JPS59108374A - Manufacture of photoelectric converter - Google Patents

Manufacture of photoelectric converter

Info

Publication number
JPS59108374A
JPS59108374A JP57218811A JP21881182A JPS59108374A JP S59108374 A JPS59108374 A JP S59108374A JP 57218811 A JP57218811 A JP 57218811A JP 21881182 A JP21881182 A JP 21881182A JP S59108374 A JPS59108374 A JP S59108374A
Authority
JP
Japan
Prior art keywords
electrode
active region
photoelectric conversion
crystal semiconductor
connecting part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57218811A
Other languages
Japanese (ja)
Other versions
JPS6331951B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP57218811A priority Critical patent/JPS59108374A/en
Publication of JPS59108374A publication Critical patent/JPS59108374A/en
Publication of JPS6331951B2 publication Critical patent/JPS6331951B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To enable to enhance the visual value as the whole of a photoelectric converter by a method wherein a second electrode is formed mutually on nonsingle crystal semiconductor selectively, a first electrode and the second electrode are connected mutually at the connecting part of an inactive region, and the first electrode, the nonsingle crystal semiconductor and the second electrode in an active region are scribed according to a laser irradiating beam. CONSTITUTION:A first electrode consisting of a CTF, a nonsingle crystal semiconductor 4 to generate a photovoltage according to irradiation of light are formed on a substrate 2 in an active region. The electrodes 6 of a connecting part on the lower side and the electrodes 7 of a connecting part on the upper side make ohmic contact to construct a connecting part 18. YAG laser (wavelength is about 1mum) is irradiated from the glass substrate side making average output to 3-5W, the beam diameter to 30-50mum, the beam scanning speed to 1-10m/min, and generally making to 3m/min to perform laser scribing 20. The first electrode 3, the semiconductor 4 and a second electrode 5 are provided on the transparent substrate 2 according to scribing lines 20 of 10-300mum width, favorably of 30-100mm. width nearly in the same shape having the same arrangement.

Description

【発明の詳細な説明】 この発明は、光電変換セルを透光性基板上に複数個配列
して設けるハイブリッド型光電変換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hybrid photoelectric conversion device in which a plurality of photoelectric conversion cells are arranged on a transparent substrate.

この発明は、光電f換セル(以下単にセルという)を基
板上に複合化するに関し、隣シ合ったセル間の距離を肉
眼では十分見分ぽ鵞61い300μ以下とし、装置全体
としての視覚的価値を上げることを目的としている。
This invention relates to combining photoelectric conversion cells (hereinafter simply referred to as cells) on a substrate, and the distance between adjacent cells is set to 300μ or less, which is difficult to see with the naked eye, and the visual perception of the entire device is improved. The purpose is to increase the value of

このため本発明においては活性領域に設けられたセルに
おける透光性基板上の第1の電極と、この電極上に光照
射により光起′lIL力を発生する非単結晶半導体と、
該半導体上の第2の電極とのそれぞれを概略同一形状、
概略同配fR(セルフレジストレイジョン)構造とする
ことによ如、複合化の合せ精度のズレによる製造上の歩
留シ低下をさけるとともに、このセルフレジストレイジ
ョン(以下8Gという)をレーザ光を用いたスクライプ
方式によるため、各セル間を300p以下(0,3mm
以下)好ましくは30〜150μとすることができた。
Therefore, in the present invention, a first electrode on a transparent substrate in a cell provided in an active region, a non-single crystal semiconductor that generates a photovoltaic force upon irradiation with light, and
each having approximately the same shape as the second electrode on the semiconductor;
By adopting an approximately uniform fR (self-registration region) structure, it is possible to avoid a decrease in manufacturing yield due to deviations in the alignment accuracy of compounding, and also to create this self-registration region (hereinafter referred to as 8G) using a laser beam. Because it uses a scribe method, the distance between each cell is 300p or less (0.3mm
(hereinafter) preferably 30 to 150μ.

即ち第1の電極、半導体および第2の電極を形成してし
まった後、レーザ光を透光性基板側より照射して、これ
らすべてを同時に瞬時加熱気化除去してしまうものであ
る。
That is, after the first electrode, semiconductor, and second electrode have been formed, laser light is irradiated from the transparent substrate side to instantaneously heat and vaporize all of them.

