JPH0987747A - Production of grain oriented silicon steel sheet excellent in magnetic property - Google Patents
Production of grain oriented silicon steel sheet excellent in magnetic propertyInfo
- Publication number
- JPH0987747A JPH0987747A JP24310695A JP24310695A JPH0987747A JP H0987747 A JPH0987747 A JP H0987747A JP 24310695 A JP24310695 A JP 24310695A JP 24310695 A JP24310695 A JP 24310695A JP H0987747 A JPH0987747 A JP H0987747A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- temperature
- silicon steel
- steel sheet
- secondary recrystallization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、インヒビターとしてAl
N を用いる一方向性けい素鋼板の製造方法に関するもの
である。The present invention relates to Al as an inhibitor.
The present invention relates to a method for manufacturing a unidirectional silicon steel sheet using N.
【0002】[0002]
【従来の技術】方向性けい素鋼板は、主に変圧器の鉄心
材料として用いられ、近年の消エネ化の要求に応え、ま
すます低鉄損、高磁束密度化がはかられてきている。か
かる優れた磁気特性を有するためには、鉄の磁化容易軸
である〔001 〕方向が鋼板の圧延方向に高度に集積した
結晶粒群から構成される必要がある。このような結晶群
の生成は、一般の方向性けい素鋼板の製造においては、
最終仕上焼鈍時に、いわゆるゴス粒と称される(110 )
〔001 〕方位の結晶粒が二次再結晶粒として優先的に発
達成長させることによりほぼ達成できる。しかし、ゴス
方位以外の磁気特性上好ましくない結晶粒の成長を抑制
し、ゴス方位に近い粒だけ発達させることによって、高
磁束密度化ははかれるものの、さらに低鉄損化をはかる
ためには、それらの粒を細粒化する必要がある。2. Description of the Related Art Grain-oriented silicon steel sheets are mainly used as core materials for transformers, and in response to the recent demand for energy-saving, they are becoming increasingly low in iron loss and high in magnetic flux density. . In order to have such excellent magnetic properties, it is necessary that the [001] direction, which is the easy axis of iron, be composed of a group of crystal grains that are highly integrated in the rolling direction of the steel sheet. The formation of such a crystal group, in the production of general grain-oriented silicon steel sheet,
At the time of final annealing, it is called so-called Goss grain (110)
This can be almost achieved by preferentially developing and growing the crystal grains of the [001] orientation as secondary recrystallized grains. However, by suppressing the growth of crystal grains unfavorable in magnetic properties other than the Goss orientation and developing only grains close to the Goss orientation, high magnetic flux density can be achieved, but in order to further reduce iron loss, It is necessary to reduce the size of the grains.
【0003】仕上焼鈍工程で、細粒化かつゴスへの高度
な集積化をともに満足させるような制御を行うために
は、二次再結晶粒の核生成と成長過程を分離して、精密
に制御を行う必要がある。つまり、核生成過程ではゴス
に近い方位の核のみ多数生成させ、成長過程においては
これらの核のみ成長させ、その他のゴスからずれた方位
粒の核生成を抑制するのが理想的である。In the finish annealing step, in order to perform control so as to satisfy both fine graining and high degree of integration into goss, nucleation and growth process of secondary recrystallized grains are separated and precisely Need to control. In other words, ideally, a large number of nuclei having an orientation close to Goss are generated in the nucleation process, and only these nuclei are grown in the growth process to suppress the nucleation of the oriented grains deviated from other Goss.
【0004】AlN をインヒビターとする方向性けい素鋼
板のかかる細粒で、かつゴス粒への集積度の高い組織を
得るための仕上焼鈍方法に関して種々の方法が提案され
ている。例えば、特開昭54−40227 号公報には、700 〜
900 ℃を15〜100 ℃/hrで昇温し、二次再結晶が50%進
行する900 〜1010℃の温度域を2〜10℃/hrの徐熱焼鈍
を行うことが開示されているが、このように従来の技術
のほとんどは、ゴス粒の成長過程において単なる温度保
定、あるいは昇温を施すため、この過程でゴス以外の粒
の核生成ならびに成長を許してしまい、磁性の劣化をも
たらすという問題点があった。Various methods have been proposed as a finishing annealing method for obtaining such a fine grained grain of a grain-oriented silicon steel sheet using AlN as an inhibitor and having a high degree of accumulation in Goss grains. For example, in Japanese Patent Laid-Open No. 54-40227, 700-
Although it is disclosed that the temperature is raised from 900 ° C. at 15 to 100 ° C./hr and the temperature range of 900 to 1010 ° C. at which the secondary recrystallization proceeds by 50%, the annealing is performed at 2 to 10 ° C./hr. , As described above, most of the conventional techniques simply maintain the temperature or raise the temperature during the growth process of the Goss grains, so that the nucleation and growth of grains other than the Goss are allowed in this process, resulting in deterioration of magnetism. There was a problem.
【0005】また、特開昭55−24972 号公報には、750
〜1150℃をN2 ≧10%下で表層結晶粒を成長させ、それ
より低いN2 分圧下で二次再結晶させる技術が、特開昭
55−47324 号公報には、850 〜950 ℃をN2 分圧20%以
下とし、その後N2 分圧を3%以上で二次再結晶させる
技術が開示されているが、このように雰囲気によって二
次再結晶を制御しようとする方法ではコイル長手方向、
及び巾方向に磁性の不均一が発生してしまう。つまり、
仕上焼鈍はコイルの状態で行われるため、コイル外、
中、内巻き、及びコイル巾方向において雰囲気の流通性
にどうしても差が生じてしまうという問題点があり、工
業的に用いることのできる技術ではなかった。Further, Japanese Patent Application Laid-Open No. 55-24972 discloses 750
A technique for growing surface crystal grains at ˜1150 ° C. under N 2 ≧ 10% and secondary recrystallization under a lower N 2 partial pressure is disclosed in Japanese Patent Laid-Open No.
Japanese Patent Laid-Open No. 55-47324 discloses a technique in which N 2 partial pressure is 20% or less at 850 to 950 ° C. and then secondary recrystallization is performed at N 2 partial pressure of 3% or more. In the method of controlling the secondary recrystallization, the coil longitudinal direction,
In addition, magnetic nonuniformity occurs in the width direction. That is,
Since the finish annealing is performed in the coil state, outside the coil,
This is a technique that cannot be industrially used because there is a problem in that there is a difference in the atmosphere flowability in the middle, inner winding, and coil width directions.
【0006】一方、MnSe系をインヒビターとして用いる
方向性けい素鋼板の従来技術の中で、特開平2−4925号
公報には、二次再結晶開始温度より5〜25℃高い温度で
5〜20時間保持することで多数のゴス核の生成を促し、
さらに二次再結晶開始温度付近あるいはそれより5〜15
℃低い温度で保持することによってゴスに近い方位粒の
核のみ成長させ磁性を向上する方法が開示されている。
しかし、著者らの実験によって、この方法はMnSe系をイ
ンヒビターとする方向性けい素鋼に限って有効なもので
あり、AlN 系をインヒビターとする方向性けい素鋼の二
次再結晶粒制御技術とはなり得ないことが判明した。On the other hand, among the prior art of grain-oriented silicon steel sheet using MnSe system as an inhibitor, Japanese Patent Laid-Open No. 2-4925 discloses that the temperature is 5 to 20 ° C. higher than the secondary recrystallization start temperature by 5 to 20 ° C. Holding it for a long time promotes the generation of many Goss nuclei,
Furthermore, the temperature around the secondary recrystallization start temperature or 5-15
A method of growing only the nuclei of oriented grains close to Goth to improve the magnetism is disclosed by holding at a temperature lower by ℃.
However, according to the experiments by the authors, this method is effective only for grain-oriented silicon steels using the MnSe system as an inhibitor, and a technique for controlling the secondary recrystallization grain of grain-oriented silicon steels using the AlN system as an inhibitor. It turns out that it cannot be.
【0007】[0007]
【発明が解決しようとする課題】本発明の目的とすると
ころは、AlN を主インヒビターとして用いる方向性けい
素鋼板の製造方法において、低鉄損、高磁束密度を工業
的に安定して得ることのできる製造方法の提案にある。SUMMARY OF THE INVENTION An object of the present invention is to obtain industrially stable low iron loss and high magnetic flux density in a method for producing a grain-oriented silicon steel sheet using AlN as a main inhibitor. There is a proposal of a manufacturing method that can be performed.
【0008】[0008]
【課題を解決するための手段】本発明は、C:0.02〜0.
