JPH07116515B2 - Method for producing unidirectional silicon steel sheet having excellent magnetic properties - Google Patents

Method for producing unidirectional silicon steel sheet having excellent magnetic properties

Info

Publication number
JPH07116515B2
JPH07116515B2 JP63154928A JP15492888A JPH07116515B2 JP H07116515 B2 JPH07116515 B2 JP H07116515B2 JP 63154928 A JP63154928 A JP 63154928A JP 15492888 A JP15492888 A JP 15492888A JP H07116515 B2 JPH07116515 B2 JP H07116515B2
Authority
JP
Japan
Prior art keywords
annealing
temperature
silicon steel
secondary recrystallization
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63154928A
Other languages
Japanese (ja)
Other versions
JPH024925A (en
Inventor
光正 黒沢
雅之 坂口
嘉明 飯田
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP63154928A priority Critical patent/JPH07116515B2/en
Publication of JPH024925A publication Critical patent/JPH024925A/en
Publication of JPH07116515B2 publication Critical patent/JPH07116515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、磁気特性の優れた一方向性珪素鋼板の製造方
法に関し、とくに磁化特性と鉄損特性をともに向上する
ことができる方法を提案するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for producing a unidirectional silicon steel sheet having excellent magnetic characteristics, and particularly proposes a method capable of improving both magnetization characteristics and iron loss characteristics. To do.

<従来の技術> 一方向性珪素鋼板は、主として変圧器やその他の電気機
器の鉄心として使用されるが、磁気特性として磁化特性
と鉄損特性の優れていることが要求される。近年、珪素
鋼板の製造技術の進歩により、例えば板厚0.23mmの一方
向性珪素鋼板で、磁化特性B10〜1.90T,鉄損W17/50〜0.
90w/kgの如き優れた製品も工程生産可能となっている。
<Prior Art> A unidirectional silicon steel sheet is mainly used as an iron core of a transformer or other electric equipment, but it is required to have excellent magnetic characteristics and magnetic loss characteristics. In recent years, due to progress in manufacturing technology of silicon steel sheets, for example, with unidirectional silicon steel sheets having a plate thickness of 0.23 mm, magnetization characteristics B 10 to 1.90 T, iron loss W 17/50 to 0.
Excellent products such as 90w / kg can be produced in process.

かかる優れた磁気特性を有する材料は、鉄の磁化容易軸
である〔001〕方向が鋼板の圧延方向に高度に揃った結
晶粒から構成されている。そしてこのような結晶粒の生
成は一方向性けい素鋼板の製造工程において最終焼鈍の
際に、いわゆるゴス粒と称される(110)〔001〕方位の
結晶粒が2次再結晶粒として十分に成長発達することに
より達成される。
The material having such excellent magnetic properties is composed of crystal grains in which the [001] direction, which is the easy axis of iron, is highly aligned with the rolling direction of the steel sheet. The formation of such crystal grains is such that during the final annealing in the manufacturing process of unidirectional silicon steel sheet, the crystal grains of (110) [001] orientation, which are so-called Goss grains, are sufficient as secondary recrystallized grains. It is achieved by growing and developing.

この(110)〔001〕方位の2次再結晶粒を十分に成長さ
せるための基本的な要件として、2次再結晶過程で(11
0)〔001〕方位以外の好ましくない結晶方位を有する結
晶粒の成長を強く抑制するインヒビターの存在と、尖鋭
に揃った(110)〔001〕方位の2次再結晶粒が十分に発
達するのに好適な、再結晶集合組織の形成が必要である
ことは周知の通りである。
As a basic requirement for sufficiently growing the secondary recrystallized grains in the (110) [001] orientation, in the secondary recrystallization process (11
0) The presence of an inhibitor that strongly suppresses the growth of crystal grains having an unfavorable crystal orientation other than the [001] orientation, and that the sharply aligned secondary recrystallized grains of the (110) [001] orientation are sufficiently developed. It is well known that the formation of a recrystallized texture suitable for the above is required.