このため、複合化に関して必要なマスクを高精度にそれ
ぞれを合せる必要がなく、最後にすべてを同時K11G
法により形成して【まうことを特徴(3) としている。
For this reason, there is no need to match the masks required for compounding with high precision, and in the end, all the masks can be combined simultaneously with K11G.
Characteristic (3) is that it is formed by law.

従来非単結晶半導体即ちアそルファスシリコンを含む非
単結晶シリコンを主成分とし7’(p工N接合へテロ接
合またはP工NP工N・・・・P工N接合と複数の1N
、PIJ接合を、積層して設ける接合方式によシ光起電
力を光照射により発生させんとしていた。
Conventionally, non-single-crystal semiconductors, that is, non-single-crystal silicon containing amorphous silicon, are the main component, and 7' (P-N junction heterojunction or P-N-P-N...P-N junction and multiple 1N
, an attempt was made to generate photovoltaic force by light irradiation using a bonding method in which PIJ junctions are stacked.

しかしかかる接合を有する半導体の上下の電極は直列接
続をするため、1つのセルの下側電極と隣シのセルの上
側電極とを電気的に連結させなければならず、かつ各セ
ル間は互いに電気的にアイソレートされていることを必
要な条件としていた。
However, since the upper and lower electrodes of a semiconductor having such a junction are connected in series, the lower electrode of one cell must be electrically connected to the upper electrode of the adjacent cell, and each cell must be connected to each other. A necessary condition was electrical isolation.

第1図は従来構造の代表的な例を示している。FIG. 1 shows a typical example of a conventional structure.

第1図(4)は光電変換装置(30)を透光性基板(2
)を下側にした背面よシみ九平面図でおる。図面におい
て光照射によシ光起電力を発生する活性領域00)と各
セル(1)、(−L’)を連結する連結部OI!を有す
る非活性領域aカとを有する。第1図(4)のA−A’
、 B−Bi’のたて断面図を対応させて第1図(B入
(0) K示しである。
Figure 1 (4) shows a photoelectric conversion device (30) connected to a light-transmitting substrate (2).
). In the drawing, the connecting portion OI connects the active region 00) which generates photovoltaic force upon irradiation with light and each cell (1), (-L'). It has a non-active area a and a. A-A' in Figure 1 (4)
, B-Bi' vertical cross-sectional views are shown in FIG.

おいては、活性領域において各セル(−L)(()はガ
ラス基板(2)上の第1C′WIL極の透光性導電膜(
OT F)の(3)は各セル間で互いに分離されている
。また半導体(4)は互いに連結している。また非活性
領域においてセル(1)の上側電極はセル(1)の下側
電極と連結部0→で連結し、これをくシかえし5つのセ
ルが外部電極(8)、(9)間にて直列接続をさせてい
る。このセルの 3.  i=き υ  49 イ17
ブイ況 1 1ノ1 三えみ らイX)。
In the active region, each cell (-L) (() is the transparent conductive film () of the first C'WIL pole on the glass substrate (2).
(3) of OT F) are separated from each other between each cell. Further, the semiconductors (4) are connected to each other. In addition, in the inactive area, the upper electrode of cell (1) is connected to the lower electrode of cell (1) at connecting part 0→, and this is twisted so that five cells are connected between external electrodes (8) and (9). They are connected in series. 3. of this cell. i=ki υ 49 i17
Buoy Situation 1 1 no 1 Miemi Rai X).

しかしこの従来構造は一見半導体(4)が基板であるた
め製造歩留シが高いようにみえる。しかし実際には3種
類のマスクを用いるが、そのマスクにおいて第1のマス
クと第3のマスクとがわずかでもずれると(即ち金属マ
スクにおいては1〜3m mのずれはごく当然である)
第1図線の如きたて断面図が作られてしまう。その結果
(B) においては、(ロ)がセルであシ、◇1がアイ
ソレイション領域であるものが、φ)のα→のセルと6
4のアイソレイションとなり、セルの面積が20〜40
%も実質的に減少してしまうことが判明し念。さらにマ
スクを用いるため、(B)のアイソレイション領域は1
〜2mm例えばL5nmを有するため、セル中を10m
mとする時2mmずれるとするとセル中00は8mmと
なシ、アイソレイション巾e+4@3.5mmとなり、
30チ近くも有効面積が減少してしまう。
However, at first glance, this conventional structure appears to have a high manufacturing yield because the semiconductor (4) is the substrate. However, in reality, three types of masks are used, and if there is even a slight deviation between the first mask and the third mask (i.e., it is natural for a metal mask to have a deviation of 1 to 3 mm).
A vertical sectional view like the line in Figure 1 is created. In the result (B), (b) is the cell and ◇1 is the isolation region, and the α→ cell of φ) and 6
4 isolation, and the cell area is 20 to 40
It turns out that the percentage will actually decrease as well. Furthermore, since a mask is used, the isolation area in (B) is 1
~2mm For example, since it has L5nm, it is possible to
If m is a deviation of 2 mm, 00 in the cell will be 8 mm, and the isolation width will be e + 4 @ 3.5 mm.
The effective area will be reduced by nearly 30 inches.