12wt%、Si:2.5 〜4.0 wt%、Mn:0.03〜0.15wt%、so
l,Al:0.01〜0.05wt%、N:0.004 〜0.01wt%を含み、
さらにSおよび/又はSeを合計で0.01〜0.05wt%を含有
し、さらにまた必要に応じて、Sb:0.01〜0.20wt%、M
o:0.005 〜0.05wt%、Sn:0.02〜0.20wt%およびCu:
0.02〜0.20wt%の少なくとも1種を含有し、残部がFeお
よび不可避的不純物からなるけい素鋼スラブを熱間圧延
したのち熱延板焼鈍および急冷処理を施してから、1回
あるいは中間焼鈍をはさむ2回の冷間圧延を最終圧延率
80%以上で施し、その後脱炭焼鈍ついで仕上焼鈍を施す
一連の工程からなる一方向性けい素鋼板の製造方法にお
いて、該仕上焼鈍が、二次再結晶核生成温度(N−
TSR)より高温に加熱し、適正方位の二次再結晶核を多
数生成させ、それにつづき二次再結晶核生成温度以下で
二次再結晶粒成長可能温度(G−TSR)以上の温度範囲
に冷却処理することにより、前記適正方位の二次再結晶
核の成長を促したのち純化焼鈍を行うことを特徴とする
磁気特性の優れた一方向性けい素鋼板の製造方法であ
り、さらに具体的には、二次再結晶開始までの昇温速度
を5〜50℃/hrとし、二次再結晶核生成温度(N−
TSR)よりも3〜50℃高温での1〜5hrの核生成処理と
それに続く(N−T SR)よりも低温の二次粒成長可能温
度(G−TSR)以上における等温焼鈍による粒成長処
理、そして通常の純化処理とからなる仕上焼鈍を行う一
方向性けい素鋼板の製造方法であり、または2次再結晶
核生成温度(N−TSR)よりも3〜50℃高温まで5〜50
℃/hrで昇温する核生成処理とそれに続く、3〜8℃/
hrの冷却速度でN−TSR以下で二次再結晶粒成長可能温
度(G−TSR)以上に冷却する粒成長処理、そして通常
の純化処理とからなる仕上焼鈍を行う一方向性けい素鋼
板の製造方法である。The present invention provides C: 0.02 to 0.
12wt%, Si: 2.5-4.0wt%, Mn: 0.03-0.15wt%, so
l, Al: 0.01 to 0.05 wt%, N: 0.004 to 0.01 wt%,
Furthermore, it contains 0.01 to 0.05 wt% of S and / or Se in total.
In addition, if necessary, Sb: 0.01 to 0.20 wt%, M
o: 0.005-0.05wt%, Sn: 0.02-0.20wt% and Cu:
It contains at least one of 0.02 to 0.20 wt% and the balance Fe
Rolling of silicon steel slabs consisting of inevitable impurities and unavoidable impurities
After hot-rolled sheet annealing and quenching treatment, once
Alternatively, two cold rolling steps with intermediate annealing may be performed to obtain the final rolling rate.
80% or more, then decarburization annealing, then finish annealing
In the manufacturing method of unidirectional silicon steel sheet consisting of a series of processes
Then, the finish annealing is performed at the secondary recrystallization nucleation temperature (N-
TSR) Heating to a higher temperature to increase the number of secondary recrystallization nuclei in the proper orientation.
For a number of times, followed by secondary recrystallization nucleation temperature
Temperature at which secondary recrystallized grains can grow (GTSR) Above temperature range
The secondary recrystallization in the proper orientation is performed by cooling to
Characterized by purifying annealing after promoting the growth of nuclei
A method of manufacturing unidirectional silicon steel sheet with excellent magnetic properties.
More specifically, the heating rate until the start of secondary recrystallization
Of 5 to 50 ° C./hr and the secondary recrystallization nucleation temperature (N-
TSR) 3 to 50 ℃ higher temperature than 1 to 5 hours of nucleation treatment
Followed by (N-T SR) Lower temperature that can grow secondary grains
Degree (GTSR) Grain growth process by isothermal annealing
A finish annealing that consists of
A method of manufacturing grain-oriented silicon steel sheet, or secondary recrystallization
Nucleation temperature (N-TSR) 3 to 50 ℃ higher than 5 to 50
Nucleation treatment to raise the temperature at ℃ / hr followed by 3-8 ℃ /
NT at a cooling rate of hrSRThe temperature at which secondary recrystallized grains can grow
Degree (GTSR) Grain growth process with more cooling, and usually
Unidirectional silicon steel with finish annealing consisting of refining
It is a method of manufacturing a plate.
【0009】なお、本発明では、二次再結晶開始温度
(TSR)、二次再結晶核生成温度(N−TSR)および二
次再結晶粒成長可能温度(G−TSR)それぞれの定義乃
至は測定方法を以下のように定める。 二次再結晶開始温度(TSR):1〜10℃/cmの温度勾配
を有する焼鈍炉にて30時間以上加熱した後の二次再結晶
の成長フロントの温度。In the present invention, the secondary recrystallization starting temperature (T SR ), the secondary recrystallization nucleation temperature (N-T SR ) and the secondary recrystallizable grain growth temperature (G-T SR ) are respectively set. The definition or measurement method is defined as follows. Secondary recrystallization starting temperature (T SR ): Temperature of the growth front of secondary recrystallization after heating for 30 hours or more in an annealing furnace having a temperature gradient of 1 to 10 ° C / cm.
【0010】二次再結晶核生成温度(N−TSR):温度
勾配のない焼鈍炉において1時間の焼鈍後、2mm以上の
二次再結晶粒が生成する最低温度。 二次再結晶粒成長可能温度(G−TSR) N−TSRに到達させ、一度取り出した鋼板を温度勾配の
ない焼鈍炉にて2時間保持した後に二次再結晶粒の成長
が認められる温度。Secondary recrystallization nucleation temperature (N-T SR ): The minimum temperature at which secondary recrystallized grains of 2 mm or more are formed after annealing for 1 hour in an annealing furnace without temperature gradient. Secondary Recrystallizable Grain Growth Temperature (G-T SR ) After reaching the N-T SR and holding the steel sheet once taken out for 2 hours in an annealing furnace without temperature gradient, secondary recrystallized grain growth is observed. temperature.
【0011】[0011]
【作用】従来から、非常に多くの二次再結晶に関するヒ
ートサイクルが提案され、試みられているが、いまだに
完全に満足するべき状態に至っていないのが実状であ
る。とくにインヒビターの抑制力が強力になり、かつ一
次再結晶集合組織の集積度が高い場合には非常に少しの
条件の変化により二次再結晶挙動が大きく影響を受ける
ことは度々経験するところである。このような場合のヒ
ートサイクルを経験だけで最適化するのは至難である。
現象を正しく把握する考え方が必要である。Although a large number of heat cycles for secondary recrystallization have been proposed and attempted in the past, the reality is that they have not yet reached a completely satisfactory state. Especially when the inhibitory power of the inhibitor becomes strong and the degree of accumulation of the primary recrystallization texture is high, it is often experienced that the secondary recrystallization behavior is greatly affected by a very small change in the conditions. It is extremely difficult to optimize the heat cycle in such a case only by experience.
It is necessary to have a way of thinking to understand the phenomenon correctly.
【0012】しかしながら、二次再結晶の過程に関する
金属学的理解はきわめて不十分と言わざるを得ない。本
発明者らは二次再結晶の過程で起こっている本質的現象
は何であるかを考えてみた。その結果以下のように考え
ることにより二次再結晶の過程をきわめて合理的に理解
・制御しうることを知見した。However, it must be said that the metallurgical understanding of the process of secondary recrystallization is extremely insufficient. The present inventors considered what is the essential phenomenon occurring in the process of secondary recrystallization. As a result, we have found that the process of secondary recrystallization can be understood and controlled very reasonably by considering the following.
【0013】すなわち、二次再結晶の過程は、(a)核
生成の過程と(b)粒成長の過程とに完全に分離し得る
こと、そしてヒートサイクルの制御もまたそれら2つの
過程を完全に分離して行われるべきことである。この考
え方は単純にヒートサイクルの形態を分類するものでは
なく、以下のような新規な技術概念を提案するものであ
る。That is, the process of secondary recrystallization can be completely separated into the process of (a) nucleation and the process of (b) grain growth, and the control of the heat cycle also completes these two processes. It should be done separately. This idea does not simply classify the heat cycle forms, but proposes the following new technical concepts.