インヒビターとしては一般にMnS,MnSe等の微細析出物が
用いられ、さらにこれらの微細析出物に加えて、特公昭
51−13469号公報(特許第839079号明細書)および特公
昭54−32412号公報(特許第998277号明細書)に記載さ
れた如く、Sb,As,Bi,Pb,Snなどの、あるいは特公昭56−
4613号公報に記載のMoなどの粒界偏析型元素を複合添加
してインヒビターの効果を補強することも行なわれてい
る。
Fine inhibitors such as MnS and MnSe are generally used as inhibitors. In addition to these fine precipitates,
As disclosed in Japanese Patent Publication No. 51-13469 (Patent No. 839079) and Japanese Patent Publication No. 54-32412 (Patent No. 998277), Sb, As, Bi, Pb, Sn, etc., or Japanese Patent Publication No. 56-
The effect of the inhibitor is also strengthened by adding a grain boundary segregation type element such as Mo described in Japanese Patent No. 4613 together.

適切な再結晶集合組織の形成に関しては、従来から熱延
・冷延の各工程条件を適切に組合わせる方法を採ってお
り、中間焼鈍を挟み2回の冷延を施すが如き複雑な工程
も採用されているのはこの目的のためであるが、更に発
明者らは先に特公昭56−38652号公報に記載のように、
最終板厚に仕上げた冷延板に脱炭と再結晶を兼ねて800
℃程度の温度で施す脱炭焼鈍の前に、600〜650℃の温度
範囲内で30秒間以上10分間にわたり保持する焼鈍(以下
再結晶焼鈍と呼ぶ)を付加する方法によれば、より好適
な再結晶集合組織の形成が得られることについて開示し
た。
Regarding the formation of an appropriate recrystallized texture, conventionally, the method of appropriately combining the process conditions of hot rolling and cold rolling has been adopted, and even in complicated processes such as performing intermediate cold annealing twice, cold rolling is performed. It is for this purpose that it has been adopted, but further, as described in Japanese Patent Publication No. 56-38652, the present inventors,
800 for both decarburization and recrystallization on a cold-rolled sheet finished to the final thickness
According to the method of adding annealing (hereinafter referred to as recrystallization annealing) which is held for 30 seconds or more for 10 minutes in the temperature range of 600 to 650 ° C before decarburization annealing performed at a temperature of about ℃, it is more preferable. It was disclosed that the formation of recrystallized texture was obtained.

かくして結晶粒成長を抑制するインヒビターと適切な再
結晶集合組織を有する鋼板に関して、上掲の特公昭51−
13469号公報、特公昭54−32412号公報および特公昭56−
38652号公報の記載に則るいずれの場合でも必須の要件
としている最終仕上焼鈍において、2次再結晶が発現進
行する大略850℃近傍の温度で10時間以上保持する方法
を適用することにより、高度に尖鋭な(110)〔001〕方
位の2次再結晶粒が選択的に十分に成長し得て、高い磁
束密度を有する一方向性けい素鋼板が製造できる。
Thus, regarding the steel sheet having an inhibitor for suppressing the grain growth and a suitable recrystallization texture, the above-mentioned Japanese Patent Publication No. 51-
13469, JP 54-32412 and JP 56-
In the final finishing annealing, which is an indispensable requirement in any case according to the description of 38652 publication, by applying a method of holding for 10 hours or more at a temperature near approximately 850 ° C at which secondary recrystallization develops, The secondary recrystallized grains with sharp (110) [001] orientation can selectively grow sufficiently and a unidirectional silicon steel sheet having a high magnetic flux density can be manufactured.

しかしながら、最後にのべた特公昭56−38652号公報に
従って再結晶集合組織を改善する再結晶焼鈍の方法を工
業生産規模に実施しようとするとき次のような問題が生
じた。すなわち、一方向性けい素鋼板の複雑多岐な工程
を経て得られた最終冷延板に施すところの600〜650℃間
の温度範囲で30秒〜10分間保持する再結晶を目的とした
再結晶焼鈍は、なる程磁束密度に関してはB10値で1.92T
を超えるような優れた特性を示す場合もあるが不安定で
あり、かつB10値向上に伴なって2次再結晶粒は大きく
粗大化するため鉄損が不十分であり、低鉄損の成品を安
定確実に得ることは困難であった。
However, when the method of recrystallization annealing for improving the recrystallization texture according to the last-mentioned Japanese Patent Publication No. 56-38652 is attempted to be carried out on an industrial production scale, the following problems occur. That is, the recrystallization for the purpose of holding for 30 seconds to 10 minutes in the temperature range of 600 to 650 ° C., which is applied to the final cold-rolled sheet obtained through the complicated and various steps of the unidirectional silicon steel sheet. As for annealing, the magnetic flux density is 1.92T at B 10 value.
In some cases, it exhibits instability, but it is unstable, and secondary recrystallized grains become large and coarse with an increase in the B 10 value, resulting in insufficient iron loss and low iron loss. It was difficult to obtain a product stably and reliably.

<発明が解決しようとする課題> 本発明の目的とするところは、上記方法に改善を加え
て、磁化特性,鉄損特性ともに優れた一方向性珪素鋼板
を工業的に安定して製造する方法を提供することにあ
る。
<Problems to be Solved by the Invention> An object of the present invention is to improve the above method and industrially stably produce a unidirectional silicon steel sheet having excellent magnetization characteristics and iron loss characteristics. To provide.

<課題を解決するための手段> すなわち本発明は、重量%で、C:0.02〜0.1%,Si:2.5〜
4.0%,Mn:0.05〜0.1%,Se:0.01〜0.03%を含有し、残部
Fe及び不可避的不純物より成る珪素鋼スラブを1300℃以
上に加熱後、熱間圧延を施し、次いで中間焼鈍を挟む2
回の冷間圧延を施して所定の最終板厚とした後、脱炭焼
鈍を施し、次いでMgOを主成分とする焼鈍分離剤を塗布
し、引き続き2次再結晶焼鈍及び純化焼鈍を含む最終仕
上焼鈍を施す一連の工程からなる一方向性珪素鋼板の製
造方法において、前記2次再結晶焼鈍として、2次再結
晶開始温度から5〜25℃高い温度で5〜20時間保持した
後、2次再結晶開始温度付近でさらに20時間以上保持す
るか、或いは2次再結晶開始温度より5〜15℃低い温度
でさらに40時間以上保持することを特徴とする磁気特性
の優れた一方向性珪素鋼板の製造方法である。
<Means for Solving the Problems> That is, the present invention is, by weight%, C: 0.02 to 0.1%, Si: 2.5 to
Contains 4.0%, Mn: 0.05 to 0.1%, Se: 0.01 to 0.03%, balance
A silicon steel slab consisting of Fe and unavoidable impurities is heated to 1300 ° C or higher, hot-rolled, and then subjected to intermediate annealing 2
After carrying out cold rolling twice to obtain a specified final thickness, decarburization annealing is applied, then an annealing separator containing MgO as a main component is applied, and then final finishing including secondary recrystallization annealing and purification annealing. In the method for manufacturing a unidirectional silicon steel sheet comprising a series of annealing steps, the secondary recrystallization annealing is performed by holding at a temperature 5 to 25 ° C. higher than the secondary recrystallization start temperature for 5 to 20 hours, and then secondary A unidirectional silicon steel sheet with excellent magnetic properties, characterized in that it is kept for about 20 hours or more near the recrystallization start temperature, or for 40 hours or more at a temperature 5 to 15 ° C lower than the secondary recrystallization start temperature. Is a manufacturing method.

<作 用> 本発明を構成する各要件について、実験結果にもとづき
詳細に説明する。
<Operation> Each requirement that constitutes the present invention will be described in detail based on experimental results.