このため上下の電極の組合せをセルフレジストレイジョ
ン化することがその効率の向上のためにきわめて求めら
れていた。
Therefore, it has been extremely desirable to make the combination of the upper and lower electrodes into a self-registration region in order to improve the efficiency.

さらに第1図の従来例において、マスクは価格を下げる
ため金属マスクを配INシ、選択的に@極は10〜30
回用いると、マスクの一方向のみに同じ金属膜が形成さ
れるためストレスを受け、被形成面との密接性が欠は浮
いてきてしまった。その結果マスクと基板との間金属、
OT’lFの盲五こみがおき、第1図(5)の如くこの
まわシこみαの、CLf) oため電気的絶縁分#I!
(アイソレイション)、が必要な部分において、隣シあ
った各セルがショートまたはとすると、この間隙は有効
面積にならないばかシか視覚的にも商品価値を下げてし
まっていた。
Furthermore, in the conventional example shown in FIG.
When used multiple times, the same metal film is formed in only one direction of the mask, which causes stress, and the closeness to the surface on which it is formed becomes insufficient. As a result, the metal between the mask and the substrate,
OT'lF is blindly folded, and as shown in Fig. 1 (5), electric insulation #I!
(isolation), if adjacent cells are short-circuited or otherwise short-circuited, this gap does not provide an effective area and visually reduces the product value.

さらにこのマスクのそシによる浮きをなくすため、マス
クを300〜δ00p4Xる 3〜5mmと厚くするこ
とが可能である。するとそシはなくなるが、厚さのため
電極(3) (5)の形成の際端部が薄くなシかげン になってしまうという他の欠点が発生してしまったO これらのことよシ、連結部のマスク合せは低精度でよく
、活性領域において実質的に高精度マスク合せを行ない
得る全く新しい構造および製造方法に基ずく光電変換装
置が求められていた。
Furthermore, in order to eliminate floating due to the warp of the mask, it is possible to increase the thickness of the mask to 300 to δ00p4X 3 to 5 mm. This eliminates the scratches, but due to the thickness of the electrodes (3) and (5), another drawback has occurred: the ends become thin and dark. There has been a need for a photoelectric conversion device based on a completely new structure and manufacturing method that allows mask alignment at the connecting portion to be performed with low precision and substantially high precision mask alignment in the active region.

本発明はかかる求めに応じてなされたものであって、以
下に図面に従ってその詳細を記す。
The present invention was made in response to such a need, and details thereof will be described below with reference to the drawings.

第2図は本発明の光電変換装置の製造工程および装置を
示すものである。
FIG. 2 shows the manufacturing process and apparatus of the photoelectric conversion device of the present invention.

図面において基板は透光性基板(例えばガラス)を用い
た。この図面は5つのセルを直列接続せしめた場合であ
る。即ち本発明の光電変換装置は活性領域00)と非活
性領域(11)とを有し、活性領域のセルはすべてその
下側の第1の電極と非単結晶半導体、さらに上側の第2
の電極とがセルフレジストレイジョン(8G化)されて
おシ、概略同一形状に同一配置を有していた。
In the drawings, a light-transmitting substrate (for example, glass) is used as the substrate. This drawing shows a case where five cells are connected in series. That is, the photoelectric conversion device of the present invention has an active region 00) and an inactive region (11), and all cells in the active region have a first electrode and a non-single crystal semiconductor on the lower side, and a second electrode on the upper side.
The electrodes were self-registered (8G) and had approximately the same shape and arrangement.

