JPS63277713A - Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic - Google Patents

Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic

Info

Publication number
JPS63277713A
JPS63277713A JP62112405A JP11240587A JPS63277713A JP S63277713 A JPS63277713 A JP S63277713A JP 62112405 A JP62112405 A JP 62112405A JP 11240587 A JP11240587 A JP 11240587A JP S63277713 A JPS63277713 A JP S63277713A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
temperature
secondary recrystallization
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62112405A
Other languages
Japanese (ja)
Inventor
Yoshinori Kobayashi
小林 義紀
Mitsumasa Kurosawa
黒沢 光正
Yoshiaki Iida
飯田 嘉明
Masayuki Sakaguchi
雅之 坂口
Katsuo Iwamoto
岩本 勝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62112405A priority Critical patent/JPS63277713A/en
Priority to US07/190,280 priority patent/US4975127A/en
Priority to DE3888725T priority patent/DE3888725T2/en
Priority to EP88304050A priority patent/EP0292150B1/en
Priority to CA000566363A priority patent/CA1332344C/en
Priority to KR1019880005531A priority patent/KR960003173B1/en
Publication of JPS63277713A publication Critical patent/JPS63277713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture a grain-oriented silicon steel sheet excellent in magnetic flux density, by hot-rolling a silicon-steel slab, by cold-rolling twice or more under specific conditions, while process-annealing between the cold rolling stages, to form a cold-rolled sheet of the final thickness, and by successively applying decarburization and primary recrystallization annealing and then secondary recrystallization annealing and purification annealing to the above steel sheet. CONSTITUTION:A silicon-steel slab is hot-rolled, and this hot-rolled plate is annealed and subjected to descaling of surface scales, and then the first cold rolling is applied to the above plate. Subsequently, the resulting cold-rolled sheet is process-annealed in a continuous annealing furnace where heaters are dividedly disposed in a width direction and temp. differences can be provided in a sheet-width direction and is annealed by providing a temp. gradient so that temps. of the steel sheet are regulated to 1,000 deg.C at the central part and 400 deg.C at both ends, respectively, which is then subjected to the second cold rolling so as to be finished to 0.23mm final sheet thickness. Successively, after carrying out decarburization and primary recrystallization annealing, an annealing and separation agent is applied to the above steel sheet, which is then subjected to secondary recrystallization annealing by providing >=10 deg.C difference in the initiation temp. of secondary recrystallization between the central part and both ends of the steel sheet, followed by purification annealing.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気特性に優れた一方向性けい素鋼板の製
造方法に関し、磁気特性中でも磁束密度の有利な改善を
図ろうとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a unidirectional silicon steel sheet with excellent magnetic properties, and aims to advantageously improve magnetic flux density among the magnetic properties. .

(従来の技術) 主しとて変圧器等の鉄心材料として用いられる一方向性
けい素鋼板に要求される特性は、一定の磁化力において
得られる磁束密度が高いこと、および一定の磁束密度を
与えた場合にその鉄損が低いことである。通常これらの
代表値としては、磁化力800A/mにおける磁束密度
B、(T:テスラ)および磁束密度1.70T、周波数
50Hzにおける鉄損−1?/、。(W/kg)が採用
されている。
(Prior art) The properties required of unidirectional silicon steel sheets, which are mainly used as core materials for transformers, are that they have a high magnetic flux density at a constant magnetization force, and a high magnetic flux density at a constant magnetization force. The iron loss is low when the iron is given. Typically, these representative values include magnetic flux density B (T: Tesla) at a magnetizing force of 800 A/m, and iron loss -1? at a magnetic flux density of 1.70 T and a frequency of 50 Hz. /,. (W/kg) is adopted.

これらの両特性を含む磁気特性を向上させるためには、
現在まで多くの研究がなされ、特に素材の成分、熱間お
よび冷間圧延法、熱処理方法等の改善によってそれぞれ
少なからざる成果が得られている。
In order to improve magnetic properties including both of these properties,
Much research has been carried out to date, and considerable results have been obtained, particularly through improvements in the composition of materials, hot and cold rolling methods, heat treatment methods, etc.