【0014】すなわち、従来の理解では、ある一定温度
以上で二次再結晶が開始し、その温度がヒートサイクル
制御にとって非常に重要であるとされていた。その温度
は、二次再結晶開始温度TSRと定義されていた。これ
は、例えば特開平2−4925号公報に示されているように
ある一定の昇熱速度で二次再結晶が開始する温度を定義
したものである。That is, according to the conventional understanding, it was considered that the secondary recrystallization starts at a certain temperature or higher, and that temperature is very important for heat cycle control. That temperature was defined as the secondary recrystallization onset temperature T SR . This defines the temperature at which the secondary recrystallization starts at a certain heating rate as disclosed in JP-A-2-4925.
【0015】本発明者らはこの二次再結晶の初期段階に
ついて詳細な実験を行った結果、二次再結晶が核生成の
段階と粒成長の段階に明確に分離しうることを見出し
た。そして、特に核生成可能温度と粒成長可能温度が独
立して存在することを見出した。以下前者をN−TSRと
後者をG−TSRと定義する。従来の二次再結晶開始温度
TSRは測定精度が不十分であったため、あるいはそのよ
うな技術思想がなかったためか、それらを合わせた温度
として考えられ測定されていたと推定される。本発明
は、上述したような新規な技術思想を導入することによ
って達成されたものである。As a result of detailed experiments on the initial stage of the secondary recrystallization, the present inventors have found that the secondary recrystallization can be clearly separated into a nucleation stage and a grain growth stage. And, in particular, it was found that the nucleation possible temperature and the grain growth possible temperature exist independently. The former is defined as N-T SR and the latter as G-T SR . It is presumed that the conventional secondary recrystallization starting temperature T SR was considered and measured as a temperature combining them, probably because the measurement accuracy was insufficient or there was no such technical idea. The present invention has been achieved by introducing the new technical idea as described above.
【0016】このような技術思想の導入により、N−T
SRとG−TSRは多くの場合異なる温度であること、該生
成処理条件によりG−TSRは影響を受けること等が解っ
た。また析出等の現象において古典的核生成理論が適用
される場合と同様に、ある臨界サイズより大きくなった
二次粒のみが以後安定して成長しうることも判明した。With the introduction of such a technical idea, the NT
It has been found that SR and G-T SR often have different temperatures, and that G-T SR is affected by the generation processing conditions. It was also found that only secondary grains larger than a certain critical size can grow stably thereafter, as in the case where classical nucleation theory is applied to phenomena such as precipitation.
【0017】またさらに核生成の段階においては、二次
再結晶しうる核の生成頻度とその核の中で好ましい方位
である(110 )〔001 〕方位すなわちゴス方位を有する
粒の割合をそれぞれ分けて測定するべきことも新規に知
見した。このように本発明は、単に概念のみを導入した
のではなく、このような技術思想の導入によって従来制
御されていなかった製品特性因子に影響を及ぼす製造因
子を制御しようとするものである。Further, in the nucleation stage, the generation frequency of nuclei capable of secondary recrystallization and the proportion of grains having the preferred orientation (110) [001] orientation, that is, Goss orientation, are divided. We also newly discovered that it should be measured. As described above, the present invention is intended to control not only the concept but also the manufacturing factor that influences the previously uncontrolled product characteristic factor by the introduction of such a technical idea.
【0018】なお、種々の場合についての典型例を模式
的に図1に示す。(a)は時間t1 において二次再結晶
が開始した段階、(b)は時間t2 において粒成長速度
が非常に大きい場合、(c)は時間t2 においてゴス方
位粒頻度が小さい場合、(d)は時間t2 においてゴス
方位粒頻度が大きく、かつ成長速度が小さい場合であ
る。A typical example of various cases is schematically shown in FIG. (A) the stage that initiated secondary recrystallization at time t 1, (b) case is very large grain growth rate at time t 2, when (c) is Goss orientation grains infrequent at time t 2, (D) is the case where the Goss orientation grain frequency is high and the growth rate is low at time t 2 .
【0019】以下この発明を開発するに至った実験につ
いて説明する。 (実験1)C:0.06%、Si:3.1 %、Mn:0.07%、Se:
0.020 %、Al:0.025 %、N:0.0070%、Sb:0.02%、
Mo:0.02%を含有する鋼を通常の2回冷延法にて板厚0.
23mmまで処理し、脱炭焼鈍後種々の条件で仕上焼鈍し
た。The experiments leading to the development of the present invention will be described below. (Experiment 1) C: 0.06%, Si: 3.1%, Mn: 0.07%, Se:
0.020%, Al: 0.025%, N: 0.0070%, Sb: 0.02%,
Steel containing Mo: 0.02% was obtained by the normal double cold rolling method.
After processing to 23 mm, decarburization annealing and finish annealing were performed under various conditions.
【0020】予備実験にて二次再結晶核生成温度を正確
に測定しその温度をN−TSRとした。またその後粒成長
が進行する成長可能温度をG−TSRとした。表1に示す
ヒートサイクルは (1)1200℃まで種々の速度で昇熱した (2)N−TSRまで種々の速度で昇熱しN−TSRより4
℃高い温度に3hr保持後、さらにその温度に20hr保持し
た。In a preliminary experiment, the secondary recrystallization nucleation temperature was accurately measured and the temperature was designated as N-T SR . Further, the temperature at which the grain growth can proceed thereafter is G-T SR . The heat cycle shown in Table 1 is (1) Heated at various rates up to 1200 ° C. (2) Heated at various rates up to N-T SR and 4 from N-T SR
After being kept at a temperature higher by 3 ° C. for 3 hours, it was further kept at that temperature for 20 hours.
【0021】(3)N−TSRまで種々の条件で昇熱し、
N−TSRより4℃高い温度に3hr保持後さらに、G−T
SRより3℃高い温度に5hr保持後1200℃まで昇熱した。
さらにいずれの処理後も1200℃で15hrの純化処理を施し
た。その結果を図2に示す。いずれのタイプのヒートサ
イクルでも昇熱速度依存性が認められた。従来から広く
知られているヒートサイクル1または2では比較的良好
な特性が得られる昇熱速度の範囲が広かった。(3) Heating up to N-T SR under various conditions,
After being held at a temperature 4 ° C higher than N-T SR for 3 hours, G-T
The temperature was maintained at 3 ° C higher than SR for 5 hours, and then the temperature was raised to 1200 ° C.
Furthermore, after each treatment, a purification treatment was performed at 1200 ° C. for 15 hours. The result is shown in FIG. The heat-up rate dependence was observed in all types of heat cycles. In the heat cycle 1 or 2 which has been widely known from the past, the range of the heating rate at which relatively good characteristics are obtained is wide.
【0022】しかしヒートサイクル3では良好な特性が
得られたのが10℃/hrの時だけではあったが、同一素材
でも他よりも一段と優れた特性が得られることが判っ
た。よって No.3タイプのようなヒートサイクルの有用
性が確認された。そこでさらにこのタイプのヒートサイ
クルについて多くの実験を行った。 (実験2)実験1の No.3タイプのヒートサイクルの過
熱度すなわちN−TSRと核生成処理温度との差ΔT
(℃)を変えた場合についてゴス方位核の発生頻度
(N)と正確なゴス方位粒の分率(fG )を調べた。な
お、fG はND,RD,TDまわりのジャストゴスからのずれ
がそれぞれ10℃以内の粒のすべての二次粒に対する比と
定義される。However, in Heat Cycle 3, good characteristics were obtained only at 10 ° C./hr, but it was found that even the same material can obtain much better characteristics than others. Therefore, the usefulness of heat cycle like No. 3 type was confirmed. Therefore, more experiments were conducted on this type of heat cycle. (Experiment 2) Superheat of No. 3 type heat cycle of Experiment 1, that is, the difference ΔT between N-T SR and nucleation temperature.
We investigated the frequency (N) and the exact Goss orientation grains of the fraction of Goss orientation nuclear case of changing the (℃) (f G). Note that f G is defined as a ratio of grains having deviations from just goth around ND, RD, and TD within 10 ° C. to all secondary grains.
【0023】結果を図3に示す。ΔTを変えると核発生
頻度、正確なゴス核の分布ともに大きく変化することが
判明した。これらの条件で最適な範囲を選べば本発明の
目的を達成することができることが判った。なお、この
関係は保持時間、成分、前処理条件、雰囲気によっても
大きく変化した。FIG. 3 shows the results. It was found that when ΔT was changed, both the frequency of nuclear generation and the accurate distribution of Goss nuclei changed significantly. It was found that the object of the present invention can be achieved by selecting the optimum range under these conditions. This relationship also changed greatly depending on the holding time, the components, the pretreatment conditions, and the atmosphere.
