に形成するとともに前記第1および第2
の電極を互いに非活性領域の連結部にて連結せし
める工程と、前記活性領域の第1の電極、非単結
晶半導体および第2の電極をレーザ光照射により
複数の光電変換セルに分離する工程とを有し前記
活性領域に複数の光電変換セルを前記非活性領域
にて互いに電気的に連結して形成せしめることを
特徴とする光電変換装置の作製方法。 2 特許請求の範囲第1項において、レーザ光を
透光性基板側より照射かつ走査せしめることによ
り、照射領域における第1の電極、非単結晶半導
体および第2の電極を飛散せしめることによりレ
ーザスクライブを行うことを特徴とする光電変換
装置の作製方法。
[Claims] 1. An active region that generates a photovoltaic force by light irradiation on a transparent substrate, and a connecting portion and external electrodes that connect a plurality of photoelectric conversion cells provided in the active region to each other. In a method for manufacturing a photoelectric conversion device, a first mask constituting a connecting portion is placed in an inactive region on a transparent substrate, and a first electrode having a transparent conductive film and a transparent conductive film are selectively formed. forming a non-single crystal semiconductor device on the active region that generates a photovoltaic force upon irradiation with light; and forming a second mask forming a connecting portion on the non-active region. selectively forming a second electrode on the non-single crystal semiconductor;
a step of connecting the electrodes of the active region to each other at a connection portion of the non-active region, and a step of separating the first electrode, the non-single crystal semiconductor, and the second electrode of the active region into a plurality of photoelectric conversion cells by laser beam irradiation. A method for manufacturing a photoelectric conversion device, comprising forming a plurality of photoelectric conversion cells in the active region and electrically connected to each other in the inactive region. 2. In claim 1, laser scribing is achieved by irradiating and scanning a laser beam from the transparent substrate side to scatter the first electrode, non-single crystal semiconductor, and second electrode in the irradiation area. A method for manufacturing a photoelectric conversion device, characterized by performing the following steps.
JP57218811A 1982-12-14 1982-12-14 Manufacture of photoelectric converter Granted JPS59108374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57218811A JPS59108374A (en) 1982-12-14 1982-12-14 Manufacture of photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57218811A JPS59108374A (en) 1982-12-14 1982-12-14 Manufacture of photoelectric converter

Publications (2)

Publication Number Publication Date
JPS59108374A JPS59108374A (en) 1984-06-22
JPS6331951B2 true JPS6331951B2 (en) 1988-06-27

Family

ID=16725709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57218811A Granted JPS59108374A (en) 1982-12-14 1982-12-14 Manufacture of photoelectric converter

Country Status (1)

Country Link
JP (1) JPS59108374A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454769A (en) * 1987-08-26 1989-03-02 Fuji Electric Res Manufacture of amorphous silicon solar cell
DE602005026507D1 (en) 2004-04-05 2011-04-07 Nec Corp FOTODIODE AND MANUFACTURING METHOD THEREFOR

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array

Also Published As

Publication number Publication date
JPS59108374A (en) 1984-06-22

Similar Documents

Publication Publication Date Title
JP3169497B2 (en) Solar cell manufacturing method
US9786800B2 (en) Solar cell contact structure
CN101889351B (en) Multilayer thin-film photoelectric converter and its manufacturing method
JPS63232376A (en) Manufacture of photovoltaic device
JP7356445B2 (en) Method of manufacturing solar cells, solar cells, and solar cell modules
JPH0518274B2 (en)
JP5145456B2 (en) Solar cell module and manufacturing method thereof
JPH0851229A (en) Integrated solar battery and its manufacture
JPS616828A (en) Manufacture of semiconductor device
US20110030769A1 (en) Solar cell and method for manufacturing the same
JPS5996779A (en) Photoelectric conversion device
JPS6331951B2 (en)
JPH0518273B2 (en)
JPS5996778A (en) Manufacture of photoelectric conversion device
JP5868661B2 (en) Bypass diode and manufacturing method thereof
JPS59108373A (en) Photoelectric converter
JP3105999B2 (en) Solar cell manufacturing method
JPS6213829B2 (en)
JPH0415631B2 (en)
JP6971749B2 (en) Manufacturing method of solar cell module and solar cell module
JPH03250771A (en) Manufacture of photovoltaic device
JPS59193075A (en) Manufacture of photoelectric conversion semiconductor device
JPS5996783A (en) Photoelectric conversion device
JPS6265480A (en) Thin film solar battery
JPH065776B2 (en) Method for manufacturing photoelectric conversion device