これは活性領域に第1の電極、半導体、第2の電極を全
体に設けた後、−せいにこのすべてをレーザ光によりス
クライブしたことによる。特にとのレーザ(ここではY
AGレーザ)スクライブを透光性基板側よシマイク四コ
ンピュータによシ記憶され制御されたパターンに従って
スクライブを行なった。その結果必然的に8G化が可能
になった。
This is because after the first electrode, the semiconductor, and the second electrode were provided all over the active region, they were all scribed with a laser beam. In particular, the laser with (here Y
AG laser) scribing was performed on the transparent substrate side according to a pattern stored and controlled by a computer. As a result, 8G became possible.

さらにレーザスポットが一般的に30〜50μであるた
め(構造的には3μ も可能であるが歩留シを考慮して
焦点距離の比較的長い30μを用いた)5 en  v
p  11 10 〜10(3M   ?)L L乙/
ブ )I〜p(3s!/’ t i 47で、。
Furthermore, since the laser spot is generally 30 to 50μ (3μ is possible from a structural perspective, we used 30μ, which has a relatively long focal length, considering yield).
p 11 10 ~10 (3M?) L L Otsu/
b)I~p(3s!/' t i 47,.

第2図(A)、(A−(XA−2) において、活性領
域00)おり よび非活性領域の連結部用電極(6)を第1のマスクを
用いて第1の透光性導電膜による電極(3)を基板(2
)上に形成させた。
In FIG. 2(A) and (A-(XA-2)), the active region 00) and the connecting electrode (6) of the non-active region are connected to the first transparent conductive film using the first mask. The electrode (3) is connected to the substrate (2
) was formed on top.

このOTFはxTo (酸化スズを10%以下含有した
酸化インジューム)または酸化スズを単層または多層に
積層し形成している。一般には電子ビーム蒸着法を用い
て11500−2δooXの厚さに形成させた。
This OTF is formed by stacking xTo (indium oxide containing 10% or less of tin oxide) or tin oxide in a single layer or in multiple layers. Generally, it is formed to a thickness of 11500-2 δooX using an electron beam evaporation method.

図面で(A)KおけるA−虱B−B’のたて断面図をα
−1)←1)Kそれぞれ対応して示しである。かかる図
面においてマスクは体)の非単結晶領域α])Kおける
斜線領域のみであり、かつパターンも簡単であるため、
マスクが本来基板から浮きにくい。加えてこのマスクは
合せ精度が低くてもよく、多少基板(2)より浮いてい
ても全くさしつかえないという特徴を有する。
In the drawing, the vertical cross-sectional view of A-B-B' in (A)
−1)←1)K are shown in correspondence with each other. In such drawings, the mask is only the shaded area in the non-single crystal region α])K of the body), and the pattern is simple, so
The mask is inherently difficult to lift off the substrate. In addition, this mask has the feature that it does not require low alignment accuracy and there is no problem even if it is slightly floating above the substrate (2).

次に第2図(B) K示す如く非単結晶半導体を活性領
域(10)K形成させる。この時のマスクは斜線のみで
あシ、単純なパターンである。第2図(B)のo−d、
D−D’のたて断面図を(B−1)(B−2) K対応
しり て示している。
Next, as shown in FIG. 2(B), a non-single crystal semiconductor is formed as an active region (10). The mask at this time is a simple pattern with only diagonal lines. od in FIG. 2(B),
Vertical sectional views taken along line DD' are shown in correspondence with (B-1), (B-2) and K.

かくして活性領域には(B−1)K示す如く基板(2)
上K OTFよりなる第1の電極、光照射にょシ光起電
力を発生する非単結晶半導体(4)を形成させた。
Thus, the active region has a substrate (2) as shown in (B-1)K.
A first electrode made of K OTF was formed, and a non-single crystal semiconductor (4) which generates a photovoltaic force upon irradiation with light was formed.

この半導体(4)は例えば81 X OB−< (0<
 x < 1一般にはX・0.1〜0.8)のP型を約
”100^の厚さに、さく9) らにτ型の水素またはハロゲン元素が添加された珪素を
主成分とする半導体を0.4〜0.6μの厚さに、さら
KN型の倣結晶化し71c珪素を主成分とする半導体の
P工N′!g、合構造とした。もちろんこれをP (E
liXOI−、! 、0.7〜0.8)−工(Si) 
−N (μ081) −P  (Sixth−、x=o
、  1〜0.8)−工 (日1xGe、−,x二 O
,6〜0.8) −M (μ081)といったP工NP
IN棉造のタンデム構造としてもよい。
This semiconductor (4) is, for example, 81
x < 1 In general, P-type with X・0.1~0.8) is made to a thickness of about 100^, and the main component is silicon to which τ-type hydrogen or halogen element is added. The semiconductor was further crystallized into a KN type to a thickness of 0.4 to 0.6 μm, and a P-N′!g composite structure was obtained, which is a semiconductor whose main component is 71c silicon.
liXOI-,! , 0.7~0.8)-Engine(Si)
-N (μ081) -P (Sixth-, x=o
, 1~0.8) -E (day 1xGe, -,x2 O
, 6~0.8) -M (μ081)
It may also be a tandem structure made of IN cotton.