【0024】また最適NとfG の関係はその後の粒成長
条件によっても変化した。N2 雰囲気でN−TSRより7
℃高く6hr保持した場合得られた好適範囲の例を図4に
示す。 (実験3)次に、C:0.065 wt%、Si:3.12wt%、Mn:
0.075 wt%、Se:0.023 wt%、sol,Al:0.024 wt%、
N:0.0080wt%、Sb:0.024 wt%、残部Feよりなるけい
素鋼スラブを1420℃20分間加熱後熱間圧延により2.2mm
厚の熱延板とした。この熱延板を1100℃で2分間加熱し
た後ミスト噴射により急冷し、ついで冷間圧延し0.22mm
厚に仕上げた。The relationship between the optimum N and f G also changed depending on the subsequent grain growth conditions. 7 from N-T SR in N 2 atmosphere
FIG. 4 shows an example of a suitable range obtained when the temperature is kept high for 6 hours. (Experiment 3) Next, C: 0.065 wt%, Si: 3.12 wt%, Mn:
0.075 wt%, Se: 0.023 wt%, sol, Al: 0.024 wt%,
A silicon steel slab consisting of N: 0.0080 wt%, Sb: 0.024 wt% and the balance Fe is heated at 1420 ° C for 20 minutes and then hot rolled to 2.2 mm.
A thick hot rolled sheet was used. This hot-rolled sheet was heated at 1100 ℃ for 2 minutes, then rapidly cooled by mist injection, then cold-rolled to 0.22mm.
Finished thick.
【0025】冷間圧延後 830℃で3分間の再結晶を兼ね
た脱炭焼鈍を行い、MgO を塗布した鋼板につき、 950℃
から10℃きざみで1050℃までの温度範囲にわたり1時間
から10時間の範囲で保定焼鈍を行った後、 950℃で20時
間の等温焼鈍を行い、これに続き1200℃水素中で5hr純
化焼鈍を行った。ただし第1段 950℃の場合、保定は施
さなかった。この時の磁気特性B8 、W17/50 値につい
て調べた結果を第1段の保定温度と保定時間との関係で
図5に示す。なおこの素材のN−TSRは 977℃、G−T
SRは 950℃であった。After cold rolling, decarburization annealing that also serves as recrystallization was performed at 830 ° C. for 3 minutes, and the steel sheet coated with MgO had a temperature of 950 ° C.
To 10 ° C in increments of 1 to 10 hours, followed by isothermal annealing at 950 ° C for 20 hours, followed by purification annealing in hydrogen at 1200 ° C for 5 hours. went. However, in the case of 950 ° C in the first stage, no restraint was applied. The results of examination of the magnetic properties B 8 and W 17/50 values at this time are shown in FIG. 5 in relation to the holding temperature and holding time of the first stage. The N-T SR of this material is 977 ℃, G-T
SR was 950 ° C.
【0026】図5からわかるように最終仕上焼鈍初期に
N−TSRよりも3〜50℃高温で1〜5hr保定焼鈍を施し
たのち、等温焼鈍を行った場合に磁束密度が高く、特に
鉄損の低い一方向性けい素鋼板が得られた。なお、他の
成分組成のけい素鋼についても同様の調査を行ったとこ
ろ、図5とほぼ同じ結果が得られた。[0026] In 3 to 50 ° C. higher temperature than N-T SR final annealing initially as can be seen from Figure 5 after subjected to 1~5hr retention annealing, high magnetic flux density in the case of performing the isothermal annealing, in particular iron A low-loss unidirectional silicon steel sheet was obtained. Similar investigations were carried out for silicon steels having other component compositions, and almost the same results as in FIG. 5 were obtained.
【0027】(実験4)重量%でC:0.070 %、Si:3.
32%、Mn:0.05%、Al:0.025 %、N:0.0080%、Se:
0.020 %を含有する一方向性けい素鋼スラブを1420℃30
分間再加熱後、板厚2.0mm まで熱間圧延した。1100℃×
30秒のノルマライジングの後酸洗を経て、1100℃×30秒
の中間焼鈍を挟む2回冷延法にて、0.23mmの最終板厚と
した。870 ℃×1分間の脱炭を兼ねた一次再結晶焼鈍
後、MgO を主成分とする焼鈍分離剤を塗布し、N−TSR
を測定したところ 950℃であった。同一素材について、
図6(a)に示すパターンで種々の昇温速度でv1 ℃/
hrでT1 =977 ℃まで加熱後種々の冷却速度でv2 ℃/
hrでT2 =940 ℃まで冷却した後、1200℃×5hrの純化
焼鈍を施した場合の磁気特性を測定した。(Experiment 4) C: 0.070% by weight, Si: 3.
32%, Mn: 0.05%, Al: 0.025%, N: 0.0080%, Se:
Unidirectional silicon steel slab containing 0.020% at 1420 ℃ 30
After reheating for a minute, it was hot rolled to a plate thickness of 2.0 mm. 1100 ° C ×
After normalizing for 30 seconds, after pickling, a final plate thickness of 0.23 mm was obtained by a double cold rolling method with intermediate annealing of 1100 ° C. for 30 seconds. After primary recrystallization annealing that also serves as decarburization at 870 ° C for 1 minute, an annealing separator containing MgO as the main component is applied, and N-T SR is applied.
Was measured to be 950 ° C. For the same material,
In the pattern shown in FIG. 6A, v 1 ° C /
After heating up to T 1 = 977 ° C in hr, at various cooling rates v 2 ° C /
After cooling to T 2 = 940 ° C. in hr, the magnetic properties were measured when purification annealing was performed at 1200 ° C. × 5 hrs.
【0028】結果を図6(b)に示す。図6(b)より
図6(a)のパターンで冷却速度を規定することによ
り、より広い範囲の昇熱速度v1 に対して安定した磁性
が得られることが明らかとなった。好適v1 、v2 はそ
れぞれ5〜50℃/hr、3〜8℃/hrである。 (実験5)実験3で使用した仕上焼鈍前 MgO塗布板を昇
温速度10℃/hrで図7に示すT1℃まで加熱し、その後
5℃/hrでT2 ℃まで冷却した後1200℃×5hrの純化焼
鈍を施した場合の磁気特性を測定した。この材料のN−
TSRは 950℃、G−TSRは935 ℃であった。The results are shown in FIG. 6 (b). It is clear from FIG. 6B that by defining the cooling rate in the pattern of FIG. 6A, stable magnetism can be obtained for a wider range of heating rate v 1 . Preferred v 1 and v 2 are 5 to 50 ° C./hr and 3 to 8 ° C./hr, respectively. (Experiment 5) The MgO coated sheet before finish annealing used in Experiment 3 was heated to T 1 ° C shown in Fig. 7 at a temperature rising rate of 10 ° C / hr, then cooled to T 2 ° C at 5 ° C / hr, and then 1200 ° C. Magnetic properties were measured when purification annealing was performed for 5 hours. N- of this material
The T SR was 950 ° C and the G-T SR was 935 ° C.
【0029】結果を図7に示す。図7から明らかなよう
に、T1 はN−TSRより3〜50℃高温、T2 はN−TSR
よりも低くかつG−TSR以上とする必要がある。以上の
説明から明らかなように、この発明は先行諸公知技術と
発想の基本を全く異にするものであって、その効果にお
いても従来法に比べ、特に鉄損において優れている。The results are shown in FIG. As is clear from FIG. 7, T 1 is 3 to 50 ° C. higher than N-T SR , and T 2 is N-T SR.
Must be lower than G-T SR and higher. As is clear from the above description, the present invention is completely different in the basic idea from the prior arts known in the art, and is superior in the effect to the conventional method especially in the iron loss.
【0030】次に、この発明におけるけい素鋼素材の成
分の好適範囲について説明する。 C:0.02〜0.12wt% Cは0.02wt%未満では二次再結晶が不良となり、一方0.