重量%で、C:0.042%,Si:3.35%,Mn:0.071%,Se:0.020
%,Sb:0.025%を含み残部Feおよび不可避的不純物から
成る一方向性珪素鋼スラブを1400℃で加熱した後、従来
公知の熱間圧延を施して板厚2.0mmの熱延板となし、100
0℃30秒のノルマライジング、中間焼鈍を挟む2回の冷
間圧延により0.23mmの最終板厚とし脱炭焼鈍を行った材
料を用いて、先ずその2次再結晶開始温度(以下TSR
を測定した。
% By weight, C: 0.042%, Si: 3.35%, Mn: 0.071%, Se: 0.020
%, Sb: 0.025%, the unidirectional silicon steel slab consisting of the balance Fe and unavoidable impurities was heated at 1400 ° C., and then conventionally known hot rolling was performed to form a hot rolled sheet with a thickness of 2.0 mm, 100
The material was decarburized and annealed by normalizing at 0 ℃ for 30 seconds and cold rolling twice with intermediate annealing to obtain a final plate thickness of 0.23mm. First, its secondary recrystallization starting temperature ( TSR )
Was measured.

TSRは、5〜10℃/cmの温度勾配を有する炉にて800〜900
℃の温度で50時間焼鈍後、そのマクロ組織の観察により
2次再結晶が発現する温度を表す。
T SR is 800 to 900 in a furnace having a temperature gradient of 5 to 10 ° C. / cm
After annealing at a temperature of 50 ° C. for 50 hours, observation of the macrostructure shows the temperature at which secondary recrystallization occurs.

2回冷延法により製造される一方向性珪素鋼では、TSR
はほぼ850℃±30℃前後であり、素材ごとに若干異な
る。とくに磁気特性の優れた成品の製造には、TSRで保
定する必要があることが経験的に知られている。本実験
素材では、TSR=840℃であった。そこで、保定温度を種
々変えて最終仕上焼鈍を行ったところ第1図の様な結果
が得られた。すなわち、TSRで保定することにより、鉄
損は最良の値を示すが、B10については必ずしも最良で
は無いことが判る。このように従来の定温保持による最
終仕上焼鈍では、磁化特性B10と鉄損特性はW17/50の最
良値を同時に満足させることは困難であった。
For unidirectional silicon steel manufactured by the double cold rolling method, TSR
Is around 850 ℃ ± 30 ℃, which differs slightly depending on the material. Particularly excellent production of finished products of the magnetic properties, that it is necessary to retention at T SR known empirically. In this experimental material, T SR = 840 ° C. Therefore, when final finishing annealing was performed while changing the holding temperature variously, the results shown in FIG. 1 were obtained. That is, it can be understood that the iron loss shows the best value by holding it by T SR , but not necessarily the best value for B 10 . As described above, it was difficult to simultaneously satisfy the best values of W 17/50 for the magnetization characteristic B 10 and the core loss characteristic in the conventional final finish annealing by maintaining the constant temperature.

なお第1図において、B10と鉄損の最良値が一致しない
一つの理由として、2次粒径がB10とともに大きくなり
渦流損が増大するためと考えられる。
In Fig. 1, one of the reasons why the best value of B 10 and iron loss do not match is considered to be that the secondary particle size increases with B 10 and eddy current loss increases.