次に第3のマスクを用いて第2図(0)のパターンを形
成させた。第2図(0)のB−m:IP−F′に対応し
たたて断面図を(o−1)(o−2) K示している。
Next, the pattern shown in FIG. 2(0) was formed using a third mask. A vertical sectional view corresponding to B-m:IP-F' in FIG. 2 (0) is shown at (o-1) (o-2)K.

この図面より明らかな如く、下側の連結部の電極(6)
と上側の連結部の電極(1)がオーム接触をして連結部
01を構成している。この状態においては活性領域は単
一の積層構造を構成しているのみでちシ、(0−1)の
たて断面図よシ明らかな如く、半導体(4)上に第2の
電極(5)が形成されているにすぎない。この第2の電
極は工TOを900〜1300^例えば1050^の厚
さに設け、さらに珪素またはクロム、チタンが添加され
たアルミニュームを主成分とする金属を(10) 1000〜2000Aの厚さに形成させた0もちろん信
頼性を市況しない場合は工Toを除去してもよい。
As is clear from this drawing, the electrode (6) of the lower connection part
The electrode (1) of the upper connecting part makes ohmic contact with the upper connecting part 01 to form a connecting part 01. In this state, the active region only constitutes a single layered structure, and as is clear from the vertical cross-sectional view (0-1), the second electrode (5) is placed on the semiconductor (4). ) is simply formed. This second electrode is made of TO having a thickness of 900 to 1300 A, for example 1050 A, and a metal whose main component is aluminum to which silicon, chromium, or titanium is added (10) to a thickness of 1000 to 2000 A. Of course, if there is no market for reliability, it is also possible to remove the To.

またこの電極はITOのみでも十分であった。Moreover, ITO alone was sufficient for this electrode.

裏面電極の反射光を利用して特性改良を計るには、前記
した170+A1が好ましかった。信頼性の向上はさら
に工TOのみが好ましかった0それは裏面電極の金属と
半導体とが反応しやすいためでちる0 この後第2図(B) においてレーザスクライブ(20
)を行なった0これはYAGレーザ(波長約1μ)をガ
ラス基板側よシ平均出力3〜5Wとし、ビーム径30〜
50 ビーム走亘スピード1〜10m/分一般には3m
/分として行なった0 かくして第2図(D)のG−d、 H−H’、 I−エ
ミ、y−fvc対応して第2図(D−1)、(n−2)
、CD−3)、(D−4)を有せしめることができた。
In order to improve the characteristics by utilizing the reflected light from the back electrode, the above-mentioned 170+A1 was preferable. Further, it was preferable to improve the reliability only by using TOTO. This is because the metal of the back electrode and the semiconductor react easily. After this, in Figure 2 (B), laser scribing (
) was performed using a YAG laser (wavelength approximately 1 μ) with an average output of 3 to 5 W on the glass substrate side, and a beam diameter of 30 to 5 W.
50 Beam running speed 1-10m/min Generally 3m
2 (D-1), (n-2)
, CD-3), and (D-4).

この図面で明らかな如く、透光性基板(2)よに第1の
電極(3)、半導体(4)、第2の電極(5)が巾10
〜300p好ましくは30〜100μのスクライブライ
ン(ホ)によシ、概略同一形状に同一配置を有して設け
ら^1) れている。
As is clear from this drawing, the transparent substrate (2), the first electrode (3), the semiconductor (4), and the second electrode (5) have a width of 10 mm.
~300μ, preferably 30~100μ scribe lines (e) are provided with approximately the same shape and the same arrangement^1).

第2図CD)〜(D−4)において、これらの上面に有
機樹脂(イ)例えばシリコーン、エポキシまたはポリイ
ミドを1〜20μの厚さにコーティングして完成させて
いる。この(ロ)のレーザスクライブ工程はガラス側よ
シ行なうことは本発明の他の特徴である。
In Figures 2 (CD) to (D-4), the upper surfaces of these are coated with an organic resin (a) such as silicone, epoxy or polyimide to a thickness of 1 to 20 microns. Another feature of the present invention is that the laser scribing step (b) is performed from the glass side.

それはレーザ照射により加熱されて外部に噴出する如く
にして飛び散らせてスクライブすることによシ、薄膜状
の第1および第2の電極が互いにショートまたはリーク
するのを防ぐためである。
This is to prevent short-circuiting or leakage between the thin film-shaped first and second electrodes by heating the first and second electrodes by laser irradiation, spewing them out to the outside, scattering them, and scribing them.

このレーザ光を逆に図面で上方より照射することによっ
て第2のIJl極をレーザアニールをし、第1の電極と
半導体中を蒸発拡散してショートしてしまい、全くの使
用K 1ii=1えないことが本発明式によシ実験的に
判明している。
Conversely, by irradiating this laser light from above in the drawing, the second IJl pole is laser annealed, and the first electrode and the semiconductor are evaporated and diffused, resulting in a short circuit, resulting in no use at all. It has been experimentally determined that this is not the case according to the present invention.

即ち本発明は透光性のある程度の耐熱性の基板例えばガ
ラス基板を用いることによ〕、このガラス基板側よシレ
ーザ光を照射して初めて可能となこれは各セル間のスク
ライブ(ホ)のみでなく、各光電変換装置間のスクライ
プQ力に対しても全く同様に応用が可能であった0 輔性領域と5mmX5.4cmの非活性領域を有する1
つの光電変換装置を126mX5.4amの大きさのガ
ラス基板上に1つ作るのではな(,20amX400m
または20cmX60cmまたは40cmX120om
の大きなガラス板に一度に多数の光電変換装置を作るこ
とが可能である。そして最後にこれらを1つずつの光電
変換装置に分割すればよいことがわかる0 もちろん大面積の同一基板上に多数(100〜1000
個)の光電変換装置を作製し、最後に分割することは第
1図の従来例においても不可能ではない0しかしかかる
場合はマスクが高度の合せ精度を要求したシ、またマス
クの基板との浮きが発生することがきわめてきられれる
ため、従来方法においてはおのずからの限界がある。
That is, the present invention is possible only by using a light-transmitting and somewhat heat-resistant substrate, such as a glass substrate, and by irradiating the glass substrate side with a laser beam. In addition, it could be applied in exactly the same way to the scribe Q force between each photoelectric conversion device.
Why not make one photoelectric conversion device on a glass substrate with a size of 126m x 5.4am (20am x 400m)?
or 20cmX60cm or 40cmX120om
It is possible to create many photoelectric conversion devices at once on a large glass plate. Finally, we understand that it is only necessary to divide these into individual photoelectric conversion devices.Of course, a large number (100 to 1000
It is not impossible to fabricate photoelectric conversion devices (individuals) and finally divide them in the conventional example shown in FIG. Conventional methods have their own limitations because floating is extremely likely to occur.

ターンの概要を示している。Shows an outline of the turn.

図面において−よ4ひイ&1邊Σy+r、旬メ41(3
0)・・・(3o)がそれぞれ独立した光電変換装置を
示す。活性領域は(lO)(16)であシ、非活性領域
01)と帯状にきわめ) て単純に設けられている。このためこの帯状の27(ル
ーズ)な単に隣り合ったセルと連結するためにだけマス
クを用いるため、この合せ精度はゆるくてもよく、量或
はきわめて容易である。
In the drawing -yo 4hi & 1be Σy+r, Shunme 41 (3
0)...(3o) indicate independent photoelectric conversion devices. The active region is (lO)(16), and the inactive region 01) is simply provided in a band shape. For this reason, since a mask is used only to connect the band-shaped 27 (loose) adjacent cells, the accuracy of this matching may be loose, and the amount or quantity is extremely easy.

また第2図(D) において明らかな如く、セルの有効
面積は活性領域のうちの10〜300p巾のきわめてわ
ずかな部分を除いて有効であり、実効面積は95±2チ
以上を得ることができ、従来例の80±30%に比べ本
発明構造は格段にすぐれたものである。
Furthermore, as is clear from FIG. 2(D), the effective area of the cell is effective except for a very small part of the active region with a width of 10 to 300 pixels, and it is possible to obtain an effective area of 95 ± 2 inches or more. The structure of the present invention is much superior to 80±30% of the conventional example.

以上のことよシ、本発明は■大面積化をして最終的に各
光電変換装wに分割すればよいため、従来よりも1/3
〜115の価格での製造が可能である■活性領域がセル
フレジストレイショy方式のためセルの有効効率が尚く
かつそのバラツキが少ない■マスクの高い合せ精度を必
要としないため製造歩留シが高い■各セル間のスクライ
ブラインがセルフレジストレイジョンでるり、かつレー
ザビームスポット9番〜査り丁曵−t、  (ljlの
1〜1.5mmよシその1/10〜1150の10〜3
00μ好ましくは30〜100μとすることができた。
In view of the above, the present invention only needs to increase the area and finally divide it into each photoelectric conversion device w, which is 1/3 compared to the conventional one.
It can be manufactured at a price of ~115. ■The active region uses a self-registration method, so the effective efficiency of the cell is high and its variation is small. ■The manufacturing yield is low because high mask alignment accuracy is not required. High ■ The scribe line between each cell is a self-registration region, and the laser beam spot No. 9 ~ 10 ~ 3 of 1/10 ~ 1150 of 1 ~ 1.5 mm of ljl.
00μ, preferably 30 to 100μ.

その結果肉眼によシバイブリッド化を確認させず、高付
加価値を与えることができた■マスクの浮きによるセル
の周辺部でボケが発庄することがなく、従来例の周辺部
のふといにじ構造がみられなくなシ、高付加価値を与え
た、等多くの特徴をMしている0以上の説明は本発明の
第2図第3図のパターンには限定されない。セルの数、
太ささけその設計仕様によって定められるものである。
As a result, we were able to provide high added value without making visible hybridization visible to the naked eye ■There is no blurring at the periphery of the cell due to the floating of the mask, and there is no blurring at the periphery of the conventional example. The description of 0 or more having many features such as no visible structure and high added value is not limited to the patterns shown in FIGS. 2 and 3 of the present invention. number of cells,
The thickness is determined by its design specifications.

また半導体はプラズマOVD法または減圧OVD法を用
いた。
Further, for the semiconductor, a plasma OVD method or a reduced pressure OVD method was used.

非単結晶シリコンを主成分とするP工N接合、ヘテロ接
合、タンデム接合のみに限らず多くの構造への応用が可
能である。
Applications are possible not only to P-N junctions, heterojunctions, and tandem junctions, but also to many structures that are mainly composed of non-single-crystal silicon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光電変換装置のたて断面図である0 第2図、第3図は本発明の光電変換装置の平面図および
たて断面図を製造工程に従って示したものである。 :爵許出願人 一千偏 一一、誠 6 375− 1−2    (9) (E) 一11 帽[有]
FIG. 1 is a vertical cross-sectional view of a conventional photoelectric conversion device. FIGS. 2 and 3 are a plan view and a vertical cross-sectional view of the photoelectric conversion device of the present invention according to the manufacturing process. : License applicant 1000-11, Makoto 6 375-1-2 (9) (E) 111 Hat [Yes]

Claims (1)

【特許請求の範囲】 ■、透光性基板上に光照射によシ光起電力を発生する活
性領域と、該活性領域に設けられた複数の光電変換セル
を互いに連結する連結部と外部電極とを有する光電変換
装置の作製方法において、透光性基板上Y非活性領域に
連結部を構成する第1のマスクを配置して選択的に透光
性導電膜を有する第1の電極を前記活性領域に形成する
とともに形成する工程と、光照射により光起電力を発生
する非単結晶半導体を前記活性領域上に形成する工程と
、前記非活性領域上に44W部を構成する第2のマスク
を配置して選択的に第2の電極を互いに非単結晶半導体
上に形成するとともに形−一7で前記第1および第2の
電極を互いに非活性領域の連結部にて連結せしめる工程
と、前記活性領域の第1の電極、非単結晶半導体および
第2の電極をレーザ照射光によシスクライブすることに
よシ複数の光電変換セルを分離する工程とを有せしめる
ことによシ、前記透光性基板の前記活性領域に複数の光
電変換セルを前記非活性領域にて互いに連結して形成せ
しめることを特徴とする光電変換装置の作製方法。 2、特許請求の範囲第1項において、レーザ光を透光性
基板側より照射かつ走査せしめることにより、鯖射領域
における第1の電極、非単結晶半導体および第2の電極
を飛散せしめることによりレーザスクライブを行なうこ
とを特徴とする光電変換装置の作製方法。
[Claims] (1) An active region on a transparent substrate that generates a photovoltaic force upon irradiation with light, and a connecting portion and external electrodes that connect a plurality of photoelectric conversion cells provided in the active region to each other. In a method for manufacturing a photoelectric conversion device, a first mask constituting a connecting portion is disposed in a Y inactive region on a transparent substrate, and a first electrode having a transparent conductive film is selectively attached to the first electrode. a step of forming a non-single crystal semiconductor that generates a photovoltaic force upon irradiation with light on the active region; and a second mask forming a 44W portion on the non-active region. arranging and selectively forming second electrodes on the non-single crystal semiconductor, and connecting the first and second electrodes to each other at a connecting portion of the non-active region in a shape-17; and separating the plurality of photoelectric conversion cells by scribing the first electrode, the non-single crystal semiconductor, and the second electrode of the active region with laser irradiation light. A method for manufacturing a photoelectric conversion device, comprising forming a plurality of photoelectric conversion cells in the active region of a photosensitive substrate by connecting them to each other in the non-active region. 2. In claim 1, by irradiating and scanning the laser beam from the transparent substrate side, the first electrode, the non-single crystal semiconductor, and the second electrode in the irradiation area are scattered. A method for manufacturing a photoelectric conversion device, characterized by performing laser scribing.
JP57218811A 1982-12-14 1982-12-14 Manufacture of photoelectric converter Granted JPS59108374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57218811A JPS59108374A (en) 1982-12-14 1982-12-14 Manufacture of photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57218811A JPS59108374A (en) 1982-12-14 1982-12-14 Manufacture of photoelectric converter

Publications (2)

Publication Number Publication Date
JPS59108374A true JPS59108374A (en) 1984-06-22
JPS6331951B2 JPS6331951B2 (en) 1988-06-27

Family

ID=16725709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57218811A Granted JPS59108374A (en) 1982-12-14 1982-12-14 Manufacture of photoelectric converter

Country Status (1)

Country Link
JP (1) JPS59108374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454769A (en) * 1987-08-26 1989-03-02 Fuji Electric Res Manufacture of amorphous silicon solar cell
US7728366B2 (en) 2004-04-05 2010-06-01 Nec Corporation Photodiode and method for fabricating same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454769A (en) * 1987-08-26 1989-03-02 Fuji Electric Res Manufacture of amorphous silicon solar cell
US7728366B2 (en) 2004-04-05 2010-06-01 Nec Corporation Photodiode and method for fabricating same
US7883911B2 (en) 2004-04-05 2011-02-08 Nec Corporation Method for fabricating photodiodes

Also Published As

Publication number Publication date
JPS6331951B2 (en) 1988-06-27

Similar Documents

Publication Publication Date Title
US4824488A (en) Photovoltaic device
JPH0290573A (en) Monolithic solar battery and bypass diode system
JPS59103383A (en) Manufacture for photovoltaic force generating device
JP7066302B2 (en) Thin-film solar cells with high photoelectric conversion rate and their manufacturing process
KR20110056407A (en) Monolithic photovoltaic module
JPH0518274B2 (en)
JPH053151B2 (en)
JPS59108374A (en) Manufacture of photoelectric converter
JPS5996779A (en) Photoelectric conversion device
JPS59108373A (en) Photoelectric converter
JPS5996778A (en) Manufacture of photoelectric conversion device
JPH0518273B2 (en)
JP6041120B2 (en) Manufacturing method of semiconductor light receiving element
JP2798772B2 (en) Method for manufacturing photovoltaic device
JP3588997B2 (en) Thin film solar cell and method for manufacturing the same
JPS6059784A (en) Manufacture of photoelectric conversion semiconductor device
JPS59220978A (en) Manufacture of photovoltaic device
JPS63261883A (en) Manufacture of photovoltaic device
JPS61163671A (en) Thin-film solar cell
JPH01184960A (en) Manufacture of photovoltaic device
JPS59155973A (en) Photoelectric conversion semiconductor device
JPS6095980A (en) Photoelectric conversion device
JPH0415631B2 (en)
WO2013161069A1 (en) Solar cell module and method for producing solar cell module
JPS59193075A (en) Manufacture of photoelectric conversion semiconductor device