12wt%を越えると、脱炭性および磁気特性を低下させる
ため、0.02〜0.12wt%の範囲とした。 Si:2.5 〜4.0 wt% Siが2.5 wt%未満では良好な鉄損が得られず、一方 4.0
wt%を越えると冷間圧延性が著しく劣化するため 2.5〜
4.0 wt%の範囲とした。Next, the preferred range of the components of the silicon steel material in the present invention will be described. C: 0.02 to 0.12 wt% When C is less than 0.02 wt%, secondary recrystallization becomes poor, while
If it exceeds 12 wt%, the decarburizing property and the magnetic properties will be deteriorated, so the range was made 0.02 to 0.12 wt%. Si: 2.5-4.0 wt% Good iron loss cannot be obtained when Si is less than 2.5 wt%, while 4.0
If it exceeds wt%, the cold rolling property deteriorates significantly, so 2.5-
The range was 4.0 wt%.
【0031】MnとSおよび/又はSeはMnS および/又は
MnSeを形成させるための成分である。まずMnはインヒビ
ターとしての作用を発揮させるために少なくとも0.03wt
%は必要で、一方0.13wt%を越えるとMnS 、MnSeの固溶
温度が高くなり、通常のスラブ加熱温度では固溶せず磁
性は劣化するので0.03〜0.15wt%の範囲とした。Mn and S and / or Se are MnS and / or
It is a component for forming MnSe. First, Mn must be at least 0.03wt% to exert its effect as an inhibitor.
%, On the other hand, when it exceeds 0.13 wt%, the solid solution temperature of MnS and MnSe becomes high, and it does not form a solid solution at the usual slab heating temperature and the magnetism deteriorates, so the range was made 0.03 to 0.15 wt%.
【0032】Sおよび/又はSeは0.05wt%を越えると純
化焼鈍での純化が困難となり、一方0.01wt%未満ではイ
ンヒビターの量が不足するため、合計で0.01〜0.05wt%
とする。但し、Sを0.01wt%未満に規制することにより
磁束密度はさらに向上する。AlおよびNはAlN を形成す
るため必要であり、Alの含有量は0.01〜0.05wt%の範囲
とする。すなわちAlが少なすぎると磁束密度は低くな
り、多過ぎると二次再結晶が不安定になる。さらにNは
0.004 wt%未満ではAlN の量が不足し、 0.012wt%を越
えると製品にブリスターが発生するので、0.004 〜0.01
2 wt%の範囲とする。If S and / or Se exceeds 0.05 wt%, purification by purification annealing becomes difficult, while if it is less than 0.01 wt%, the amount of the inhibitor is insufficient, so 0.01 to 0.05 wt% in total.
And However, the magnetic flux density is further improved by limiting S to less than 0.01 wt%. Al and N are necessary to form AlN, and the Al content is set to the range of 0.01 to 0.05 wt%. That is, if the amount of Al is too small, the magnetic flux density becomes low, and if it is too large, the secondary recrystallization becomes unstable. Furthermore, N is
If it is less than 0.004 wt%, the amount of AlN will be insufficient, and if it exceeds 0.012 wt%, blisters will occur in the product, so 0.004 to 0.01
The range is 2 wt%.
【0033】Sbは0.01wt%未満では表面純化の効果が無
く、また0.20wt%を越すと脱炭性および表面被膜の形成
に問題を生じるので0.01〜0.20wt%とする。また磁束密
度のさらなる向上をはかるために、Cuを添加することが
できる。Cuの含有は、0.02wt%未満では効果が無くまた
0.20wt%を越すと酸洗性およびぜい性が悪化するので、
0.02〜0.20wt%とする。さらに鉄損の向上のためにSnを
添加することが有利で、Snの含有は0.02wt%未満では効
果が無く、また0.20wt%を越えるとぜい性が劣化するの
で、0.02〜0.20wt%に制限する。If Sb is less than 0.01% by weight, the effect of surface purification is not obtained, and if it exceeds 0.20% by weight, problems occur in decarburization and formation of a surface coating, so Sb is set to 0.01 to 0.20% by weight. Cu can be added to further improve the magnetic flux density. If the Cu content is less than 0.02 wt%, it has no effect.
If it exceeds 0.20 wt%, pickling properties and brittleness will deteriorate, so
0.02 to 0.20 wt% Further, it is advantageous to add Sn for improving iron loss, and if the Sn content is less than 0.02 wt%, there is no effect, and if it exceeds 0.20 wt%, the brittleness deteriorates, so 0.02 to 0.20 wt% Restricted to.
【0034】また表面性状を改善するためにMoを含有す
ることができる。0.005 wt%未満では効果が無く、0.05
wt%を越えると脱炭性が悪化するので0.005 〜0.05wt%
とする。ついで前述の燐成分からなるけい素鋼スラブを
加熱した後、熱間圧延する。熱延板は例えば 900〜1200
℃で焼鈍後急冷し、引き続き1回あるいは中間焼鈍をは
さむ2回の冷間圧延を最終圧下率を80%以上で施す。Further, Mo may be contained in order to improve the surface properties. Less than 0.005 wt% has no effect, 0.05
If it exceeds wt%, the decarburizing property deteriorates, so 0.005 to 0.05 wt%
And Next, the silicon steel slab containing the above-mentioned phosphorus component is heated and then hot rolled. Hot rolled sheet is 900-1200
After annealing at 0 ° C, quenching is performed, and then cold rolling is performed once or twice with intermediate annealing at a final rolling reduction of 80% or more.
【0035】ここで最終冷延率を80%以上に制限する理
由はAlN の強い抑試力を発揮するための一次再結晶組織
が圧下率80%未満では得られないためである。冷間圧延
の後は脱炭焼鈍し、焼鈍分離剤を塗布し仕上焼鈍を行
う。仕上焼鈍は、N−TSRよりも3〜50℃高温で1〜5
hr保持した後、G−TSRにて二次再結晶完了まで等温焼
鈍を施したのち、純化焼鈍の温度域例えば1200℃まで加
熱する。The reason for limiting the final cold rolling rate to 80% or more is that the primary recrystallized structure for exerting a strong inhibitory force of AlN cannot be obtained at a rolling reduction of less than 80%. After cold rolling, decarburization annealing is performed, an annealing separator is applied, and finish annealing is performed. Finish annealing is 1 to 5 at 3 to 50 ° C higher temperature than N-T SR.
After being held for hr, isothermal annealing is performed by G-T SR until completion of secondary recrystallization, and then heating is performed to a temperature range of purification annealing, for example, 1200 ° C.
【0036】仕上焼鈍初期での二次再結晶核生成処理の
保持温度はN−TSR未満では、磁気特性の向上はなく、
N−TSRよりも50℃超の高温では、方位の悪い二次粒核
が発生した。また保持時間1hr未満では、磁気特性の向
上はなく、5hrを超えている場合、方位の悪い二次粒核
が多数発生した。このように低鉄損化をはかることがで
きたのは低鉄損化に有効な良好な方位の二次粒を多数発
生させることを、G−TSR、N−TSRという新たな概念
のもとに制御することができたためと考えられる。When the holding temperature of the secondary recrystallization nucleation treatment in the initial stage of finish annealing is less than N-T SR , the magnetic properties are not improved.
At temperatures higher than 50 ° C higher than N- TSR, secondary grain nuclei with poor orientation were generated. When the holding time was less than 1 hr, the magnetic properties were not improved, and when the holding time was more than 5 hr, many secondary grain nuclei with bad orientation were generated. In this way, it was possible to achieve low iron loss by generating a large number of secondary grains with good orientation, which are effective in reducing iron loss, by using new concepts called G-T SR and N-T SR. It is thought that it was possible to control the original.
【0037】仕上焼鈍においては、N−TSRより3〜50
℃高温まで5〜50℃/hrで昇温し、3〜8℃/hrの冷却
速度でN−TSR以下に冷却しなければ、この範囲外では
良好な磁気特性が得られない。以下、この発明の実施例
について説明する。In the finish annealing, it is 3 to 50 from N-T SR.
Good magnetic characteristics cannot be obtained outside this range unless the temperature is raised to a high temperature of 5 to 50 ° C./hr and the temperature is cooled to N-T SR or less at a cooling rate of 3 to 8 ° C./hr. Hereinafter, embodiments of the present invention will be described.