本発明者らは、このような2次再結晶過程に関する研究
をさらに進めた。第2図は、保持時間を変えたときのB
10の変化を示す。通常保持後は、1200℃の高温水素焼鈍
による不純物の純化焼鈍が続くが、ここでは2次再結晶
挙動を明確にするために純化焼鈍は省略した。B10が高
くなってゆくのは、ゴス方位の2次粒が発現,成長して
ゆくことに対応し、B10が高いほど圧延方向への方位の
集積も高度になってゆくことを意味している。1次再結
晶過程同様に、2次再結晶においても、ゴス粒の急激な
成長に至るまでの潜伏期間があり、保持温度により大き
く異なる。880℃保持では、潜伏期間は短く、ほぼ20時
間で、2次再結晶を完了するが、その到達B10は850℃保
持に及ばない。これはゴス方位からわずかにズレた方位
も同時に2次再結晶してしまうためと考えられる。一方
830℃保持では、潜伏期間が長く100時間後も2次再結晶
が完了していない。従ってTSR以下の保定では、2次再
結晶は定温保持中には完了せず、その後の高温水素焼鈍
過程に2次再結晶するため、やはりゴス方位からズレた
方位の発生頻度が増し、B10の低下を引き起こすと考え
られる。
The present inventors have further advanced the research on such secondary recrystallization process. Figure 2 shows B when the holding time is changed.
Shows 10 changes. After the normal holding, purification annealing of impurities by high temperature hydrogen annealing at 1200 ° C. continues, but the purification annealing is omitted here to clarify the secondary recrystallization behavior. The higher B 10 corresponds to the development and growth of secondary grains in the Goss orientation, and the higher the B 10 is, the higher the orientation accumulation in the rolling direction becomes. ing. Similar to the primary recrystallization process, in the secondary recrystallization as well, there is an incubation period until the rapid growth of the Goss grains, which greatly varies depending on the holding temperature. When kept at 880 ° C, the incubation period is short, and the secondary recrystallization is completed in about 20 hours, but the reached B 10 is less than that kept at 850 ° C. It is considered that this is because secondary recrystallization occurs at the same time even in an orientation slightly deviated from the Goth orientation. on the other hand
When kept at 830 ° C, the incubation period was long and secondary recrystallization was not completed even after 100 hours. Therefore, in the retention of T SR or less, the secondary recrystallization is not completed during the holding at the constant temperature, and the secondary recrystallization is performed in the subsequent high temperature hydrogen annealing process. It is thought to cause 10 drops.

また、2次再結晶過程において、ゴス粒の成長の間、他
方位の正常粒成長を阻止させるためにMnSe等の微細析出
物がインヒビターとして機能していることは周知であ
り、保定中に徐々に析出物のオストワルド成長が進行
し、その機能低下に伴い爆発的に2次再結晶が進むとさ
れている。
It is well known that during secondary recrystallization, fine precipitates such as MnSe function as inhibitors in order to prevent normal grain growth at the other position during the growth of Goss grains. It is said that the Ostwald growth of the precipitate progresses, and the secondary recrystallization explosively proceeds with the deterioration of the function.

明確な証拠は無いが、2次再結晶するゴス粒は、潜伏期
間中にある程度成長を開始しており、インヒビターのオ
ストワルド成長とともに成長速度が増してゆくものと考
えられる。従って、潜伏期間中に方位の良好なゴス粒を
2次再結晶可能な臨界サイズまで多数成長させることで
高度に方位の集積した細かな2次再結晶組織が得られ
る。成長の駆動力を増す意味で、ある程度高温保持の方
が、効果的であるが、成長速度が急激に増すため、比較
的巨大な2次粒に成り易く鉄損改善上好ましくない。
Although there is no clear evidence, it is considered that the secondary recrystallized goss grains have started to grow to some extent during the incubation period and that the growth rate increases with the Ostwald growth of the inhibitor. Therefore, during the incubation period, a large number of highly oriented Goss grains can be grown to a critical size capable of secondary recrystallization to obtain a fine secondary recrystallized structure with highly oriented orientation. In order to increase the growth driving force, holding at a high temperature is more effective to some extent, but since the growth rate rapidly increases, relatively large secondary grains are likely to be formed, which is not preferable for improving iron loss.

本発明者らは、定温保持時に潜伏期間中を若干高温保持
し、その後低温で成長を緩やかに進行させることを試み
た。第3図に定温保持初期にTSRより高い温度で保持し
た場合の磁気特性を示す。なお、諸条件は同図右上に示
す。TSR(840℃)における通常の定温保持(第1図参
照)に較べ、この方法によると、B10,W17/50ともに良好
な成績が得られることが判った。特に△Tが5〜20℃の
範囲が良好である。なお、実操業における温度制御精度
の限界からTSR保持は、±2〜3℃のバラツキを含む。
The present inventors attempted to hold the temperature at a slightly high temperature during the incubation period at the time of holding the constant temperature, and then slowly progress the growth at a low temperature. Fig. 3 shows the magnetic characteristics when the temperature is maintained above T SR in the initial period of constant temperature maintenance. The various conditions are shown in the upper right of the figure. It was found that good results were obtained for both B 10 and W 17/50 by this method, as compared to the usual constant temperature maintenance at T SR (840 ° C) (see Fig. 1). Particularly, the range where ΔT is 5 to 20 ° C. is preferable. Due to the limit of temperature control accuracy in actual operation, TSR retention includes a variation of ± 2 to 3 ° C.

次に高温保持後、TSR以下の温度で保定したときの結果
を第4図に示す。TSR以下の保定は、2次再結晶完了ま
でに時間がかかるものの、到達磁気特性に優れるため、
より高特性の成品を得るためには、ある程度の時間延長
を行っても有利である。同図より、TSR以下5〜15℃で
あれば高温保持後40時間以上確保することで、工業的規
模の実施が可能である。
Next, Fig. 4 shows the result when the temperature was held at T SR or lower after being kept at a high temperature. Although the retention of T SR or less takes time until the completion of secondary recrystallization, the ultimate magnetic properties are excellent.
In order to obtain a product with higher characteristics, it is advantageous to extend the time to some extent. From the figure, it is possible to carry out on an industrial scale by securing at least 40 hours after holding at a high temperature if it is 5 to 15 ° C below T SR .

以下、本発明に適用する素材の成分限定理由について説
明する。
Hereinafter, the reasons for limiting the components of the material applied to the present invention will be described.

Cは熱延および冷延工程において鋼板の結晶組織の均一
化と(110)〔001〕方位の集積度が高い再結晶集合組織
の形成を図る上で不可欠の元素であり、この目的を達成
するためには0.02%以上が必要であり、他方0.10%を越
えると通常連続焼鈍で施す短時間の脱炭焼鈍では十分に
脱炭することが困難になり、この場合成品にCが残存す
ると鉄損特性が大きく劣化するため上限は工業的脱炭焼
鈍の可能限度から0.10%以下に制限される。この理由か
らCは0.02〜0.10%の範囲内に限定した。
C is an essential element for homogenizing the crystal structure of the steel sheet and forming a recrystallized texture with a high degree of integration of the (110) [001] orientation in the hot rolling and cold rolling processes, and achieves this purpose. To achieve this, 0.02% or more is required. On the other hand, if it exceeds 0.10%, it is difficult to decarburize sufficiently by the short decarburization annealing that is usually performed by continuous annealing. In this case, if C remains in the product, iron loss Since the properties deteriorate significantly, the upper limit is limited to 0.10% or less from the limit of industrial decarburization annealing. For this reason, C is limited to the range of 0.02 to 0.10%.

Siは2.5%より低いとこの発明が目的とする十分に低い
鉄損値を実現できず、また4.0%を越して過多となると
脆くなり、かつ冷間加工性に乏しい通常の工業的圧延が
困難になるので、2.5〜4.0%の範囲内に限定した。
If Si is lower than 2.5%, the sufficiently low iron loss value aimed at by the present invention cannot be realized, and if it exceeds 4.0%, it becomes brittle, and it is difficult to perform ordinary industrial rolling with poor cold workability. Therefore, it is limited to within the range of 2.5 to 4.0%.

Mn,Seは、いずれもインヒビターとして添加され、最終
仕上焼鈍において1次再結晶粒の成長を抑制し(110)
〔001〕方位の2次再結晶粒を先鋭に発達させるに必要
な元素である。しかし、Mn:0.05〜0.10%、Seは0.01〜
0.03%の範囲を逸脱して過不足になると十分な2次再結
晶粒の成長が望めなくなり、目的とする優れた磁気特性
が得られなくなるので上記範囲に限定した。
Both Mn and Se are added as inhibitors to suppress the growth of primary recrystallized grains during final annealing (110).
It is an element necessary for sharply developing secondary recrystallized grains in the [001] orientation. However, Mn: 0.05-0.10%, Se 0.01-
If the amount deviates from the range of 0.03% and becomes excessive or insufficient, sufficient growth of secondary recrystallized grains cannot be expected, and the desired excellent magnetic characteristics cannot be obtained. Therefore, the range is limited to the above range.