従来の一方向性けい素鋼板は、通常Si:2.5〜4.
5wtχ(以下単にχで示す)を含む低炭素鋼に微量の
Mn、S、Se、Sb、Sn、A1.NおよびB等のイ
ンヒビター形成元素を添加した素材を熱間圧延した後、
1回もしくは中間焼鈍を挟む2回以上の冷間圧延を経て
、該冷延鋼板に脱炭を兼ねた1次再結晶焼鈍を施し、し
かるのち最終仕上げ焼鈍工程において2次再結晶処理を
施すことによって2次再結晶粒を(110)<001>
方位に高度に集積させると共に、引き続く純化焼鈍によ
って鋼板中の不純物を除去することにより良好な磁気特
性を得ている。
Conventional unidirectional silicon steel sheets usually have Si: 2.5 to 4.
Low carbon steel containing 5wtχ (hereinafter simply referred to as χ) contains trace amounts of Mn, S, Se, Sb, Sn, A1. After hot rolling the material to which inhibitor-forming elements such as N and B are added,
After cold rolling once or twice or more with intermediate annealing in between, the cold rolled steel sheet is subjected to primary recrystallization annealing that also serves as decarburization, and then subjected to secondary recrystallization treatment in the final finishing annealing step. The secondary recrystallized grains are defined as (110)<001> by
Good magnetic properties are obtained by highly accumulating the steel in the orientation and removing impurities in the steel plate through subsequent purification annealing.

この際、2次再結晶粒の方位が(110) <001>
へ集積するほど鋼板の磁束密度は高くなるが、一方で巨
大な2次粒と成り易く、粒内の磁区幅が増し、渦流損の
増加により鉄損特性が劣化する傾向にあった。そこで2
次粒を微細化することを目的とした努力が種々施され、
例えば特開昭60−89521号公報では、再結晶促進
域と遅滞域を交互に設け2次粒の核発生を増しかつ成長
を阻止することで2次粒の微細化を図り鉄損を向上させ
る方法が提案されている。しかしながら、近年物理的な
局所歪の導入による磁区細分化技術の確立により、とく
に2次粒を微細化せずとも低鉄損が得られるようになっ
たため、技術開発の方向は、磁束密度の向上に傾いてい
る。
At this time, the orientation of the secondary recrystallized grains is (110) <001>
The magnetic flux density of the steel sheet becomes higher as it accumulates, but on the other hand, it tends to form huge secondary grains, the magnetic domain width within the grains increases, and the iron loss characteristics tend to deteriorate due to an increase in eddy current loss. So 2
Various efforts have been made to refine the secondary grains,
For example, in Japanese Patent Application Laid-Open No. 60-89521, recrystallization promotion regions and retardation regions are alternately provided to increase the nucleation of secondary grains and prevent their growth, thereby making the secondary grains finer and improving iron loss. A method is proposed. However, in recent years, with the establishment of magnetic domain refining technology through the introduction of physical local strain, it has become possible to obtain low iron loss without particularly making the secondary grains finer, so the direction of technological development is to improve magnetic flux density. leaning towards

この点、特公昭58−50295号公報では、2次再結
晶時に一方向の温度勾配を与え、(110) <001
>方位の2次粒を選択成長させることで高い磁束密度を
得る方法が開示されている。しかしながらこの方法は温
度制御が極めて難しいことから実用的とは言い難い。
In this regard, in Japanese Patent Publication No. 58-50295, a unidirectional temperature gradient is applied during secondary recrystallization, and (110) <001
A method for obtaining high magnetic flux density by selectively growing secondary grains in the > orientation has been disclosed. However, this method cannot be called practical because temperature control is extremely difficult.

(発明が解決しようとする問題点) この発明は、上記の問題を有利に解決するもので、とく
に煩雑な温度制御などを行う必要なしに、(110) 
<001>方位の2次粒を優先的に選択成長させること
によって容易に高い磁束密度を得ることができる一方向
性けい素鋼板の有利な製造方法を提案することを目的と
する。
(Problems to be Solved by the Invention) This invention advantageously solves the above-mentioned problems, without the need for particularly complicated temperature control.
The object of the present invention is to propose an advantageous manufacturing method for grain-oriented silicon steel sheets that can easily obtain high magnetic flux density by preferentially and selectively growing secondary grains in the <001> orientation.

(問題点を解決するための手段) さて発明者らは、上記の問題を解決すべ(鋭意研究を重
ねた結果、とくに2次再結晶時における温度勾配を制御
しなくとも、鋼板の2次再結晶開始温度を制御してやれ
ば、(110) <001>方位の2次粒を優先的に選
択成長させることができ、ひいては高い磁束密度が得ら
れることの知見を得た。
(Means for solving the problem) Now, the inventors have found that the above problem can be solved (as a result of extensive research, it is possible to recrystallize a steel sheet by secondary recrystallization without particularly controlling the temperature gradient during secondary recrystallization. It was found that by controlling the crystal initiation temperature, it is possible to preferentially grow secondary grains in the (110) <001> orientation, and as a result, a high magnetic flux density can be obtained.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、含けい素鋼スラブを、熱間圧延し
、ついで中間焼鈍を挟む2回以上の冷間圧延を施して最
終板厚としたのち、脱炭・1次再結晶焼鈍を施し、しか
るのち2次再結晶焼鈍ついで純化焼鈍を施す一連の工程
によって一方向性けい素鋼板を製造するに当り、上記中
間焼鈍を、焼鈍温度が鋼板の長手方向ないし幅方向に連
続的または段階的に変化する条件下に施すことによって
、その後の2次再結晶焼鈍における2次再結晶開始温度
に10℃以上の温度差を付与することから成る、磁気特
性に優れた一方向性けい素鋼板の製造方法である。
That is, this invention hot-rolls a silicon-containing steel slab, then cold-rolls it two or more times with intermediate annealing to obtain the final thickness, and then decarburizes and primary recrystallization annealing, Then, in manufacturing a unidirectional silicon steel sheet through a series of steps of secondary recrystallization annealing and purification annealing, the intermediate annealing is performed at an annealing temperature that is continuous or stepwise in the longitudinal direction or width direction of the steel sheet. Manufacture of unidirectional silicon steel sheet with excellent magnetic properties, which consists of imparting a temperature difference of 10°C or more to the secondary recrystallization start temperature in subsequent secondary recrystallization annealing by subjecting it to varying conditions. It's a method.

以下この発明を具体的に説明する。This invention will be specifically explained below.

まずこの発明の解明経緯について説明する。First, the background to the elucidation of this invention will be explained.

従来、鉄損低域のために2次粒の微細化を図るべく2次
粒の核発生頻度を高くすると、(110)<001>方
位からのずれが増すため、磁束密度の低下が避けられな
かったが、2次再結晶処理を焼鈍温度の均一保定処理と
することで(110) <001>方位を優先的に核発
生させることができ、かくして磁束密度を損わずに2次
粒の微細化を可能にしてきた。磁束密度を向上させるに
あたり、優先的に(110) <001>  方位を核
発生させたのち、更に他方位粒に対し選択的に成長させ
ることで(110)<001>方位に高度に集積した磁
束密度の高い2次再結晶組織が得られる。
Conventionally, when increasing the frequency of nucleation of secondary grains in order to make them finer in order to reduce iron loss, the deviation from the (110) <001> orientation increases, making it impossible to avoid a decrease in magnetic flux density. However, by performing the secondary recrystallization treatment to maintain a uniform annealing temperature, it is possible to preferentially generate nuclei in the (110) <001> orientation, thus increasing the number of secondary grains without impairing the magnetic flux density. It has made miniaturization possible. In order to improve the magnetic flux density, after nucleating the (110) <001> orientation preferentially, the magnetic flux is highly concentrated in the (110) <001> orientation by selectively growing grains in the other orientation. A secondary recrystallized structure with high density is obtained.

しかしながら従来の一方向性けい素鋼板では、2次粒の
核発生頻度が高いため(110) <001>方位粒を
十分に選択成長させることはできなかった。
However, in the conventional unidirectional silicon steel sheet, the (110) <001> oriented grains could not be sufficiently selectively grown due to the high frequency of nucleation of secondary grains.

この点、発明者らの研究 により鋼板内で(110)<
001>方位の核発生時期を局所的にずらすことで、先
に発生した(110) <001>方位粒を選択的に成
長させことができ、かくして磁束密度の極めて高い2次
再結晶組織が得られることが究明されたのである。
In this regard, the inventors' research showed that (110) <
By locally shifting the timing of nucleation in the 001> orientation, it is possible to selectively grow the (110) <001> oriented grains that were generated earlier, thus obtaining a secondary recrystallized structure with an extremely high magnetic flux density. It has been determined that this is possible.

一方向性けい素鋼板の2次再結晶開始温度は、通常80
0〜1100″Cの範囲にあるが、その成分、製造工程
により鋼板固有の温度が決まる。ここで2次回結晶開始
温度は、最終冷延後、脱炭・1次再結晶焼鈍板を一定温
度で20h保持したときの、2次再結晶粒の発生した温
度を指標として用いている。通常、この2次再結晶開始
温度以上の温度での焼鈍を長時間行うことで2次再結晶
を完了させることができるが、この発明では、2次再結
晶焼鈍に先だち、製造条件に工夫を加えて、該鋼板の2
次再結晶開始温度が鋼板内で10″C以上、200℃以
内の温度差をもつようにし、まず2次再結晶温度の低い
領域から優先的に(110) <001>方位の2次粒
を発生させ、引続き他領域において2次粒が発生する前
に上記(110) <001>方位の2次粒によって蚕
食させて巨大に粒成長せしめることで2次再結晶を完了
させることが大きな特徴である。
The secondary recrystallization start temperature of grain-oriented silicon steel sheets is usually 80
The temperature ranges from 0 to 1100"C, but the specific temperature of the steel sheet is determined by its components and manufacturing process. Here, the secondary crystallization start temperature is the temperature at which the decarburized and primary recrystallization annealed sheet is heated to a certain temperature after the final cold rolling. The temperature at which secondary recrystallized grains are generated when the material is held for 20 hours at However, in this invention, prior to the secondary recrystallization annealing, the manufacturing conditions are modified to
The secondary recrystallization start temperature is set to have a temperature difference of 10"C or more and within 200°C within the steel sheet, and the secondary grains with the (110) <001> orientation are first preferentially extracted from the region where the secondary recrystallization temperature is low. The main feature is that the secondary grains are eroded by the secondary grains in the (110) <001> orientation to cause the grains to grow to a huge size, thereby completing the secondary recrystallization before secondary grains are generated in other areas. be.

この際2次再結晶粒の大きさは、2次再結晶温度の分布
状態に依存するため、鋼板の2次再結晶温度の温度差を
制御することにより高磁束密度を維持したまま2次再結
晶組織のIIJ御も可能となる。
At this time, the size of the secondary recrystallized grains depends on the distribution state of the secondary recrystallization temperature, so by controlling the temperature difference between the secondary recrystallization temperatures of the steel sheet, the secondary recrystallization grain size can be maintained while maintaining a high magnetic flux density. IIJ control of the crystal structure is also possible.

ここに製造工程において2次再結晶開始温度を制御する
方法としては、種々考えられるが、この発明では中間焼
鈍時の焼鈍温度に着目して研究を重ねた。
Although various methods can be considered for controlling the secondary recrystallization start temperature in the manufacturing process, in the present invention, research has been focused on the annealing temperature during intermediate annealing.

その結果、中間焼鈍温度と2次再結晶開始温度との間に
は、第1図に示すような関係があることを見出した。
As a result, it was found that there is a relationship as shown in FIG. 1 between the intermediate annealing temperature and the secondary recrystallization start temperature.

第1図は、方向性けい素鋼板の製造工程において、1回
目と2回目の冷間圧延の間に行う中間焼鈍時の温度を種
々に変化させたときの2次再結晶開始温度の推移の一例
を示したものであるが、同図より明らかなように、中間
焼鈍温度が変化すると、それに伴って2次再結晶開始温
度も変化する。
Figure 1 shows the transition of the secondary recrystallization start temperature when the temperature during intermediate annealing performed between the first and second cold rolling was varied in the manufacturing process of grain-oriented silicon steel sheets. This is an example, and as is clear from the figure, when the intermediate annealing temperature changes, the secondary recrystallization start temperature also changes accordingly.

従って、鋼板の局所で中間焼鈍温度を変化させることに
よって2次再結晶開始温度に局所差を与えることができ
るわけである。
Therefore, by locally changing the intermediate annealing temperature of the steel sheet, it is possible to provide local differences in the secondary recrystallization start temperature.

すなわち中間焼鈍時に、鋼板の幅方向ないし長手方向に
焼鈍温度の異なる領域を連続的または段階的に形成させ
ることによって、2次再結晶開始温度が相違する領域を
形成させ、中間焼鈍温度が高い従って2次再結晶開始温
度の低い領域から優先的に(110) <001>方位
の2次粒を発生させ、中間焼鈍温度が低い従って2次再
結晶開始温度の高い領域において2次粒が発生する前に
上記(110)<001>方位の2次粒によって蚕食さ
せることによって、巨大に粒成長せしめることで所望方
位の2次再結晶を幅方向ないしは長手方向に完了させる
ことができるのである。
That is, by forming regions with different annealing temperatures continuously or stepwise in the width direction or longitudinal direction of the steel sheet during intermediate annealing, regions with different secondary recrystallization start temperatures are formed, and the intermediate annealing temperature is high. Secondary grains with (110) <001> orientation are generated preferentially from the region where the secondary recrystallization start temperature is low, and secondary grains are generated in the region where the intermediate annealing temperature is low and therefore the secondary recrystallization start temperature is high. By first causing the secondary grains with the (110) <001> orientation to cause grain growth, secondary recrystallization in the desired orientation can be completed in the width direction or length direction.

ところで、この効果を十分得るためには10℃以上の2
次再結晶開始温度の差を鋼板に与えなければならない。
By the way, in order to fully obtain this effect, the temperature must be 2.
A difference in the next recrystallization start temperature must be given to the steel plate.

というのは10℃未満ではその効果が小さく、所定の効
果は得られないからである。ここに2次再結晶開始温度
に10℃以りの差異をもうけるには、焼鈍温度を連続的
に変化させる場合には200″C/mの温度勾配を、ま
た段階的に変化させる場合には、隣接領域の温度差を1
00℃以上とすることが肝要である。
This is because the effect is small below 10° C., and the desired effect cannot be obtained. In order to make a difference of 10°C or more in the secondary recrystallization start temperature, a temperature gradient of 200"C/m is required when the annealing temperature is changed continuously, and a temperature gradient of 200"C/m is required when the annealing temperature is changed stepwise. , the temperature difference between adjacent areas is 1
It is important that the temperature be 00°C or higher.

かような中間焼鈍時の温度差を付与する方法としては、
次のようなやり方がある。
As a method of providing such a temperature difference during intermediate annealing,
There is a method as follows.

例えば板幅方向に温度差の大きな連続炉を利用しても良
いし、コイル長手方向にわたって焼鈍温度を変化させて
もよい。また最新の手法としては、レーザー加熱等の極
所加熱装置を用いて鋼板の任意の部分のみを高温加熱す
る方法゛もある。さらには上記のような連続焼鈍炉では
なく箱型焼鈍炉を用いてコイル焼鈍時における温度差を
逆に有効に利用する方法も可能である。
For example, a continuous furnace with a large temperature difference in the width direction of the sheet may be used, or the annealing temperature may be varied along the length of the coil. Furthermore, the latest method is to heat only a desired part of the steel plate to a high temperature using a local heating device such as laser heating. Furthermore, it is also possible to use a box-type annealing furnace instead of the continuous annealing furnace as described above to effectively utilize the temperature difference during coil annealing.

この発明における主要工程は上記の通りであるが、他の
工程については、従来から用いられている製造工程を適
用すればよい。
The main steps in this invention are as described above, but for other steps, conventional manufacturing steps may be applied.

つまり、Si 4.5%以下を含み、かつ微量添加元素
としてMn、  S、 Se、 //!、  N、  
B、 Sn、 Cu、 M。
In other words, it contains 4.5% or less of Si, and contains Mn, S, Se, //! as trace addition elements. , N,
B, Sn, Cu, M.

およびにNb等の少なくとも1種類以上を含む素材を溶
製し、通常の製鋼法、熱延法により熱延板とするか、最
近開発された直接製板法を用いて1.0〜3.5 m厚
程度の板材とし、必要に応じて熱延板焼鈍を行い、つい
で上記した特殊な中間焼鈍を含む2回以上の冷間圧延に
よって最終板厚とし、必要に応じて脱炭焼鈍を施し、つ
いで焼鈍分離剤を塗布したのち、2次再結晶を完了させ
る焼鈍を行う。このとき2次再結晶を2次再結晶開始温
度が低い所から発生させて所定の高い磁束密度を得るた
めには、2次再結晶開始の最低温度で定温保定するかあ
るいは2次再結晶開始の最低温度から完了までを10’
C/h以下の昇温速度で加熱することが望ましい。
A material containing at least one type of Nb and the like is melted and made into a hot-rolled plate using a normal steel-making method or hot-rolling method, or a recently developed direct plate-making method is used. The plate material is made into a plate material with a thickness of approximately 5 m, hot rolled plate annealed as necessary, then cold rolled two or more times including the above-mentioned special intermediate annealing to obtain the final plate thickness, and decarburized annealed as necessary. Then, after applying an annealing separator, annealing is performed to complete secondary recrystallization. At this time, in order to generate secondary recrystallization from a place where the secondary recrystallization start temperature is low and obtain a predetermined high magnetic flux density, it is necessary to maintain the temperature at the lowest temperature at which the secondary recrystallization starts or to start the secondary recrystallization. 10' from the lowest temperature to completion
It is desirable to heat at a temperature increase rate of C/h or less.

その後、1150℃以上で純化焼鈍を施したのち、コイ
ルの巻きぐせを除去する必要がある場合には平たん化焼
鈍を行い、ときにはさらにまた強力コーティングを付与
して製品とする。
After that, a purifying annealing is performed at a temperature of 1150° C. or higher, and then a flattening annealing is performed if it is necessary to remove curls in the coil, and sometimes a strong coating is further applied to produce a product.

さらにこの発明では、その特徴である極めて高い磁束密
度を利用して、レーザー、プラズマジェット等による磁
区細分化技術や鏡面化、イオンブレーティング等の特殊
表面処理の併用により、極めて鉄損のすぐれた一方向性
けい素鋼板を製造することもできる。換言すればこの発
明法は、上記のような最近開発された極低鉄損化手法の
効果をさらに有効に活用できる製造方法といえる。
Furthermore, this invention takes advantage of its characteristic extremely high magnetic flux density and combines magnetic domain refining technology using lasers, plasma jets, etc., and special surface treatments such as mirror polishing and ion brating to achieve extremely low iron loss. It is also possible to produce unidirectional silicon steel sheets. In other words, the method of the present invention can be said to be a manufacturing method that can more effectively utilize the effects of the recently developed ultra-low iron loss method described above.

(作 用) この発明法により、鋼板の2次再結晶開始温度に局部的
に差が生じる機構はまだ明確に解明されたわけではない
が、発明者らの考えでは、中間焼鈍時に低温に保持した
部分は中間焼鈍による再結晶が不充分であって、1回法
に近い状態となっており、このため1次再結晶後の集合
組織に差が生じ、これによって上記効果が得られるもの
と考えている。
(Function) Although the mechanism by which this invention method causes local differences in the secondary recrystallization start temperature of the steel sheet has not yet been clearly elucidated, the inventors believe that the mechanism by which the secondary recrystallization start temperature of the steel sheet is locally caused by the method is maintained at a low temperature during intermediate annealing. In some areas, the recrystallization due to intermediate annealing is insufficient, resulting in a state similar to that of the one-step method, and it is thought that this causes a difference in the texture after the first recrystallization, and this is the reason for the above effect. ing.

(実施例) 実施例I C: 0.045%、Si : 3.45%、Mn :
 0.070%、Se:0.025%およびSb : 
0.023%を含み、残部は実質的にFeの組成になる
けい素鋼熱延板を、熱延板焼鈍し、脱スケール後、1回
目の冷間圧延を行ったのち、中間焼鈍を施すに当り、幅
方向にヒーターが分割され、板幅方向に温度差を与えら
れるよう制御された連続焼鈍炉を用いて全幅: 100
0mmのコイル中央部40mm幅は1000℃で、一方
コイル両端部は400℃となるような温度傾斜をつけて
焼鈍し、ついで2回目の冷延を行い、0.23mm厚に
仕上げた。
(Example) Example I C: 0.045%, Si: 3.45%, Mn:
0.070%, Se: 0.025% and Sb:
A hot-rolled silicon steel sheet containing 0.023% Fe with the remainder being substantially Fe is annealed, descaled, first cold rolled, and then intermediate annealed. For this purpose, we used a continuous annealing furnace in which the heater was divided in the width direction and controlled to give temperature differences in the width direction of the plate.Total width: 100
The 40 mm width at the center of the 0 mm coil was annealed at a temperature gradient of 1000° C., while both ends of the coil were annealed at a temperature gradient of 400° C., and then cold rolled for the second time to a finished thickness of 0.23 mm.

その後825℃で2分間の脱炭焼鈍を施したのち、焼鈍
分離剤を塗布してから、840℃に70時間保定して2
次再結晶を完了させ、ついで1200℃110時間の純
化焼鈍を行った。
After that, decarburization annealing was performed at 825°C for 2 minutes, an annealing separator was applied, and the temperature was kept at 840°C for 70 hours.
After completing the next recrystallization, purification annealing was performed at 1200° C. for 110 hours.

このとき、コイル中央部の2次再結晶開始温度は840
℃、一方コイル両端部は920℃であった。
At this time, the secondary recrystallization start temperature at the center of the coil is 840
℃, while the temperature at both ends of the coil was 920°C.

かくして得られた製品板(記号C)の磁気特性について
調べた結果を下表1に示す。
The results of investigating the magnetic properties of the thus obtained product plate (symbol C) are shown in Table 1 below.

なお、同表には従来法に従い中間焼鈍を1000℃で均
一に行って得た製品(記号A)についての調査結果も併
せて示す。さらにこれらの鋼板に対してプラズマジェッ
トにより磁区細分化処理を施した場合(記号B、D)の
磁気特性も併記した。
The same table also shows the results of an investigation on a product (symbol A) obtained by uniformly performing intermediate annealing at 1000° C. according to the conventional method. Furthermore, the magnetic properties when these steel plates were subjected to magnetic domain refining treatment by plasma jet (symbols B and D) are also shown.

なお、磁気特性は、いずれも、幅方向でほぼ同等であっ
た。
Note that the magnetic properties were almost the same in the width direction.

表   1 実施例2 C: 0.053%、Si : 3.25%、Mn :
 0.084%、S二0.027%、Aj! 70.0
30%およびN : 0.0080%を含み、残部は実
質的にFeの組成になるけい素鋼熱延板に、1回目の冷
間圧延を施したのち、中間焼鈍を実施例1と同様の炉を
用いて全幅1000aunのコイル片端部から中央部ま
でを500℃5またもう一方の端部25mm幅は105
0℃となるように温度傾斜をつけて焼鈍し、ついで2回
目の冷間圧延を行って0.23mm厚に仕上げた。その
後835℃,3分間の脱炭焼鈍を施したのち、焼鈍分離
剤を塗布してから、800〜1000℃間を5℃/hの
速度で昇温しで2次再結晶を完了させ、しかるのち11
80℃,12時間の純化焼鈍を施した。この時500℃
で焼鈍したコイル幅端部の2次再結晶開始温度は930
℃1一方他端部の2次再結晶開始温度は860℃であっ
た。
Table 1 Example 2 C: 0.053%, Si: 3.25%, Mn:
0.084%, S2 0.027%, Aj! 70.0
30% and N: 0.0080%, with the remainder being substantially Fe. After the first cold rolling, intermediate annealing was performed in the same manner as in Example 1. Using a furnace, heat a coil with a total width of 1000 au at 500°C from one end to the center, and the other end 25mm wide at 105°C.
It was annealed at a temperature gradient of 0° C., and then cold-rolled for the second time to a thickness of 0.23 mm. After that, decarburization annealing was performed at 835°C for 3 minutes, an annealing separator was applied, and the temperature was raised between 800 and 1000°C at a rate of 5°C/h to complete secondary recrystallization. Later 11
Purification annealing was performed at 80°C for 12 hours. At this time 500℃
The secondary recrystallization start temperature of the coil width end annealed at 930
℃1 The secondary recrystallization start temperature at one end was 860°C.

かくして得られた製品板(記号C)の磁気特性について
調べた結果を下表2に示す。
The results of investigating the magnetic properties of the thus obtained product plate (symbol C) are shown in Table 2 below.

なお同表には従来法に従い中間焼鈍を1050℃で均一
に行って得た製品(記号A)についての調査結果も併せ
て示す。さらに同表にはこれらの鋼板の表面を鏡面化し
たのち、イオンブレーティングで表面にTiN被膜を被
成させたもの(記号B、D)の磁気特性も併記した。
The same table also shows the investigation results for a product (symbol A) obtained by uniformly performing intermediate annealing at 1050° C. according to the conventional method. Furthermore, the same table also lists the magnetic properties of these steel plates (symbols B and D) whose surfaces were mirror-finished and then coated with a TiN film by ion blating.

なお、磁気特性は、いずれも、幅方向でほぼ同等であっ
た。
Note that the magnetic properties were almost the same in the width direction.

表   2 (発明の効果) かくしてこの発明によれば、磁気特性とくに磁束密度B
、。が高い一方向性けい素鋼板を製造することができ、
さらには磁区細分化技術や特殊表面処理技術との併用に
より鉄損特性にも優れた一方向性けい素鋼板を得ること
ができる。
Table 2 (Effects of the invention) Thus, according to this invention, the magnetic properties, especially the magnetic flux density B
,. It is possible to produce unidirectional silicon steel sheets with high
Furthermore, by combining magnetic domain refining technology and special surface treatment technology, it is possible to obtain a unidirectional silicon steel sheet with excellent iron loss characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、中間焼鈍温度と2次回結晶開始温度との関係
を示したグラフである。
FIG. 1 is a graph showing the relationship between intermediate annealing temperature and secondary crystal initiation temperature.

Claims (1)

【特許請求の範囲】 1、含けい素鋼スラブを、熱間圧延し、ついで中間焼鈍
を挟む2回以上の冷間圧延を施して最終板厚としたのち
、脱炭・1次再結晶焼鈍を施し、しかるのち2次再結晶
焼鈍ついで純化焼鈍を施す一連の工程によって一方向性
けい素鋼板を製造するに当り、 上記中間焼鈍を、焼鈍温度が鋼板の長手方 向ないし幅方向に連続的または段階的に変化する条件下
に施すことによって、その後の2次再結晶焼鈍における
2次再結晶開始温度に10℃以上の温度差を付与するこ
とを特徴とする、磁気特性に優れた一方向性けい素鋼板
の製造方法。
[Claims] 1. A silicon-containing steel slab is hot rolled, then cold rolled two or more times with intermediate annealing to obtain the final thickness, and then decarburized and primary recrystallization annealed. In manufacturing a grain-oriented silicon steel sheet through a series of steps in which a grain-oriented silicon steel sheet is subjected to a secondary recrystallization annealing and then a purification annealing, the intermediate annealing is performed at an annealing temperature that is continuous or Unidirectional properties with excellent magnetic properties characterized by providing a temperature difference of 10°C or more to the secondary recrystallization start temperature in the subsequent secondary recrystallization annealing by applying the process under conditions that change stepwise. Method of manufacturing silicon steel sheet.
JP62112405A 1987-05-11 1987-05-11 Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic Pending JPS63277713A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62112405A JPS63277713A (en) 1987-05-11 1987-05-11 Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
US07/190,280 US4975127A (en) 1987-05-11 1988-05-04 Method of producing grain oriented silicon steel sheets having magnetic properties
DE3888725T DE3888725T2 (en) 1987-05-11 1988-05-05 Process for the production of grain-oriented silicon steel sheets with excellent magnetic properties.
EP88304050A EP0292150B1 (en) 1987-05-11 1988-05-05 Method of producing grain oriented silicon steel sheets having excellent magnetic properties
CA000566363A CA1332344C (en) 1987-05-11 1988-05-10 Method of producing grain oriented silicon steel sheets having excellent magnetic properties
KR1019880005531A KR960003173B1 (en) 1987-05-11 1988-05-11 Method of producing grain oriented silicon steel sheets having magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62112405A JPS63277713A (en) 1987-05-11 1987-05-11 Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic

Publications (1)

Publication Number Publication Date
JPS63277713A true JPS63277713A (en) 1988-11-15

Family

ID=14585829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62112405A Pending JPS63277713A (en) 1987-05-11 1987-05-11 Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS63277713A (en)

Similar Documents

Publication Publication Date Title
KR100831756B1 (en) Process for the control of inhibitors distribution in the production of grain oriented electrical steel strips
JPH01176034A (en) Production of grain-oriented magnetic steel sheet having excellent magnetic characteristic
JP4279993B2 (en) Method for producing unidirectional silicon steel sheet
JPS63277713A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPS63277712A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH04301035A (en) Production of grain-oriented silicon steel sheet having magnetic property uniform in longitudinal direction
JPS63277717A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPH08157963A (en) Production of grain oriented silicon steel sheet
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3301622B2 (en) Method for producing grain-oriented silicon steel sheet having uniform and excellent magnetic properties in the sheet width direction
JPS63277718A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPH0222422A (en) Production of unidirectional type silicon steel sheet excellent in magnetic property
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH02263923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH042724A (en) Production of thin grain-oriented silicon steel sheet excellent in magnetic property
JPH0987747A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3885240B2 (en) Method for producing unidirectional silicon steel sheet
JPS63277711A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JP3858280B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH0617130A (en) Hot-rolling method for continuously cast slab for grain oriented electrical steel sheet
JPH07116515B2 (en) Method for producing unidirectional silicon steel sheet having excellent magnetic properties
JPH0353022A (en) Manufacture of low core loss-high magnetic flux density nonoriented silicon steel sheet
JPS60200916A (en) Manufacture of anisotropic silicon steel plate
JPH09170020A (en) Production of high magnetic flux density grain-oriented silicon steel sheet