【0038】[0038]
実施例1 C:0.062 wt%、Si:3.10wt%、Mn:0.070 wt%、Se:
0.024 wt%、 sol,Al:0.025 wt%、N:0.0086 wt
%、Sb:0.029 wt%残部Feよりなるけい素鋼スラブを14
20℃20分間加熱後、熱間圧延により2.3mm 厚の熱延板と
した。この熱延板を1050℃で2分間加熱した後ミスト噴
射により急冷し、ついで冷間圧延し0.23mm厚に仕上げ
た。冷間圧延後800 ℃で4分間の再結晶を兼ねた脱炭焼
鈍を行い、その後MgO を塗布し仕上焼鈍を行った。仕上
焼鈍の条件は下記の通りである。かくして得られた製品
板の磁気特性を表1に示す。この素材では、N−TSR=
960 ℃、G−TSR=950 ℃であった。 記 a、T=965 ℃で30hr保定焼鈍後、1200℃水素中で純化
焼鈍。Example 1 C: 0.062 wt%, Si: 3.10 wt%, Mn: 0.070 wt%, Se:
0.024 wt%, sol, Al: 0.025 wt%, N: 0.0086 wt%
%, Sb: 0.029 wt% 14 silicon steel slab consisting of balance Fe
After heating at 20 ° C for 20 minutes, hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.3 mm. The hot-rolled sheet was heated at 1050 ° C. for 2 minutes, quenched by mist jetting, and then cold-rolled to a thickness of 0.23 mm. After cold rolling, decarburization annealing was performed at 800 ° C for 4 minutes, which also served as recrystallization, and then MgO was applied and finish annealing was performed. The conditions of finish annealing are as follows. The magnetic properties of the product plate thus obtained are shown in Table 1. In this material, N-T SR =
It was 960 ° C and G-T SR = 950 ° C. Note a, T = 965 ℃ for 30 hours after holding annealing, then 1200 ℃ hydrogen purification annealing.
【0039】b、T=1000℃で1hr保定したのち、950
℃まで降温し30hr保定焼鈍後1200℃水素中で純化焼鈍。 c、T=980 ℃で2hr保定したのち、955 ℃まで降温し
30hr保定焼鈍後1200℃水素中で純化焼鈍。 なお、a、b、cどの条件についても、最初の保定温度
までの昇熱速度は15℃/hrとした。B, T = 1000 ° C., hold for 1 hr, then 950
The temperature was lowered to ℃, and the annealing was carried out for 30 hours, followed by purification annealing in hydrogen at 1200 ℃. c, T = 980 ℃, hold for 2 hours, then cool to 955 ℃
After 30 hour holding annealing, purification annealing in 1200 ℃ hydrogen. The heating rate up to the first holding temperature was 15 ° C./hr under any of the conditions a, b, and c.
【0040】[0040]
【表1】 [Table 1]
【0041】実施例2 C:0.065 wt%、Si:3.05wt%、Mn:0.075 wt%、Se:
0.020 wt%、 sol,Al:0.024 wt%、N:0.0080wt%、S
n:0.09wt%残部Feよりなるけい素鋼スラブを1420℃20
分間加熱後、熱間圧延により2.2mm 厚の熱延板とした。
この熱延板を1075℃で2分間加熱後ミスト噴射により急
冷し、ついで冷間圧延し0.20mm厚に仕上げた。冷間圧延
後845 ℃で4分間の再結晶を兼ねた脱炭焼鈍を行い、そ
の後MgOを塗布し仕上焼鈍を行った。仕上焼鈍の条件は
下記の通りである。かくして得られた製品板の磁気特性
を表2に示す。ただし、この素材では、N−TSR=940
℃、G−TSR=935 ℃であった。 記 a、T=945 ℃で30hr保定焼鈍後、1200℃水素中で純化
焼鈍。Example 2 C: 0.065 wt%, Si: 3.05 wt%, Mn: 0.075 wt%, Se:
0.020 wt%, sol, Al: 0.024 wt%, N: 0.0080 wt%, S
n: 0.09wt% Silicon steel slab consisting of balance Fe at 1420 ℃ 20
After heating for a minute, hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.2 mm.
The hot-rolled sheet was heated at 1075 ° C. for 2 minutes, then rapidly cooled by mist injection, and then cold-rolled to a 0.20 mm thickness. After cold rolling, decarburization annealing was performed at 845 ° C for 4 minutes, which also served as recrystallization, and then MgO was applied and finish annealing was performed. The conditions of finish annealing are as follows. The magnetic properties of the product plate thus obtained are shown in Table 2. However, with this material, N-T SR = 940
C, G-T SR = 935 ° C. Note a, T = 945 ° C, 30 hour holding annealing, then 1200 ° C hydrogen purification annealing.
【0042】b、T=960 ℃で2hr保定したのち、938
℃まで降温し30hr保定焼鈍後1200℃水素中で純化焼鈍。 c、T=975 ℃で1hr保定したのち、930 ℃まで降温し
30hr保定焼鈍後1200℃水素中で純化焼鈍。 なお、a、b、cどの条件についても、最初の保定温度
までの昇熱速度は20℃/hrとした。B, T = 960 ° C for 2 hours, then 938
The temperature was lowered to ℃, and the annealing was carried out for 30 hours, followed by purification annealing in hydrogen at 1200 ℃. c, T = 975 ℃, hold for 1 hour, then cool to 930 ℃
After 30 hour holding annealing, purification annealing in 1200 ℃ hydrogen. The heating rate up to the first holding temperature was 20 ° C./hr under any of a, b, and c conditions.
【0043】[0043]
【表2】 [Table 2]
【0044】このように、実施例では、特に鉄損におい
て著しい改善が見られた。 実施例3 C:0.070 wt%、Si:3.15wt%、Mn:0.065 wt%、Se:
0.022 wt%、 sol,Al:0.023 wt%、N:0.0082wt%、S
b:0.029 wt%、Mo:0.01wt%残部Feよりなるけい素鋼
スラブを1410℃20分間加熱後、熱間圧延により2.4mm 厚
の熱延板とした。この熱延板を1125℃で2分間加熱後ミ
スト噴射により急冷し、ついで冷間圧延し0.30mm厚に仕
上げた。冷間圧延後890 ℃で4分間の再結晶を兼ねた脱
炭焼鈍を行い、その後MgO を塗布し仕上焼鈍を行った。As described above, in the examples, the iron loss was remarkably improved. Example 3 C: 0.070 wt%, Si: 3.15 wt%, Mn: 0.065 wt%, Se:
0.022 wt%, sol, Al: 0.023 wt%, N: 0.0082 wt%, S
A silicon steel slab consisting of b: 0.029 wt% and Mo: 0.01 wt% balance Fe was heated at 1410 ° C for 20 minutes and then hot-rolled to form a 2.4 mm thick hot-rolled sheet. The hot-rolled sheet was heated at 1125 ° C. for 2 minutes, then rapidly cooled by mist injection, and then cold-rolled to a thickness of 0.30 mm. After cold rolling, decarburization annealing which doubles as recrystallization was performed at 890 ° C for 4 minutes, and then MgO was applied and finish annealing was performed.
【0045】仕上焼鈍の条件は下記の通りである。かく
して得られた製品板の磁気特性を表3に示す。ただし、
この素材では、N−TSR=975 ℃、G−TSR=960 ℃で
あった。 記 a、T=980 ℃で30hr保定焼鈍後、1200℃水素中で純化
焼鈍。The conditions of finish annealing are as follows. Table 3 shows the magnetic properties of the product plate thus obtained. However,
With this material, N-T SR = 975 ° C and G-T SR = 960 ° C. Note a, T = 980 ° C, 30 hour holding annealing, then 1200 ° C hydrogen purification annealing.
【0046】b、T=990 ℃で2hr保定焼鈍後、965 ℃
まで降温し30hr保定焼鈍後1200℃水素中で純化焼鈍。 c、T=1000℃で1hr保定したのち、970 ℃まで降温し
25hr保定焼鈍後1200℃水素中で純化焼鈍。 なお、a、b、cどの条件についても、最初の保定温度
までの昇熱速度は12℃/hrとした。B, T = 990 ° C, after 2 hour holding annealing, 965 ° C
The temperature is lowered to 30 ° C., and the annealing is performed for 30 hours. c, T = 1000 ℃, hold for 1 hour, then cool to 970 ℃
After a 25-hr holding annealing, a refining annealing was carried out in hydrogen at 1200 ° C. The heating rate up to the first holding temperature was 12 ° C./hr under any of the conditions a, b, and c.