<実施例> 重量%で、C:0.040%,Si:3.38%,Mn:0.68%,Se:0.021
%,Sb:0.026%を含み残部Feおよび不可避的不純物から
成る一方向性珪素鋼素材スラブを1400℃で10分再加熱
後、板厚2.0mmの熱延板とした。1000℃30秒のノルマラ
イジング後酸洗を経て、1000℃1分の中間焼鈍を挟む2
回冷延法にて0.23mmの最終板厚とした。600℃1分,820
℃2分の2段均熱方法による脱炭を兼ねた1次再結晶焼
鈍後、MgOを主成分とする焼鈍分離剤を塗布し、先ずTSR
を測定したところ850℃であった。これら同一チャージ
の素材について、2次再結晶焼鈍を表1の様な条件で行
った後、1200℃、5HrのH2中純化焼鈍を行ったときの各
々の磁気特性を示す。表1より明らかなように本発明適
合例では、B10,W17/50ともに比較例より優れた結果が得
られた。
<Example> In weight%, C: 0.040%, Si: 3.38%, Mn: 0.68%, Se: 0.021
%, Sb: 0.026%, and the rest of the unidirectional silicon steel material slab consisting of Fe and unavoidable impurities was reheated at 1400 ° C for 10 minutes, and then a hot-rolled sheet having a thickness of 2.0 mm was obtained. After normalizing at 1000 ℃ for 30 seconds, after pickling, insert intermediate annealing at 1000 ℃ for 1 minute 2
A final plate thickness of 0.23 mm was obtained by the cold rolling method. 600 ℃ 1 minute, 820
℃ after the primary recrystallization annealing, which also serves as a 2-minute decarburization by 2 DanHitoshinetsu method, and coated with an annealing separator mainly comprised of MgO, first T SR
Was 850 ° C. Magnetic properties of these materials having the same charge are shown when secondary recrystallization annealing is performed under the conditions as shown in Table 1 and then purified annealing in H 2 at 1200 ° C. and 5 Hr is performed. As is clear from Table 1, in the examples of the present invention, both B 10 and W 17/50 were superior to those of the comparative examples.

<発明の効果> 上述したように本発明方法においては、磁化特性及び鉄
損特性がともに極めて優れた一方向性珪素鋼板を得るこ
とができる。
<Effects of the Invention> As described above, according to the method of the present invention, it is possible to obtain a unidirectional silicon steel sheet which is extremely excellent in both the magnetization characteristics and the iron loss characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図は磁気特性に及ぼす最終仕上保定温度の影響を示
すグラフ、第2図はB10に及ぼす保持時間の影響を示す
グラフ、第3図は磁気特性に及ぼす高温保定の影響を示
す説明図、第4図はTSR以上保持後のTSR以下の保持時間
とB10との関係を示すグラフである。
Fig. 1 is a graph showing the effect of final holding temperature on magnetic properties, Fig. 2 is a graph showing the effect of holding time on B 10 , and Fig. 3 is an explanatory diagram showing the effect of high temperature holding on magnetic properties. FIG. 4 is a graph showing the relationship between the retention time of T SR or less after the retention of T SR or more and B 10 .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.02〜0.1%,Si:2.5〜4.0%,
Mn:0.05〜0.1%,Se:0.01〜0.03%を含有し、残部Fe及び
不可避的不純物より成る珪素鋼スラブを1300℃以上に加
熱後、熱間圧延を施し、次いで中間焼鈍を挟む2回の冷
間圧延を施して所定の最終板厚とした後、脱炭焼鈍を施
し、次いでMgOを主成分とする焼鈍分離剤を塗布し、引
き続き2次再結晶焼鈍及び純化焼鈍を含む最終仕上焼鈍
を施す一連の工程からなる一方向性珪素鋼板の製造方法
において、前記2次再結晶焼鈍として、2次再結晶開始
温度から5〜25℃高い温度で5〜20時間保持した後、2
次再結晶開始温度付近でさらに20時間以上保持すること
を特徴とする磁気特性の優れた一方向性珪素鋼板の製造
方法。
1. In weight%, C: 0.02 to 0.1%, Si: 2.5 to 4.0%,
After heating a silicon steel slab containing Mn: 0.05 to 0.1% and Se: 0.01 to 0.03% and the balance Fe and unavoidable impurities to 1300 ° C or higher, hot rolling is performed, and then intermediate annealing is performed twice. After cold rolling to a specified final plate thickness, decarburization annealing is applied, and then an annealing separator containing MgO as a main component is applied, followed by final finishing annealing including secondary recrystallization annealing and purification annealing. In the method for manufacturing a unidirectional silicon steel sheet comprising a series of steps, the secondary recrystallization annealing is performed at a temperature 5 to 25 ° C. higher than the secondary recrystallization start temperature for 5 to 20 hours, and then 2
A method for producing a unidirectional silicon steel sheet having excellent magnetic properties, which is characterized by holding the material at a temperature of the next recrystallization start for 20 hours or more.
【請求項2】請求項1記載の2次再結晶焼鈍として、2
次再結晶開始温度から5〜25℃高い温度で5〜20時間保
持した後、2次再結晶開始温度より5〜15℃低い温度で
さらに40時間以上保持することを特徴とする磁気特性の
優れた一方向性珪素鋼板の製造方法。
2. The secondary recrystallization annealing according to claim 1,
Excellent magnetic properties, characterized by holding at a temperature 5 to 25 ° C higher than the starting temperature of secondary recrystallization for 5 to 20 hours, and then holding at a temperature 5 to 15 ° C lower than the starting temperature of secondary recrystallization for 40 hours or more. Method for producing a unidirectional silicon steel sheet.
JP63154928A 1988-06-24 1988-06-24 Method for producing unidirectional silicon steel sheet having excellent magnetic properties Expired - Lifetime JPH07116515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63154928A JPH07116515B2 (en) 1988-06-24 1988-06-24 Method for producing unidirectional silicon steel sheet having excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63154928A JPH07116515B2 (en) 1988-06-24 1988-06-24 Method for producing unidirectional silicon steel sheet having excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH024925A JPH024925A (en) 1990-01-09
JPH07116515B2 true JPH07116515B2 (en) 1995-12-13

Family

ID=15595010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63154928A Expired - Lifetime JPH07116515B2 (en) 1988-06-24 1988-06-24 Method for producing unidirectional silicon steel sheet having excellent magnetic properties

Country Status (1)

Country Link
JP (1) JPH07116515B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363268A (en) * 1991-06-10 1992-12-16 Sharp Corp Page printer
CN116162771B (en) * 2023-04-25 2023-08-01 首钢智新迁安电磁材料有限公司 Method, device and equipment for improving capture precision of secondary recrystallization of oriented silicon steel

Also Published As

Publication number Publication date
JPH024925A (en) 1990-01-09

Similar Documents

Publication Publication Date Title
US4938807A (en) Process for production of grain oriented electrical steel sheet having high flux density
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JPS6250529B2 (en)
US4888066A (en) Method for producing grain-oriented electrical steel sheet with very high magnetic flux density
JPH05171280A (en) Production of nonoriented silicon steel sheet having superior magnetic property and excellent in external surface appearance
US5545263A (en) Process for production of grain oriented electrical steel sheet having superior magnetic properties
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
US5261971A (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
JP2787776B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH07116515B2 (en) Method for producing unidirectional silicon steel sheet having excellent magnetic properties
JPH06228646A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
EP0392535B2 (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
JPH0629461B2 (en) Method for producing silicon steel sheet having good magnetic properties
JPH0699750B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JP2612075B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties and surface properties
JP2883224B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPS6256205B2 (en)
JPH02263924A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH02263923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH06330174A (en) Production of low iron loss grain oriented silicon steel sheet
JPH0987747A (en) Production of grain oriented silicon steel sheet excellent in magnetic property