【0047】[0047]
【表3】 [Table 3]
【0048】このように、実施例では、特に鉄損におい
て著しい改善が得られた。 実施例4 C:0.055 wt%、Si:3.20wt%、Mn:0.082 wt%、Se:
0.020 wt%、 sol,Al:0.021 wt%、N:0.0090wt%、S
b:0.024 wt%、Sn:0.01wt%、Cu:0.03wt%残部Feよ
りなるけい素鋼スラブを1420℃15分間加熱後、2.6mm 厚
に熱延したのち、1100℃1分間の加熱後酸洗し、1.8mm
厚に中間冷延したのち、1075℃、1分間の中間焼鈍後、
0.34mm厚に仕上げ冷延した。その後840 ℃で3分間の再
結晶を兼ねた脱炭焼鈍を行い、その後MgO を塗布し仕上
焼鈍を行った。As described above, in the examples, a remarkable improvement in iron loss was obtained. Example 4 C: 0.055 wt%, Si: 3.20 wt%, Mn: 0.082 wt%, Se:
0.020 wt%, sol, Al: 0.021 wt%, N: 0.0090 wt%, S
b: 0.024 wt%, Sn: 0.01 wt%, Cu: 0.03 wt% After heating a silicon steel slab consisting of the balance Fe for 15 minutes at 1420 ° C, hot rolling it to a thickness of 2.6 mm, and then heating for 1 minute at 1100 ° C Washed, 1.8 mm
After intermediate cold rolling to a thick thickness, 1075 ° C, after 1 minute of intermediate annealing,
Finished cold rolled to a thickness of 0.34 mm. After that, decarburization annealing was performed at 840 ° C. for 3 minutes, which also served as recrystallization, and then MgO was applied and finish annealing was performed.
【0049】仕上焼鈍の条件は下記の通りである。かく
して得られた製品板の磁気特性を表4に示す。ただし、
この素材ではN−TSR=952 ℃、G−TSR=938 ℃であ
った。 記 a、T=960 ℃で25hr保定焼鈍後、1200℃水素中で純化
焼鈍。The conditions of finish annealing are as follows. Table 4 shows the magnetic properties of the product plate thus obtained. However,
This material had N-T SR = 952 ° C and G-T SR = 938 ° C. Note a, T = 960 ℃ for 25 hours after holding annealing, then 1200 ℃ hydrogen purification annealing.
【0050】b、T=955 ℃で3hr保定したのち、940
℃まで降温し25hr保定焼鈍後1200℃水素中で純化焼鈍。 c、T=980 ℃で1hr保定したのち、945 ℃まで降温し
25hr保定焼鈍後1200℃水素中で純化焼鈍。 なお、a、b、cのどの条件についても、最初の保定温
度までの昇熱速度は5℃/hrとした。B, T = 955 ° C., hold for 3 hours, then 940
The temperature is lowered to ℃, and the annealing is carried out for 25 hours, and then purified annealing is performed in hydrogen at 1200 ℃. c, T = 980 ℃, hold for 1 hour, then cool to 945 ℃
After a 25-hr holding annealing, a refining annealing was carried out in hydrogen at 1200 ° C. The heating rate up to the first holding temperature was 5 ° C./hr under any of the conditions a, b, and c.
【0051】[0051]
【表4】 [Table 4]
【0052】実施例5 重量%でC:0.075 %、Si:3.28%、Mn:0.060 %、A
l:0.028 %、N:0.0082%、Se:0.022 %、Sb:0.015
%、Mo:0.0055%を含有するスラブを実験3と同じ条
件で処理し、N−TSRを測定したところ945 ℃であっ
た。またG−TSRは938 ℃であった。この素材を図6
(a)に示すパターンでν1 、T1 、ν2 、T 2 を種々
変化させて磁性を測定した。結果を表5に示す。Example 5 C: 0.075%, Si: 3.28%, Mn: 0.060%, A by weight%
l: 0.028%, N: 0.0082%, Se: 0.022%, Sb: 0.015
%, Mo: 0.0055% containing slab with the same conditions as in Experiment 3.
Process and NTSRWas measured at 945 ° C.
Was. Also GTSRWas 938 ° C. This material is shown in Figure 6.
In the pattern shown in (a), ν1, T1, Ν2, T 2Various
The magnetism was measured by changing. Table 5 shows the results.
【0053】[0053]
【表5】 [Table 5]
【0054】実施例6 重量%でC:0.07%、Si:3.3 %、Mn:0.05%、Al:0.
025 %、N:0.008 %、S:0.020 %を含有するスラブ
を実験3と同じ条件で処理し、N−TSR、G−TSRを測
定したところそれぞれ953 ℃、948 ℃であった。この素
材を図6(a)に示すパターンでv1 、T1 、v2 、T
2 を種々変化させて磁性を測定した。結果を表6に示
す。Example 6 C: 0.07% by weight, Si: 3.3%, Mn: 0.05%, Al: 0.
A slab containing 025%, N: 0.008%, S: 0.020% was treated under the same conditions as in Experiment 3, and N-T SR and G-T SR were measured and found to be 953 ° C and 948 ° C, respectively. This material is v 1 , T 1 , v 2 , T in the pattern shown in FIG.
The magnetism was measured by changing 2 variously. Table 6 shows the results.
【0055】[0055]
【表6】 [Table 6]
【0056】以上のように本発明によると良好な磁気特
性、特に高い磁束密度特性が得られる。As described above, according to the present invention, good magnetic characteristics, especially high magnetic flux density characteristics can be obtained.
【0057】[0057]
【発明の効果】この発明によれば、高磁束密度かつ低鉄
損の方向性けい素鋼板を工業的に安定して製造できる。According to the present invention, a grain-oriented silicon steel sheet having a high magnetic flux density and a low iron loss can be manufactured industrially and stably.
【図1】二次再結晶核の発生状況を示す模式図。FIG. 1 is a schematic diagram showing the state of generation of secondary recrystallization nuclei.
【図2】ヒートサイクルと磁気特性との関係を示す図。FIG. 2 is a diagram showing a relationship between heat cycle and magnetic characteristics.
【図3】二次再結晶核生成温度よりΔT(℃)高い温度
で保定したときの核発生頻度Nならびに正確なゴス核の
分率fG との関係を示すグラフ。FIG. 3 is a graph showing a relationship between a nucleus generation frequency N and an accurate fraction of Goss nuclei f G when the temperature is held at a temperature ΔT (° C.) higher than the secondary recrystallization nucleation temperature.
【図4】正確なゴス方位分率fG と核発生頻度Nが磁気
特性に及ぼす影響を示すグラフ。FIG. 4 is a graph showing the influence of the accurate Goss azimuth fraction f G and the nucleus generation frequency N on the magnetic characteristics.
【図5】第1段保定温度と時間が磁気特性に及ぼす影響
を示すグラフ。FIG. 5 is a graph showing the influence of the first-stage holding temperature and time on the magnetic characteristics.
【図6】ヒートサイクルと磁気特性との関係を示すグラ
フ。FIG. 6 is a graph showing the relationship between heat cycle and magnetic properties.
【図7】核生成加熱温度と冷却温度が磁気特性に及ぼす
影響を示したグラフ。FIG. 7 is a graph showing the effect of nucleation heating temperature and cooling temperature on magnetic properties.
Claims (4)
%、Mn:0.03〜0.15wt%、sol,Al:0.01〜0.05wt%、
N:0.004 〜0.01wt%を含み、さらにSおよび/又はSe
を合計で0.01〜0.05wt%を含有し、残部がFeおよび不可
避的不純物からなるけい素鋼スラブを熱間圧延したのち
熱延板焼鈍および急冷処理を施してから、1回あるいは
中間焼鈍をはさむ2回の冷間圧延を最終圧延率80%以上
で施し、その後脱炭焼鈍ついで仕上焼鈍を施す一連の工
程からなる一方向性けい素鋼板の製造方法において、該
仕上焼鈍が、二次再結晶核生成温度(N−TSR)より高
温に加熱し、適正方位の二次再結晶核を多数生成させ、
それにつづき二次再結晶核生成温度以下で、二次再結晶
粒成長可能温度(G−TSR)以上の温度範囲に冷却処理
することにより、前記適正方位の二次再結晶核の成長を
促したのち純化焼鈍を行うことを特徴とする磁気特性の
優れた一方向性けい素鋼板の製造方法。1. C: 0.02-0.12 wt%, Si: 2.5-4.0 wt
%, Mn: 0.03 to 0.15 wt%, sol, Al: 0.01 to 0.05 wt%,
N: 0.004 to 0.01 wt%, S and / or Se
Of 0.01 to 0.05 wt% in total, with the balance being Fe and unavoidable impurities, and hot-rolling a silicon steel slab, followed by hot-rolled sheet annealing and quenching, and then one or intermediate annealing. In a method for manufacturing a unidirectional silicon steel sheet, which comprises a series of steps in which a cold rolling is performed twice at a final rolling rate of 80% or more, followed by decarburization annealing and then finish annealing, the finish annealing is a secondary recrystallization. By heating to a temperature higher than the nucleation temperature (N-T SR ), a large number of secondary recrystallized nuclei of proper orientation are generated,
Then, by performing cooling treatment at a temperature below the secondary recrystallization nucleation temperature to a temperature above the secondary recrystallizable grain growth temperature (G- TSR ), the growth of the secondary recrystallization nuclei in the proper orientation is promoted. A method for producing a unidirectional silicon steel sheet having excellent magnetic properties, which is characterized by performing a refining annealing after that.
%、Mn:0.03〜0.15wt%、sol,dl:0.01〜0.05wt%、
N:0.004 〜0.01wt%を含み、さらにSおよび/又はSe
を合計で0.01〜0.05wt%を含有し、残部がFeおよび不可
避的不純物からなるけい素鋼スラブを熱間圧延し、熱延
板焼鈍および急冷処理を施してから、1回あるいは中間
焼鈍をはさむ2回の冷間圧延を最終圧延率80%以上で施
し、その後脱炭焼鈍ついで仕上焼鈍を施す一連の工程か
らなる一方向性けい素鋼板の製造方法において、2次再
結晶開始までの昇温速度を5〜50℃/hrとし、二次再結
晶核生成温度(N−TSR)よりも3〜50℃高温での1〜
5hrの核生成処理とそれに続く(N−TSR)よりも低温
の二次粒成長可能温度(G−TSR)以上における等温焼
鈍による粒成長処理、そして通常の純化処理とからなる
仕上焼鈍を行うことを特徴する磁気特性の優れた一方向
性けい素鋼板の製造方法。2. C: 0.02-0.12 wt%, Si: 2.5-4.0 wt
%, Mn: 0.03 to 0.15 wt%, sol, dl: 0.01 to 0.05 wt%,
N: 0.004 to 0.01 wt%, S and / or Se
Containing 0.01 to 0.05 wt% in total with the balance being Fe and unavoidable impurities, hot-rolled, subjected to hot-rolled sheet annealing and quenching, and then once or in between. In the method of manufacturing a unidirectional silicon steel sheet, which comprises a series of steps in which cold rolling is performed twice at a final rolling rate of 80% or more, followed by decarburization annealing and then finish annealing, the temperature rise until the start of secondary recrystallization At a rate of 5 to 50 ° C / hr and at a temperature 3 to 50 ° C higher than the secondary recrystallization nucleation temperature (N-T SR ).
A finish annealing consisting of a nucleation treatment for 5 hours, followed by a grain growth treatment by isothermal annealing at a temperature (G-T SR ) lower than (N-T SR ) at which the secondary grain growth is possible, and a normal purification treatment are performed. A method for manufacturing a unidirectional silicon steel sheet having excellent magnetic properties, which is characterized by carrying out.
%、Mn:0.03〜0.15wt%、Al:0.01〜0.05wt%、N:0.
004 〜0.01wt%を含み、さらにSおよび/又はSeを合計
で0.01〜0.05wt%を含有し、残部がFeおよび不可避的不
純物からなるけい素鋼スラブを熱間圧延し、熱延板焼鈍
および急冷処理を施してから、1回あるいは中間焼鈍を
はさむ2回の冷間圧延を最終圧延率80%以上で施し、そ
の後脱炭焼鈍ついで仕上焼鈍を施す一連の工程からなる
一方向性けい素鋼板の製造方法において、二次再結晶核
生成温度(N−TSR)よりも3〜50℃高温まで5〜50℃
/hrで昇温する核生成処理とそれに続く3〜8℃/hrの
冷却速度でN−TSR以下で二次再結晶粒成長可能温度
(G−TSR)以上に冷却する粒成長処理、そして通常の
純化処理とからなる仕上焼鈍を行うことを特徴とする特
性の優れた一方向性けい素鋼板の製造方法。3. C: 0.02-0.12 wt%, Si: 2.5-4.0 wt
%, Mn: 0.03 to 0.15 wt%, Al: 0.01 to 0.05 wt%, N: 0.
004-0.01 wt%, and 0.01-0.05 wt% of S and / or Se in total, the balance of which is Fe and inevitable impurities. A unidirectional silicon steel sheet consisting of a series of steps in which a quenching treatment is performed, and then one or two cold rollings with intermediate annealing are performed at a final rolling rate of 80% or more, followed by decarburizing annealing and then finish annealing. 5 to 50 ° C., which is 3 to 50 ° C. higher than the secondary recrystallization nucleation temperature (N-T SR ).
Nucleation treatment to raise the temperature at 1 / hr and subsequent grain growth treatment to cool the secondary recrystallized grain growth temperature (G-T SR ) or more at N-T SR or less at a cooling rate of 3 to 8 ° C / hr, Then, a method for producing a unidirectional silicon steel sheet having excellent characteristics is characterized in that a finish annealing consisting of a normal purification treatment is performed.
Si:2.5 〜4.0 wt%、Mn:0.03〜0.15wt%、sol,Al:0.
01〜0.05wt%、N:0.004 〜0.01wt%を含み、さらにS
および/又はSeを合計で0.01〜0.05wt%含有し、かつS
b:0.01〜0.20wt%、Mo:0.005 〜0.05wt%、Sn:0.02
〜0.20wt%およびCu:0.02〜0.20wt%の少なくとも一種
を含有し、残部がFeおよび不可避的不純物からなること
を特徴する請求項1、2又は3記載の磁気特性の優れた
一方向性けい素鋼板の製造方法。4. The silicon steel material is C: 0.02 to 0.12 wt%,
Si: 2.5-4.0 wt%, Mn: 0.03-0.15 wt%, sol, Al: 0.
01-0.05wt%, N: 0.004-0.01wt%, and S
And / or Se in a total amount of 0.01 to 0.05 wt%, and S
b: 0.01 to 0.20 wt%, Mo: 0.005 to 0.05 wt%, Sn: 0.02
To 0.20 wt% and Cu: 0.02 to 0.20 wt%, the balance being Fe and inevitable impurities, and the unidirectional silica excellent in magnetic properties according to claim 1, 2 or 3. Manufacturing method of plain steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24310695A JPH0987747A (en) | 1995-09-21 | 1995-09-21 | Production of grain oriented silicon steel sheet excellent in magnetic property |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24310695A JPH0987747A (en) | 1995-09-21 | 1995-09-21 | Production of grain oriented silicon steel sheet excellent in magnetic property |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0987747A true JPH0987747A (en) | 1997-03-31 |
Family
ID=17098891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24310695A Pending JPH0987747A (en) | 1995-09-21 | 1995-09-21 | Production of grain oriented silicon steel sheet excellent in magnetic property |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0987747A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003201518A (en) * | 2002-01-11 | 2003-07-18 | Jfe Steel Kk | Method of producing grain oriented silicon steel sheet having excellent magnetic property |
-
1995
- 1995-09-21 JP JP24310695A patent/JPH0987747A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003201518A (en) * | 2002-01-11 | 2003-07-18 | Jfe Steel Kk | Method of producing grain oriented silicon steel sheet having excellent magnetic property |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109844156B (en) | Hot-rolled steel sheet for producing electromagnetic steel sheet and method for producing same | |
JP6856179B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JPH02274815A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JPH0567683B2 (en) | ||
JP2639226B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JP2951852B2 (en) | Method for producing unidirectional silicon steel sheet with excellent magnetic properties | |
JP2002030340A (en) | Method for producing grain-oriented silicon steel sheet excellent in magnetic property | |
JP2746631B2 (en) | High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same | |
JP2002212635A (en) | Method for producing grain oriented silicon steel sheet having excellent magnetic property | |
JPH06228646A (en) | Stable production of grain-oriented silicon steel sheet excellent in magnetic property | |
JPH0987747A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JP3368409B2 (en) | Manufacturing method of low iron loss unidirectional electrical steel sheet | |
JP7312255B2 (en) | Grain-oriented electrical steel sheet and manufacturing method thereof | |
JPH0533056A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP2784661B2 (en) | Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet | |
JPH05230534A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JPH04341518A (en) | Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss | |
JPH08157963A (en) | Production of grain oriented silicon steel sheet | |
JPH0762437A (en) | Production of grain oriented silicon steel sheet having extremely low iron loss | |
JPH0798976B2 (en) | Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss | |
JPH07116515B2 (en) | Method for producing unidirectional silicon steel sheet having excellent magnetic properties | |
JPH0257125B2 (en) | ||
JPS63277717A (en) | Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic | |
JPH04362138A (en) | Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property | |
JPH09125145A (en) | Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss |