JPH01176034A - Production of grain-oriented magnetic steel sheet having excellent magnetic characteristic - Google Patents

Production of grain-oriented magnetic steel sheet having excellent magnetic characteristic

Info

Publication number
JPH01176034A
JPH01176034A JP33027087A JP33027087A JPH01176034A JP H01176034 A JPH01176034 A JP H01176034A JP 33027087 A JP33027087 A JP 33027087A JP 33027087 A JP33027087 A JP 33027087A JP H01176034 A JPH01176034 A JP H01176034A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
steel plate
grain
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33027087A
Other languages
Japanese (ja)
Inventor
Hiroshi Koho
光法 弘視
Isao Ito
伊藤 庸
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP33027087A priority Critical patent/JPH01176034A/en
Publication of JPH01176034A publication Critical patent/JPH01176034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To easily produce the title grain-oriented magnetic steel sheet having an excellent magnetic characteristic by appropriately welding the same oriented material to the edge of a steel sheet, and applying specified straining and annealing prior to the final finish annealing of a silicon-contg. cold-rolled steel sheet. CONSTITUTION:The hot rolling and cold rolling of a silicon-contg. steel slab, decarburization, and primary recrystallization annealing are applied. The same oriented material is welded to the edge of the steel sheet with the [001] axis inclined toward the rolling direction of the steel sheet at <=10 deg.C. The stepwise straining toward the inside of the base steel sheet from the weld zone and annealing are successively or thereafter applied plural times to the part of the steel sheet which is not secondarily recrystallized, and the secondarily recrystallized grain is grown. Final finish annealing is then applied to the steel sheet. After the final finish annealing, the oxide on the steel sheet surface is removed, as required, the steel sheet is specularly ground to 0.4mum Ra average roughness on the center line, and then an ultrathin coating film of the nitride, carbide, or oxide of a metal is formed on the specularly ground surface. By this method, a grain-oriented magnetic steel sheet having excellent magnetic characteristics, especially magnetic flux density and iron loss, is stably obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気特性の優れた一方向性電磁鋼板の製造
方法に関し、とくにゴス方位2次再結晶粒の核発生から
その成長過程を効果的に制御することにより、磁気特性
とくに磁束密度さらには鉄損の安定した改善を実現しよ
うとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing unidirectional electrical steel sheets with excellent magnetic properties, and in particular, the present invention relates to a method for manufacturing unidirectional electrical steel sheets with excellent magnetic properties, and in particular, to effectively control the growth process from the nucleation of Goss-oriented secondary recrystallized grains. The aim is to achieve stable improvements in magnetic properties, particularly magnetic flux density, and even iron loss by controlling the magnetic flux density.

(従来の技術) 周知のように一方向性けい素鋼板は、主として変圧器、
その他の電気機器の鉄心として利用されているものであ
り、このような一方向性けい素鋼板には、圧延方向の磁
気特性が優れていること、すなわち磁気特性(励磁特性
)としてB10値(磁場の強さ1000 A/mのとき
発生する圧延方向の磁束密度)で代表される磁束密度が
高く、しかもWI?/So値(磁束密度1.7T、周波
数5011zで磁化したときの鉄損)で代表される鉄損
が低いことが要求される。
(Prior art) As is well known, unidirectional silicon steel sheets are mainly used in transformers,
These unidirectional silicon steel sheets are used as iron cores in other electrical equipment, and have excellent magnetic properties in the rolling direction, that is, they have a B10 value (magnetic field) as magnetic properties (excitation properties). The magnetic flux density represented by the magnetic flux density in the rolling direction generated when the strength of It is required that the iron loss represented by /So value (iron loss when magnetized at a magnetic flux density of 1.7 T and a frequency of 5011z) is low.

上述のような一方向性けい素鋼板の磁気特性を向上させ
るには、鋼板中の2次再結晶粒の<001>軸を圧延方
向に高度に揃える必要がある。このためには一般に、M
nS、 MnSeなどの微細析出物に加えて、特公昭5
1−13469号公報に開示されているように少量のs
bを、また特公昭54−32412号公報に開示されて
いるようにAs、 Bi、 PbおよびSnを、さらに
は特公昭57−14737号公報に開示されているよう
に少量のMoなどを複合添加するとともに、好適な1次
再結晶集合組織形成のために熱間圧延、冷間圧延の各処
理条件を適切に組合わせることにより、最近では、板厚
: 0.30mmで磁束密度B1゜値が1.907を超
える高磁束密度でかつ鉄損−1,7,。値が1.05W
/kg以下の一方向性けい素鋼板が製造されるようにな
った。
In order to improve the magnetic properties of the unidirectional silicon steel sheet as described above, it is necessary to align the <001> axes of the secondary recrystallized grains in the steel sheet to a high degree in the rolling direction. For this purpose, M
In addition to fine precipitates such as nS and MnSe,
1-13469, a small amount of s
b, as well as As, Bi, Pb and Sn as disclosed in Japanese Patent Publication No. 54-32412, and a small amount of Mo etc. as disclosed in Japanese Patent Publication No. 57-14737. In addition, by appropriately combining the processing conditions of hot rolling and cold rolling to form a suitable primary recrystallization texture, recently the magnetic flux density B1° value has been improved at plate thickness: 0.30 mm. High magnetic flux density exceeding 1.907 and iron loss -1.7. The value is 1.05W
/kg or less unidirectional silicon steel sheets are now being manufactured.

(発明が解決しようとする問題点) しかしながら、実際の工業的規模での製造においては依
然として次のような問題を残していた。
(Problems to be Solved by the Invention) However, the following problems still remain in actual production on an industrial scale.

すなわち、製品の2次再結晶粒の<001>軸を圧延方
向に高度に揃えるためには、成分調整をはじめとして、
製鋼、熱延、冷延および熱処理と複雑で多岐にわたる各
工程を厳密に制御する必要があるが、実際の工場生産に
おいては処理条件が上記した如き総合的な適正条件から
外れやすく、わずかでも外れたものは<001>軸の圧
延方向への配向性が悪(なるため、B、。値、鉄損とも
にすぐれた一方向性電磁鋼板を安定して得ることが難し
かったのである。
In other words, in order to highly align the <001> axis of the secondary recrystallized grains of the product in the rolling direction, it is necessary to adjust the ingredients, etc.
It is necessary to strictly control each of the complex and wide-ranging processes such as steel making, hot rolling, cold rolling, and heat treatment, but in actual factory production, the processing conditions easily deviate from the overall appropriate conditions as described above, and even a slight deviation may occur. However, because the orientation of the <001> axis in the rolling direction is poor, it has been difficult to stably obtain a grain-oriented electrical steel sheet with excellent B value and iron loss.

さらに最近では、成品板の厚さを薄くシて鉄損を低減す
る試みがなされているが、仕上げ厚を薄(すると一方で
2次再結晶粒<001>軸の圧延方向への集積が不安定
となるために、板厚低減による鉄損改善効果が安定して
得られないというところにも問題があり、その改善が強
(望まれていた。
Furthermore, recently, attempts have been made to reduce the iron loss by reducing the thickness of the finished plate. In order to achieve stability, there was also a problem in that the iron loss improvement effect by reducing the plate thickness could not be stably obtained, and improvement of this problem was strongly desired.

また板厚を薄(して大幅な低鉄損化を図ろうとする場合
には、とくにゴス粒を特定方位に厳密に制御する必要が
あることが報告(たとえば特公昭57−61102号公
報やIEEE、 Transaction on Ma
gne−tics vol Mag−21* N111
 (1985))されており、いずれにしてもゴス粒の
特定方位への安定した厳密制御法の開発が強く要望され
ていたのである。
In addition, it has been reported that when attempting to significantly reduce iron loss by reducing the thickness of the plate, it is necessary to strictly control the Goss grains in particular directions (for example, Japanese Patent Publication No. 57-61102 and IEEE , Transaction on Ma
gne-tics vol Mag-21* N111
(1985)), and in any case, there was a strong demand for the development of a method for stable and strict control of Goss grains in specific orientations.

この発明は、上記の問題を有利に解決するもので、(h
ko) <001>方位の2次再結晶粒を、その核発生
から成長過程を通して適切に制御することにより効果的
に優先成長させてB1゜値を安定して改善すると共に、
さらには鋼板表面の平滑化および張力付与極薄被膜の有
効活用という相乗効果によって磁気特性の大幅な改善を
可能ならしめた超低鉄損一方向性電磁鋼板の有利な製造
方法を提案することを目的とする。
This invention advantageously solves the above problems, (h
ko) By appropriately controlling the secondary recrystallized grains with the <001> orientation throughout the growth process from their nucleation, it is possible to effectively preferentially grow and stably improve the B1° value,
Furthermore, we will propose an advantageous manufacturing method for ultra-low iron loss unidirectional electrical steel sheets that can significantly improve magnetic properties through the synergistic effects of smoothing the steel sheet surface and effectively utilizing the ultra-thin tension-applying coating. purpose.

(問題点を解決するための手段) 成品の2次再結晶粒の< ooi >軸を圧延方向に高
度に揃えるためには、2次再結晶前の鋼板について結晶
組織、集合組織、インヒビターなどを適正な状態に整え
ておく必要があり、これらを整えるため、素材成分から
始まって製鋼・熱延・冷延・熱処理と複雑で多岐にわた
る各処理条件を厳密に制御した上で、これに続く2次再
結晶焼鈍工程において集積度の高いゴス方位粒を発生・
成長させるわけであるが、実際の工業的規模での製造に
おいては、上記の総合的な適正条件から外れやすく、わ
ずかでも外れたものは<001>軸の圧延方向への配向
性が悪くなってしまうことは前述したとおりである。
(Means for solving the problem) In order to highly align the <ooi> axes of the secondary recrystallized grains in the finished product in the rolling direction, it is necessary to improve the crystal structure, texture, inhibitor, etc. of the steel sheet before secondary recrystallization. It is necessary to maintain the proper conditions, and in order to achieve these conditions, we strictly control the complex and wide-ranging processing conditions, starting from the material composition, steel manufacturing, hot rolling, cold rolling, and heat treatment. In the next recrystallization annealing process, Goss-oriented grains with a high degree of aggregation are generated.
However, in actual production on an industrial scale, it is easy to deviate from the above comprehensive appropriate conditions, and if there is even a slight deviation, the orientation of the <001> axis in the rolling direction will deteriorate. Putting it away is as described above.

この問題に対して発明者らは、<001>軸の配向性を
決定づける2次再結晶現象についてその基本である2次
再結晶核の生成と成長とに着目して研究を行った。
In response to this problem, the inventors conducted research on the secondary recrystallization phenomenon that determines the orientation of the <001> axis, focusing on the generation and growth of secondary recrystallization nuclei, which is the basis thereof.

その結果、2次再結晶前の鋼板の素材特性すなわち結晶
組織、集合組織、インヒビターなどの素材特性が、製造
工程条件の現実における変動あるいは簡略化により従来
の総合的な適正条件から多少外れたとしても、方位を制
御した同種材料の鋼板縁部への溶接による適正核の導入
と共に、微小歪導入と引続く熱処理とを利用した独特の
製造工程を採用することによって、(hkO) <00
1>方位の2次再結晶粒の核発生と成長とが優先して実
現されることの知見を得た。
As a result, it was found that the material properties of the steel sheet before secondary recrystallization, such as crystal structure, texture, and inhibitors, deviated somewhat from the conventional overall appropriate conditions due to actual variations or simplifications in the manufacturing process conditions. By adopting a unique manufacturing process that utilizes micro-strain introduction and subsequent heat treatment as well as the introduction of appropriate nuclei by welding the same material to the edge of the steel plate with controlled orientation, (hkO) <00
It was found that the nucleation and growth of secondary recrystallized grains in the 1> orientation are preferentially achieved.

しかもこの場合には、2次粒の<001>軸が圧延方向
へ高度に安定して集積するだけでなく、磁気特性はもと
より製造工程の大幅な改善たとえば従来はコイル状の鋼
板を箱型炉内で長時間かけて焼鈍することによって2次
再結晶させていたものを、連続炉による2次再結晶処理
でも可能となること、さらには鋼板表面を平滑化した後
、CVDやPVDなどのドライプレーティングによって
炭窒化物等の張力付与極薄被膜を被成してやれば磁気特
性のより一層の改善が実現されることも併せて突止めた
Furthermore, in this case, the <001> axis of the secondary grains not only accumulates in a highly stable manner in the rolling direction, but also significantly improves not only the magnetic properties but also the manufacturing process. It is now possible to perform secondary recrystallization in a continuous furnace instead of annealing for a long time in a steel plate. It was also discovered that magnetic properties could be further improved if an ultra-thin coating made of carbonitride or other material was used to provide tension.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明の要旨構成は次のとおりである。That is, the gist of the present invention is as follows.

(1)含けい素鋼スラブを、熱間圧延し、ついで1回ま
たは中間焼鈍を挟む2回以上の冷間圧延を施したのち、
脱炭・1次再結晶焼鈍を施し、しかるのち最終仕上げ焼
鈍を施す一連の工程によって一方向性電磁鋼板を製造す
るに当り、最終仕上げ焼鈍前において、 鋼板の縁部に、方向性を有する同種材料を、その(00
1)軸が該鋼板の圧延方向に対し10゜以内となる条件
下に溶接する工程と、 引続き又はその後に未2次再結晶部に対し、該溶接部か
ら基地鋼板の内部に向け段階的に歪導入と焼鈍とを複数
回繰返し実施して2次再結晶粒を成長させる工程 とを有することから成る磁気特性の優れた一方向性電磁
鋼板の製造方法。
(1) After hot rolling a silicon-containing steel slab and then cold rolling it once or twice or more with intermediate annealing in between,
In manufacturing unidirectional electrical steel sheets through a series of processes of decarburization and primary recrystallization annealing, and then final finish annealing, the edge of the steel plate is coated with the same type of directional material before the final finish annealing. The material (00
1) Welding under conditions such that the axis is within 10° with respect to the rolling direction of the steel plate, and then or thereafter, welding the non-secondary recrystallized area in stages from the welded area toward the inside of the base steel plate. A method for producing a grain-oriented electrical steel sheet with excellent magnetic properties, comprising the step of growing secondary recrystallized grains by repeating strain introduction and annealing multiple times.

(2)含けい素鋼スラブを、熱間圧延し、ついで1回ま
たは中間焼鈍を挟む2回以上の冷間圧延を施したのち、
脱炭・1次再結晶焼鈍を施し、しかるのち最終仕上げ焼
鈍を施す一連の工程によって一方向性電磁鋼板を製造す
るに当り、最終仕上げ焼鈍前において、 鋼板の縁部に、方向性を有する同種材料を、その(00
1)軸が該鋼板の圧延方向に対し10゜以内となる条件
下に溶接する工程と、 引続き又はその後に未2次再結晶部に対し、該溶接部か
ら基地鋼板の内部に向け段階的に歪導入と焼鈍とを複数
回繰返し実施して2次再結晶粒を成長させる工程を有す
ると共に、最終仕上げ焼鈍後に、鋼板表面の酸化物を除
去、ついで研磨により中心線平均粗さRaで0.4μm
以下の鏡面に仕上げてから、該鏡面仕上げ表面上に、ド
ライプレーティングによってTi。
(2) After hot rolling a silicon-containing steel slab and then cold rolling it once or twice or more with intermediate annealing in between,
In manufacturing unidirectional electrical steel sheets through a series of processes of decarburization and primary recrystallization annealing, and then final finish annealing, the edge of the steel plate is coated with the same type of directional material before the final finish annealing. The material (00
1) Welding under conditions such that the axis is within 10° with respect to the rolling direction of the steel plate, and then or thereafter, welding the non-secondary recrystallized area in stages from the welded area toward the inside of the base steel plate. It has a step of growing secondary recrystallized grains by repeating strain introduction and annealing multiple times, and after final annealing, removes oxides from the surface of the steel sheet, and then polishes it to a centerline average roughness Ra of 0. 4μm
After finishing the following mirror surface, Ti is deposited on the mirror finished surface by dry plating.

Nb、 Si+ V、 Cr、 Aj’t Mn、 B
+ Ni、  Co、 Mo、 Zr。
Nb, Si+V, Cr, Aj't Mn, B
+ Ni, Co, Mo, Zr.

Ta、 Hf、  −の窒化物および/または炭化物な
らびにAN + St+ Mn、 Mg、 Zr、 T
tの酸化物のうちから選んだ少なくとも一種より主とし
てなる極薄被膜を被成する工程 をそなえることから成る一方向性電磁鋼板の製造方法。
Nitride and/or carbide of Ta, Hf, − and AN + St+ Mn, Mg, Zr, T
1. A method for producing a grain-oriented electrical steel sheet, comprising the step of forming an ultra-thin film consisting mainly of at least one kind of oxides selected from the group consisting of oxides of t.

以下、この発明を由来するに至った基本的実験結果に基
づき、この発明を具体的に説明する。
Hereinafter, this invention will be specifically explained based on the basic experimental results that led to this invention.

C: 0.032賀t%(以下単に%で示す)、Si:
3.30%、Mn : 0.03%およびSe : 0
.015%を含有する組成になる鋼スラブを、1320
”Cで1時間加熱後、熱間圧延して2.3 mm厚とし
たのち、900°Cで3分間の均一化焼鈍を施し、つい
で950°Cで3分間の中間焼鈍をはさんで2回の冷間
圧延を施して最終板厚0.23++mの冷延板に仕上げ
たのち、湿水素中において820℃で30分間の脱炭・
1次再結晶焼鈍を行った。
C: 0.032gt% (hereinafter simply expressed as %), Si:
3.30%, Mn: 0.03% and Se: 0
.. A steel slab having a composition containing 1320%
After heating at C for 1 hour, hot rolling to a thickness of 2.3 mm, homogenization annealing at 900°C for 3 minutes, followed by intermediate annealing at 950°C for 3 minutes. After being cold-rolled twice to obtain a cold-rolled sheet with a final thickness of 0.23++m, it was decarburized in wet hydrogen at 820°C for 30 minutes.
Primary recrystallization annealing was performed.

かくして得られた素材に対し、圧延によって3%の均一
塑性歪を導入したものをA素材、一方かような塑性歪の
導入を行わないものをB素材として、画素材の2次再結
晶の焼鈍温度および時間依存性について調べた結果を、
第1図に示す。
The thus obtained material is subjected to secondary recrystallization annealing of the image material, with 3% uniform plastic strain introduced by rolling as material A, and material to which no such plastic strain is introduced as material B. The results of investigating temperature and time dependence are
Shown in Figure 1.

第1図から明らかなように、歪を導入したA素材はB素
材に較べて、同一時間の焼鈍では2次再結晶開始温度が
約150°C低下し、一方同一温度の焼鈍では潜伏期間
が1/100以下まで短縮される。
As is clear from Figure 1, when compared to material B, material A to which strain has been introduced has a secondary recrystallization onset temperature that is approximately 150°C lower when annealed for the same time, while the incubation period is lower when annealed at the same temperature. It is shortened to less than 1/100.

また900″Cでの焼鈍において2次粒の成長速度を測
定した結果、歪を導入したA素材はB素材に比べて10
倍以上速く成長することが判明した。
In addition, as a result of measuring the growth rate of secondary grains during annealing at 900"C, material A to which strain was introduced was 10% faster than material B.
It was found that they grow more than twice as fast.

以上の結果より、鋼板に歪を導入して焼鈍することによ
り、速やかに2次再結晶粒を生成・成長させ得ることが
見出されたのである。
From the above results, it has been found that by introducing strain into a steel sheet and annealing it, secondary recrystallized grains can be rapidly generated and grown.

上記の知見に基づき、発明者らはさらに上述した脱炭・
1次再結晶焼鈍板について次に述べる実験を行$た。
Based on the above findings, the inventors further
The following experiment was conducted on the primary recrystallization annealed plate.

厚み: 0.23am、、輻:30III11のゴス方
位単結晶板の(0011軸を、鋼板の圧延方位C一致さ
せて該鋼板の両縁部にレーザーで突き合わせ溶接し、つ
いで該溶接部に対してレーザー照射による歪導入とプラ
ズマジェットによる焼鈍とを繰返し実施し、該単結晶の
もつゴス方位を基地鋼板の内部に向って2mm成長させ
、C素材とした。
Thickness: 0.23 am, Radius: 30III11 Goss orientation single crystal plate (0011 axis is aligned with the rolling direction C of the steel plate, butt welded to both edges of the steel plate using a laser, and then to the welded part Strain introduction by laser irradiation and annealing by plasma jet were repeated, and the Goss orientation of the single crystal was grown by 2 mm toward the inside of the base steel plate, resulting in a C material.

次にAおよびC素材について、圧延により、単結晶と1
次再結晶部との境界から1次再結晶部すなわち基地鋼板
内部に向って5mm幅で変形量1%の歪を導入しついで
全体を950℃で3分間焼鈍する処理を繰返し実施して
、単結晶のもつゴス方位を鋼板全域にわたって成長させ
たのち、酸洗により表面の酸化物を除去した。
Next, materials A and C were rolled to form a single crystal.
A strain of 1% deformation is introduced in a width of 5 mm from the boundary with the secondary recrystallized area toward the inside of the base steel plate, and then the whole is annealed at 950°C for 3 minutes, which is repeated. After the Goss orientation of the crystals was grown over the entire steel plate, oxides on the surface were removed by pickling.

その後平坦化のため圧下率:1%の圧延を施したのち、
軟水素中で1200’C15時間の純化焼鈍を施した。
After that, after rolling with a reduction rate of 1% for flattening,
Purification annealing was performed at 1200'C for 15 hours in soft hydrogen.

かくして得られた製品板の磁束密度について調べたとこ
ろ、A素材ではR3゜−1,88(T) 、C素材では
Boo −1,985(T)であった。
When the magnetic flux density of the thus obtained product plate was investigated, it was found that the A material had R3°-1,88 (T), and the C material had a R3°-1,985 (T).

上述したように、方位を制御した単結晶を2次再結晶の
核とし、その後に鋼板に対し歪導入および焼鈍処理を繰
返し実施することにより、磁気特性が大幅に改善された
のである。
As mentioned above, by using a single crystal with controlled orientation as a nucleus for secondary recrystallization, and then repeatedly subjecting the steel plate to strain introduction and annealing treatment, the magnetic properties were significantly improved.

しかも上記の方法では、2次再結晶部と1次再結晶部と
の境界に温度勾配を付与する必要がなく、また短時間焼
鈍でも歪を活用することによって2次粒界を制御移動で
きるので、調帯の連続仕上げ焼鈍が使用できる利点もあ
る。
Moreover, with the above method, there is no need to provide a temperature gradient at the boundary between the secondary recrystallized area and the primary recrystallized area, and the secondary grain boundaries can be controlled and moved by utilizing strain even during short-time annealing. There is also the advantage that continuous finishing annealing can be used.

このような歪導入および焼鈍による再結晶粒の優先成長
については、従来から単結晶を作成する際に適用されて
はいた(例えばC,G、Dunn and G、C。
Such preferential growth of recrystallized grains by introducing strain and annealing has been applied in the past when creating single crystals (for example, C, G, Dunn and G, C.

Nonken Metal Prog、 64  (1
953)71〜75)が、この発明は、上掲したような
自然に発生した2次粒の方位を変形により修正して所望
の核とする方法とは全く異なり、予め方位制御された所
望の核を溶接により人工的に安定して形成させると共に
、核の成長に関しては歪導入と焼鈍とを繰返し実施して
進行させるもので、この点特公昭58−50295号、
特開昭58−100627号および特開昭59−215
419号各公報やU、S、Patentk443791
0号などに示されているような自然に発生した2次再結
晶粒を核として温度勾配焼鈍により該核を成長させて高
8.。
Nonken Metal Prog, 64 (1
953) 71-75), but the present invention is completely different from the above-mentioned method of correcting the orientation of naturally occurring secondary grains by deformation to form desired nuclei. The nucleus is artificially and stably formed by welding, and the growth of the nucleus is progressed by repeatedly carrying out strain introduction and annealing.
JP-A-58-100627 and JP-A-59-215
419 publications, U, S, Patentk443791
By using naturally occurring secondary recrystallized grains as shown in No. 0 as nuclei, the nuclei are grown by temperature gradient annealing. .

値を得る方法とも全く異なるもので、人工的に各制御が
可能なところに特徴がある。
The method of obtaining values is completely different, and the feature is that various controls can be controlled artificially.

上述した実験結果から明らかなように、極めて高いB、
。値を得るためには、 ■ (00i〕軸が圧延方面に先鋭に制御された2次粒
をそなえる帯板材を鋼板に溶接すること、■ 鋼板に対
し歪導入と焼鈍とを繰返し実施すること が極めて有効であり、これらの条件を満足させることに
よってゴス方位に高度に集積した2次再結晶粒を発達さ
せ得ることの知見を得たものである。
As is clear from the above experimental results, extremely high B,
. In order to obtain this value, it is necessary to: ■ Weld a strip material with secondary grains whose (00i) axis is sharply controlled in the rolling direction to a steel plate; ■ Repeatedly apply strain introduction and annealing to the steel plate. It has been found that this method is extremely effective, and that by satisfying these conditions, it is possible to develop secondary recrystallized grains that are highly concentrated in the Goss orientation.

次に発明者らは次のような実験を行った。Next, the inventors conducted the following experiment.

前述のC素材の製品板につき、その表面の非金属物質を
酸洗により除去した後、電界研磨により中心線平均粗さ
Raで0.1μm以下まで鏡面研磨した。その後、イオ
ンブレーティング装置()IcD法)により、鏡面仕上
げ表面上に1μ−厚のTiN被膜を被成した。ここにイ
オンブレーティング条件は、加速電圧:50v、加速電
流: 500A、真空度ニア×10−’Torrである
After removing the non-metallic substances on the surface of the C material product board by pickling, it was mirror-polished to a center line average roughness Ra of 0.1 μm or less by electric field polishing. Thereafter, a 1 μ-thick TiN film was formed on the mirror-finished surface using an ion blating device (IcD method). Here, the ion blating conditions are acceleration voltage: 50 V, acceleration current: 500 A, and vacuum degree near x 10-' Torr.

かくして得られた製品板の磁気特性は、B、。−1,9
80(T)、1,7.。〜0.56 (訂kg)と極め
て良好であった。
The magnetic properties of the product plate thus obtained are B. -1,9
80(T), 1,7. . ~0.56 (corrected kg), which was extremely good.

以上の実験結果から、磁気特性のより一層の向上のため
には、上述したように一方向性電磁鋼板素材の縁部に(
001)軸が圧延方向に先鋭に制御された2次粒をぞな
える帯板状の同種材料を溶接し、ついで該鋼板に対し歪
導入と焼鈍とを繰返し実施することの他、その後さらに
鋼板表面を鏡面研磨したのち、鋼板に張力を加えること
のできる極薄被膜を形成させることが橿めて有効である
ことが究明されたのである。
From the above experimental results, in order to further improve the magnetic properties, it is necessary to
001) In addition to welding a strip-like material whose axis resembles secondary grains controlled sharply in the rolling direction, and then repeatedly subjecting the steel plate to strain introduction and annealing, the steel plate surface is further It was discovered that it is extremely effective to mirror-polish the steel plate and then form an ultra-thin film that can apply tension to the steel plate.

次にこの発明法を、製造工程順に具体的に説明する。Next, this invention method will be specifically explained in order of manufacturing steps.

まずこの発明の出発素材については、従来公知の一方向
性電磁鋼板の成分たとえば、C: 0.002〜1.0
%、 Si : 0.1〜7.0%およびMn : 0
.002〜0.15χを含有する他、インヒビター形成
成分として、s : o、oos 〜o、os%、 S
e : 0.005〜0.05%。
First, regarding the starting material of this invention, the components of conventionally known unidirectional electrical steel sheets, for example, C: 0.002 to 1.0
%, Si: 0.1-7.0% and Mn: 0
.. In addition to containing 002 to 0.15χ, as inhibitor forming components, s: o, oos to o, os%, S
e: 0.005-0.05%.

Te : 0.003〜0.03%、 Sb : 0.
005〜0.05%、旧二0.005〜0.05%、 
Sn : 0.01〜0.5%、 Cu : 0.01
〜0.3%、 Mo : 0.005〜0.05%、 
B : 0.0003〜0.0040%、 N : 0
.001〜0.01%、 Af : 0.005〜0.
05%、 Ti’ : 0.001〜0.05%、  
V : 0.001〜0.05%およびNb : 0.
001〜0.05%のうちから選んだ少なくとも一種を
含有する素材いずれもが有利に適合する。
Te: 0.003-0.03%, Sb: 0.
005~0.05%, old 0.005~0.05%,
Sn: 0.01-0.5%, Cu: 0.01
~0.3%, Mo: 0.005~0.05%,
B: 0.0003-0.0040%, N: 0
.. 001-0.01%, Af: 0.005-0.
05%, Ti': 0.001-0.05%,
V: 0.001-0.05% and Nb: 0.
Any material containing at least one selected from 0.001 to 0.05% is advantageously suitable.

これらの素材は従来公知の製鋼法、たとえば転炉、電気
炉で製鋼され、さらに造塊−分塊法、連続鋳造法、また
はロール急冷法などによってスラブ、シートバーあるい
は直接薄鋼板とされたのち、必要に応じて熱間圧延、温
間又は冷間圧延によって含けい素鋼板とする。ついで必
要に応じて均一化焼鈍、さらには中間焼鈍を含む1回以
上の圧延により最終板厚に仕上げる。これら均一化焼鈍
および中間焼鈍は圧延後の結晶組織を均質化する再結晶
処理を目的としていて、通常は800〜1200℃で3
0秒〜10分間保持して行う。また仕上げ厚は0.50
am以下とするが、2次再結晶が不安定となる0、23
m以下の1仕上げ厚においてこの発明は特に有効である
These materials are manufactured by conventional steel manufacturing methods such as converter furnaces and electric furnaces, and then made into slabs, sheet bars, or directly into thin steel sheets by the ingot-blooming method, continuous casting method, or roll quenching method. , hot rolling, warm rolling or cold rolling as necessary to obtain a silicon-containing steel plate. Then, if necessary, uniform annealing and further rolling including intermediate annealing are performed one or more times to achieve the final plate thickness. The purpose of these homogenizing annealing and intermediate annealing is recrystallization treatment to homogenize the crystal structure after rolling, and is usually performed at 800 to 1200°C for 3
Hold for 0 seconds to 10 minutes. Also, the finishing thickness is 0.50
am or less, but 0, 23, which makes secondary recrystallization unstable.
This invention is particularly effective for finishing thicknesses of 1 m or less.

次に湿水素中で700〜900°C,1〜15分間程度
の焼鈍を施して鋼中Cを除去するとともに、次の焼鈍時
にゴス方位の2次再結晶粒を発達させるのに有利な1次
再結晶集合組織を形成させる。
Next, annealing is performed in wet hydrogen at 700 to 900°C for 1 to 15 minutes to remove C in the steel, and to develop secondary recrystallized grains with Goss orientation during the next annealing. Next, a recrystallized texture is formed.

しかるのち800〜1000°C11〜50時間程度の
2次再結晶焼鈍ついで1100〜1250°C,5〜2
5時間程度の純化焼鈍からなる最終仕上げ焼鈍を施すわ
けであるが、この発明では、かかる最終仕上げ焼鈍前に
、 鋼板の縁部に、方向性を有する同種材料を、その(00
1)軸が該鋼板の圧延方向に対し10°以内となる条件
下に溶接する工程と、 引続き又はその後に溶接部および基地鋼板の未2次再結
晶部に対し、溶接部から基地鋼板の内部に向け段階的に
歪導入と焼鈍とを繰返し実施して2次再結晶粒を段階的
に逐次成長させる工程とを組込むのである。
After that, secondary recrystallization annealing is performed at 800-1000°C for 11-50 hours, and then at 1100-1250°C for 5-2 hours.
A final finish annealing consisting of a purification annealing for about 5 hours is performed, but in this invention, before the final annealing, a similar material with directionality is applied to the edge of the steel plate.
1) Welding under the condition that the axis is within 10 degrees to the rolling direction of the steel plate, and subsequently or thereafter, welding the weld and the non-secondary recrystallized area of the base steel plate from the weld to the inside of the base steel plate. In order to achieve this, a step is incorporated in which secondary recrystallized grains are grown step by step by repeating strain introduction and annealing step by step.

まず2次再結晶粒の核となるべき同種材料の溶接に関し
て述べると、溶接時期は上述したとおり最終仕上げ焼鈍
前である。また溶接方法は従来公知のガス、通電、レー
ザー、プラズマ、電子ビームおよび超音波などいかなる
方法も可能であり、溶接のし方についても突き合わせお
よび重ね合わせなどいずれもが適合する。
First, regarding welding of the same type of material which is to become the nucleus of the secondary recrystallized grains, the welding time is before the final annealing as described above. Furthermore, any conventional welding method such as gas, current, laser, plasma, electron beam, or ultrasonic waves can be used, and any of the welding methods, such as butt and overlapping, are suitable.

ところでかかる溶接においては、溶接すべき同種材料の
(001)軸が鋼板の圧延方向に対し10゜以内になる
よう制御することが肝要である。というのは該(001
)軸が鋼板の圧延方向から10°を超えてずれると81
゜値の低下に伴なって鉄損劣化の不利が生じるからであ
る。また溶接する同種材料は単結晶、多結晶いずれでも
よく、さらにその形状は板状、線状などなんでもよい。
However, in such welding, it is important to control so that the (001) axis of the similar materials to be welded is within 10 degrees with respect to the rolling direction of the steel plate. That is, the corresponding (001
) If the axis deviates by more than 10° from the rolling direction of the steel plate, 81
This is because the disadvantage of iron loss deterioration occurs as the ° value decreases. Further, the similar material to be welded may be either single crystal or polycrystal, and may have any shape such as a plate shape or a linear shape.

次に鋼板中に導入する歪の量は、0.1〜30%程度と
するのが好ましい。というのは、導入歪量が0.1%未
満では粒界移動の駆動力となるべき転位密度が不足する
ため後続の焼鈍での再結晶粒成長が困難となるからであ
り、又、特開昭59−215419号公報に開示のよう
に再結晶粒が粗大となって鉄損の改善が望めないからで
ある。一方30%を超えると再結晶粒が進行してゆく前
方のマトリックス中にランダム方位の再結晶粒が発生し
、駆動力となるべき転位密度が減少し、ゴス方位粒の優
先成長が困難となるからである。
Next, the amount of strain introduced into the steel plate is preferably about 0.1 to 30%. This is because if the amount of introduced strain is less than 0.1%, there will be insufficient dislocation density to act as a driving force for grain boundary movement, making recrystallized grain growth difficult in subsequent annealing. This is because the recrystallized grains become coarse, as disclosed in Japanese Patent No. 59-215419, and improvement in iron loss cannot be expected. On the other hand, if it exceeds 30%, randomly oriented recrystallized grains will occur in the matrix in front of the advancing recrystallized grains, the dislocation density that should be the driving force will decrease, and the preferential growth of Goss-oriented grains will become difficult. It is from.

ここに歪導入法に関しては、ロール圧延をはじめとして
、砂などの物質投射による機械的な方法、さらにはレー
ザー、エレクトロンビーム、プラズマジェットなどのエ
ネルギービーム照射による衝撃または急熱急冷効果によ
り導入する方法などいかなる方法でも良い。
Regarding strain introduction methods, methods include roll rolling, mechanical methods by projecting materials such as sand, and methods by impact or rapid heating and cooling effects caused by irradiation with energy beams such as lasers, electron beams, and plasma jets. Any method is fine.

歪の導入領域については、特に規定するものではないが
、他方位の2次再結晶粒が発生し易い溶接部は鋼板の幅
方向に狭く、逆に発生しにくい鋼板部では広くするのが
好ましい。
Although there is no particular restriction on the area where strain is introduced, it is preferable that the weld zone where secondary recrystallized grains are likely to occur on the other side be narrow in the width direction of the steel plate, and conversely be wide in the steel plate area where secondary recrystallized grains are less likely to occur. .

焼鈍領域については、歪導入部のみでも、歪導入部の一
部でも、あるいは歪導入部と未導入部とを含めた全面で
もかまわず、要は、鋼板の縁部から板幅方向にわたって
順次に2次再結晶を進行させれば良いのである。
The annealing area may be only the strain introduced area, a part of the strain introduced area, or the entire area including the strain introduced area and the non-strain introduced area.In short, the annealing area can be annealed sequentially from the edge of the steel plate in the width direction. It is sufficient to proceed with secondary recrystallization.

次に2次再結晶温度は、導入歪量や結晶粒径、インヒビ
ター強度と関係があり、歪量が多かったり、結晶粒径が
小さくまたインヒビター効果が弱い場合には比較的低温
でも良いが、歪量が少なかったり、結晶粒が大きくまた
インヒビター効果が強い場合にはより高温とするのが好
ましく、従来は800〜1000’Cが好適とされてい
たが、この発明では650〜1000°C程度の温度範
囲において歪導入幅も考慮した上で適正値を選択する。
Next, the secondary recrystallization temperature is related to the amount of strain introduced, the crystal grain size, and the inhibitor strength; if the amount of strain is large, the crystal grain size is small, and the inhibitor effect is weak, a relatively low temperature may be used. When the amount of strain is small, the crystal grains are large, and the inhibitor effect is strong, it is preferable to use a higher temperature. Conventionally, 800 to 1000'C was considered suitable, but in this invention, the temperature is about 650 to 1000°C. Select an appropriate value after considering the strain introduction width within the temperature range.

なおこの発明では、上記の2次再結晶焼鈍に当り、とく
に傾斜焼鈍を施す必要はないけれども、磁気特性のより
一層の改善の面からは、2次再結晶部と未再結晶部との
境界において1°C/cm以上程度の温度勾配付与下に
傾斜焼鈍を施すことは有利である。
In the present invention, it is not necessary to perform inclined annealing in the secondary recrystallization annealing described above, but from the viewpoint of further improvement of magnetic properties, it is necessary to It is advantageous to perform inclined annealing while applying a temperature gradient of about 1°C/cm or more.

かかる一連の処理を施すことによって磁気特性の効果的
な向上を図ることができるが、さらに鋼板表面の非金属
物質を除去したのち、表面粗さがRa51μmの平滑ロ
ールで圧延し、ついで非酸化性雰囲気中で純化焼鈍を施
すことによって鋼板の平坦化、表面の平滑化および清浄
化が達成され、磁気特性のより一層の向上を図ることが
できる。
By performing such a series of treatments, magnetic properties can be effectively improved. After removing non-metallic substances from the surface of the steel sheet, it is rolled with a smooth roll with a surface roughness of Ra51 μm, and then a non-oxidizing By performing purification annealing in an atmosphere, the steel plate can be flattened, its surface smoothed and cleaned, and the magnetic properties can be further improved.

さらにこの発明では、最終仕上げ焼鈍後、鋼板表面に張
力付与型の極薄被膜を被成することによって磁気特性の
一層の向上を図ることもできる。
Furthermore, in the present invention, it is possible to further improve the magnetic properties by coating the surface of the steel sheet with a tension-applying ultra-thin coating after final annealing.

かかる極薄被膜を被成するためには、まず純化焼鈍後の
鋼板表面の非金属物質を除去後、化学研磨あるいは電界
研磨を施して鋼板表面の平滑度を中心線平均粗さRaで
0.4μm以下とする。というのはこれ以上の粗さでは
、引続(極薄被膜付与によっても鉄損の改善効果が望め
ないからである。
In order to form such an ultra-thin film, first remove non-metallic substances from the surface of the steel sheet after purification annealing, and then apply chemical polishing or electric field polishing to reduce the smoothness of the steel sheet surface to a centerline average roughness Ra of 0. The diameter shall be 4 μm or less. This is because if the roughness is greater than this, no improvement in iron loss can be expected, even by applying an extremely thin film.

ついでCVD法やPVD法(イオンブレーティングやイ
オンインブランティジョン)などのドライプレーティン
グによってTi、 Nb、 Si、 V、 Cr、 A
f。
Next, Ti, Nb, Si, V, Cr, A are formed by dry plating such as CVD method or PVD method (ion blating or ion implantation).
f.

Mn、 B、 Ni、  Co、 l’lo、 Zr、
 Ta、 Hf、  Wの窒化物および/または炭化物
ならびにAj!l Si、 Mn+ Mg1Zn、 T
iの酸化物のうちから選んだ少なくとも一種より主とし
て成る極薄被膜を鋼板表面に強固に被成するのである。
Mn, B, Ni, Co, l'lo, Zr,
Nitride and/or carbide of Ta, Hf, W and Aj! l Si, Mn+ Mg1Zn, T
An ultra-thin film consisting mainly of at least one selected from the oxides of i is firmly formed on the surface of the steel sheet.

なおかかる被膜の材質としては、止揚したもののほか、
熱膨張係数が低く鋼板に強固に付着するものであれば何
であってもよい。
In addition to the material of the coating, there are
Any material may be used as long as it has a low coefficient of thermal expansion and firmly adheres to the steel plate.

さらに必要により常法に従って、張力付与型低熱膨張の
上塗り絶縁被膜を被成したり、レーザー照射などによる
磁区細分化処理を施して磁気特性の向上を図ることもで
きる。
Furthermore, if necessary, the magnetic properties can be improved by applying a tension-applied low thermal expansion overcoat insulating film or performing magnetic domain refining treatment by laser irradiation or the like, according to a conventional method.

(作 用) この発明に従い、再結晶の種結晶として、鋼板の縁部に
(001)軸が該鋼板の圧延方向に配向した同種材料を
溶接するとともに、種結晶の2次粒成長前線において適
度の歪導入と焼鈍とを繰返し施すことにより、鋼板部の
方位のずれた新たな再結晶粒が発生・成長する前の潜伏
期間に溶接した種結晶だ鋼板部幅方向に向って成長し続
ける結果として、厳密に方位制御した種結晶の方位粒の
みが鋼板全域にわたって再結晶するため極めて良好な磁
気特性が得られるものと考えられる。
(Function) According to the present invention, a homogeneous material whose (001) axis is oriented in the rolling direction of the steel plate is welded to the edge of the steel plate as a seed crystal for recrystallization, and a suitable material is welded to the edge of the steel plate as a seed crystal for recrystallization. By repeatedly applying strain and annealing, the welded seed crystals continue to grow in the width direction of the steel sheet during the incubation period before new recrystallized grains with misoriented orientations occur and grow. It is thought that extremely good magnetic properties can be obtained because only the oriented grains of the seed crystal whose orientation has been strictly controlled recrystallize over the entire steel sheet.

なお実際の製品としては、溶接部をそのまま残しておい
ても、必要に応じ切断除去しても、いずれでもかまわな
い。
Note that in the actual product, the welded portion may be left as is or may be cut and removed as necessary.

(実施例) 実施例I C: 0.035%、 Si : 3.25%、 Mn
 : 0.035%およびS : 0.015%を含有
し、残部はFeおよび不可避的不純物よりなるけい素鋼
板スラブに、熱間圧延を施して板厚2.3+nm、板幅
300 ttrmの熱延板としたのち、900°Cで3
分間の均一化焼鈍を施し、ついで1回目の冷間圧延を施
して0.36+++1+の中間板厚としてから、950
″Cで3分間の中間焼鈍を施し、その後第2回目の冷延
を施して0.23mm厚の冷延板に仕上げた。次に鋼板
表面を脱脂し、湿水素中において820°Cで3分間の
脱炭・1次再結晶焼鈍を行ったのち、(001)軸が圧
延方向から2°ずれたゴス方位単結晶板を該綱板の両縁
部へ圧延方向と圧延面が一致するようにレーザーで突き
合わせ溶接した。ついで該溶接部に対してレーザーとプ
ラズマジェットによる歪導入と焼鈍との組合わせ処理を
3回繰返し実施したのち、圧延により該単結晶と1次再
結晶部との境界から1次再結晶部に向って5InIll
の幅で変形量1%の歪の導入と全体を950″Cで3分
間焼鈍する焼鈍処理とを30回繰返し実施して、該単結
晶のもつゴス方位を鋼板全域にわたって成長させた後、
酸洗により表面の酸化物を除去した。
(Example) Example I C: 0.035%, Si: 3.25%, Mn
A silicon steel plate slab containing S: 0.035% and S: 0.015%, with the remainder consisting of Fe and unavoidable impurities, was hot rolled to a thickness of 2.3+nm and a width of 300 ttrm. After making it into a board, heat it at 900°C.
After homogenization annealing for 1 minute and then cold rolling for the first time to give an intermediate thickness of 0.36+++1+, 950
The steel plate surface was degreased and annealed at 820°C in wet hydrogen for 3 minutes. After decarburization and primary recrystallization annealing for 10 minutes, a Goss-oriented single crystal plate whose (001) axis is deviated by 2° from the rolling direction is placed on both edges of the steel plate so that the rolling direction and the rolling surface coincide. Then, the welded part was subjected to a combination treatment of strain introduction by laser and plasma jet and annealing three times, and then the boundary between the single crystal and the primary recrystallized part was removed by rolling. 5InIll towards the primary recrystallization part
Introducing strain with a deformation amount of 1% with a width of
Oxides on the surface were removed by pickling.

その後圧下率1%の圧延を施した後、飽水素中で120
0°C,5時間の純化焼鈍を施した。
After that, after rolling with a reduction rate of 1%, 120
Purification annealing was performed at 0°C for 5 hours.

かくして得られた製品の磁気特性はBto=1.982
(T)であった。
The magnetic properties of the thus obtained product are Bto=1.982
(T).

実施例2 実施例1で得られた製品板を、研磨により鋼板表面を中
心線平均粗さRaで0.1 μm以下の鏡面に仕上げた
のち、400°Cに保った鋼板の鏡面仕上げ表面にイオ
ンブレーティングにより膜厚1μmのTiNを被成した
Example 2 The product plate obtained in Example 1 was polished to a mirror finish with a center line average roughness Ra of 0.1 μm or less, and then polished to a mirror finish surface of a steel plate maintained at 400°C. A TiN film with a thickness of 1 μm was formed by ion blasting.

かくて得られた製品板の磁気特性はB1゜=1.980
(T)、W1715゜=0.53 W/kgであった。
The magnetic properties of the product plate thus obtained are B1°=1.980.
(T), W1715°=0.53 W/kg.

このように方位を制御した単結晶板を鋼板に溶接して2
次粒の核とし、その後に歪導入と焼鈍を繰返してこの核
を段階的に成長させることによって高い磁束密度の製品
が得られ、さらに鋼板表面を平滑にして張力付与型被膜
を綱板表面に被成することにより、極低鉄損値を得るこ
とができた。
A single crystal plate whose orientation is controlled in this way is welded to a steel plate.
A product with high magnetic flux density can be obtained by forming the next grain nucleus and then repeating strain introduction and annealing to grow this nucleus in stages.The steel plate surface is also smoothed and a tension-applying coating is applied to the steel plate surface. By coating the steel, it was possible to obtain an extremely low iron loss value.

実施例3 C: 0.030%、 Si : 3.30%、 Mn
 : 0.030%、S: 0.015%、 Affi
 :0.015%およびN : 0.0070%を含有
し、残部はFeおよび不可避的不純物よりなるけい素鋼
板スラブに、熱間圧延を施して板厚2.3鵬、板幅30
0 mmの熱延板とした後、900°C13分間の均一
化焼鈍を施し、ついで1回目の冷間圧延を施して0.5
0mm厚としてから1.1000°C13分間の中間焼
鈍を施し、その後第2回目の冷延を施して板厚0.23
mmの冷延板に仕上げた。次に鋼板表面を脱脂し、(0
01)軸が圧延方向から2°ずれたゴス方位の単結晶板
を、該鋼板の両縁部へ互に圧延方向と圧延面が一致する
ようにレーザーで突き合せ溶接した。ついで湿水素中に
おいて820°Cで3分間の脱炭・1次再結晶焼鈍を行
ったのち、圧延により変形量2%の歪を鋼板に一様に導
入した。次に溶接部に対し、レーザーとプラズマジェッ
トによる歪導入と焼鈍との組合わせ処理を5回繰返し実
施して、該単結晶を鋼板部すなわち1次再結晶部に向っ
て2閤成長させた後、該単結晶と1次再結晶部との境界
から1次再結晶部に向って10mm幅ずつ段階的に95
0°c、io骨分間焼鈍を15回繰返し実施して該単結
晶のもつ方位を鋼板全域にわたって成長させたのち、1
200’Cで5時間の純化焼鈍を施した。
Example 3 C: 0.030%, Si: 3.30%, Mn
: 0.030%, S: 0.015%, Affi
: 0.015% and N : 0.0070%, with the remainder being Fe and unavoidable impurities. Hot rolled to a silicon steel slab with a thickness of 2.3 mm and a width of 30 mm.
After forming a hot-rolled sheet with a thickness of 0 mm, it was homogenized annealed at 900°C for 13 minutes, and then cold-rolled for the first time to a thickness of 0.5 mm.
After reducing the thickness to 0 mm, intermediate annealing was performed at 1.1000°C for 13 minutes, and then a second cold rolling was performed to obtain a plate thickness of 0.23 mm.
It was finished into a cold-rolled sheet of mm. Next, the steel plate surface is degreased and (0
01) A Goss-oriented single crystal plate whose axis was deviated by 2° from the rolling direction was butt-welded to both edges of the steel plate using a laser so that the rolling direction and the rolling surface coincided with each other. Next, decarburization and primary recrystallization annealing were performed at 820°C for 3 minutes in wet hydrogen, and then a strain of 2% was uniformly introduced into the steel plate by rolling. Next, the welded part is subjected to a combination treatment of strain introduction using a laser and plasma jet and annealing five times, and the single crystal is grown two times toward the steel plate part, that is, the primary recrystallized part. , from the boundary between the single crystal and the primary recrystallization area to the primary recrystallization area in steps of 10 mm width.
After repeating the io bone annealing at 0°C 15 times to grow the orientation of the single crystal over the entire steel plate,
Purification annealing was performed at 200'C for 5 hours.

かくして得られた製品板の磁束密度を測定したところ、
Boo =1.975 (T)であった。
When the magnetic flux density of the product plate thus obtained was measured,
Boo = 1.975 (T).

実施例4 実施例3で得られた製品板に実施例2と同様の表面処理
を施して膜厚1μmのTiN極薄被膜を被成した。
Example 4 The product board obtained in Example 3 was subjected to the same surface treatment as in Example 2 to form an ultra-thin TiN film with a thickness of 1 μm.

か(して得られた製品の磁気特性は、B1゜=1.98
0 (T) 、W+tzso=0.54 (w/kg)
であった。
(The magnetic properties of the product obtained are B1゜=1.98
0 (T), W+tzso=0.54 (w/kg)
Met.

(発明の効果) かくしてこの発明によれば、結晶方位を制御した同種材
料の溶接後、歪導入と焼鈍とを繰返し実施することによ
って2次再結晶粒を段階的に逐次成長させ、硬度に集積
したゴス方位粒からなる2次再結晶組織を合理的に形成
することができ、さらには綱板表面の平滑化、張力付与
極薄被膜および磁区細分化技術の有効活用によって磁気
特性の格段に優れた一方向性電磁鋼板を連続焼鈍によっ
ても容易に得ることができ、省エネルギーにも大きく貢
献する。
(Effects of the Invention) Thus, according to the present invention, after welding similar materials with controlled crystal orientation, by repeatedly performing strain introduction and annealing, secondary recrystallized grains are grown step by step and accumulated in hardness. It is possible to rationally form a secondary recrystallized structure consisting of Goss-oriented grains, and furthermore, by smoothing the steel plate surface, applying tension-applying ultra-thin coatings, and effectively utilizing magnetic domain refining technology, the magnetic properties are significantly superior. It is also possible to easily obtain grain-oriented electrical steel sheets by continuous annealing, which greatly contributes to energy saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、2次再結晶開始に及ぼす焼鈍温度と時間との
関係を、歪を導入した鋼板および歪の導入のない鋼板で
比較した示したグラフである。
FIG. 1 is a graph comparing the relationship between annealing temperature and time on the onset of secondary recrystallization between a strained steel plate and a steel plate without strain.

Claims (1)

【特許請求の範囲】 1、含けい素鋼スラブを、熱間圧延し、ついで1回また
は中間焼鈍を挟む2回以上の冷間圧延を施したのち、脱
炭・1次再結晶焼鈍を施し、しかるのち最終仕上げ焼鈍
を施す一連の工程によって一方向性電磁鋼板を製造する
に当り、 最終仕上げ焼鈍前において、 鋼板の縁部に、方向性を有する同種材料を、その〔00
1〕軸が該鋼板の圧延方向に対し10°以内となる条件
下に溶接する工程と、 引続き又はその後に未2次再結晶部に対し、該溶接部か
ら基地鋼板の内部に向け段階的に歪導入と焼鈍とを複数
回繰返し実施して2次再結晶粒を成長させる工程 とを有することを特徴とする磁気特性の優れた一方向性
電磁鋼板の製造方法。 2、含けい素鋼スラブを、熱間圧延し、ついで1回また
は中間焼鈍を挟む2回以上の冷間圧延を施したのち、脱
炭・1次再結晶焼鈍を施し、しかるのち最終仕上げ焼鈍
を施す一連の工程によって一方向性電磁鋼板を製造する
に当り、 最終仕上げ焼鈍前において、 鋼板の縁部に、方向性を有する同種材料を、その〔00
1〕軸が該鋼板の圧延方向に対し10°以内となる条件
下に溶接する工程と、 引続き又はその後に未2次再結晶部に対し、該溶接部か
ら基地鋼板の内部に向け段階的に歪導入と焼鈍とを複数
回繰返し実施して2次再結晶粒を成長させる工程を有す
ると共に、最終仕上げ焼鈍後に、鋼板表面の酸化物を 除去、ついで研磨により中心線平均粗さRaで0.4μ
m以下の鏡面に仕上げてから、該鏡面仕上げ表面上に、
ドライプレーティングによってTi、Nb、Si、V、
Cr、Al、Mn、B、Ni、Co、Mo、Zr、Ta
、Hf、Wの窒化物および/または炭化物ならびにAl
、Si、Mn、Mg、Zr、Tiの酸化物のうちから選
んだ少なくとも一種より主としてなる極薄被膜を被成す
る工程 をそなえることを特徴とする一方向性電磁鋼板の製造方
法。
[Claims] 1. A silicon-containing steel slab is hot-rolled, then cold-rolled once or twice or more with intermediate annealing in between, and then subjected to decarburization and primary recrystallization annealing. , Then, in manufacturing a unidirectional electrical steel sheet through a series of steps in which final finish annealing is performed, a similar material with directionality is applied to the edge of the steel sheet before final finish annealing.
1] A process of welding under conditions such that the axis is within 10 degrees to the rolling direction of the steel plate, and subsequently or thereafter, welding the non-secondary recrystallized area in stages from the welded area toward the inside of the base steel plate. 1. A method for producing a grain-oriented electrical steel sheet with excellent magnetic properties, comprising the step of growing secondary recrystallized grains by repeating strain introduction and annealing multiple times. 2. A silicon-containing steel slab is hot-rolled, then cold-rolled once or twice or more with intermediate annealing in between, then subjected to decarburization and primary recrystallization annealing, and then final finish annealing. In manufacturing unidirectional electrical steel sheets through a series of processes, a similar material with directionality is applied to the edge of the steel sheet before final annealing.
1] A process of welding under conditions such that the axis is within 10 degrees to the rolling direction of the steel plate, and subsequently or thereafter, welding the non-secondary recrystallized area in stages from the welded area toward the inside of the base steel plate. It has a step of growing secondary recrystallized grains by repeating strain introduction and annealing multiple times, and after final annealing, oxides on the surface of the steel sheet are removed, and then polished to a center line average roughness Ra of 0. 4μ
After finishing to a mirror finish of m or less, on the mirror finish surface,
By dry plating, Ti, Nb, Si, V,
Cr, Al, Mn, B, Ni, Co, Mo, Zr, Ta
, Hf, W nitride and/or carbide and Al
, Si, Mn, Mg, Zr, and Ti oxides.
JP33027087A 1987-12-28 1987-12-28 Production of grain-oriented magnetic steel sheet having excellent magnetic characteristic Pending JPH01176034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33027087A JPH01176034A (en) 1987-12-28 1987-12-28 Production of grain-oriented magnetic steel sheet having excellent magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33027087A JPH01176034A (en) 1987-12-28 1987-12-28 Production of grain-oriented magnetic steel sheet having excellent magnetic characteristic

Publications (1)

Publication Number Publication Date
JPH01176034A true JPH01176034A (en) 1989-07-12

Family

ID=18230770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33027087A Pending JPH01176034A (en) 1987-12-28 1987-12-28 Production of grain-oriented magnetic steel sheet having excellent magnetic characteristic

Country Status (1)

Country Link
JP (1) JPH01176034A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074462A1 (en) 2016-10-18 2018-04-26 Jfeスチール株式会社 Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet
WO2018097100A1 (en) 2016-11-28 2018-05-31 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
WO2018116831A1 (en) 2016-12-21 2018-06-28 Jfeスチール株式会社 Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
WO2018116829A1 (en) 2016-12-21 2018-06-28 Jfeスチール株式会社 Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
WO2019188683A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Surface treatment facility
WO2019188410A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Equipment for manufacturing grain-oriented electromagnetic steel sheet
WO2019189122A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Target exchanging device and surface treatment facility

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190044078A (en) 2016-10-18 2019-04-29 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING ORGANIC ELECTRIC STEEL SHEET
US11091842B2 (en) 2016-10-18 2021-08-17 Jfe Steel Corporation Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet
WO2018074462A1 (en) 2016-10-18 2018-04-26 Jfeスチール株式会社 Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet
CN109844179A (en) * 2016-10-18 2019-06-04 杰富意钢铁株式会社 The manufacturing method of grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet
US11781196B2 (en) 2016-11-28 2023-10-10 Jfe Steel Corporation Grain-oriented electromagnetic steel sheet and method of producing grain-oriented electromagnetic steel sheet
KR20190069486A (en) 2016-11-28 2019-06-19 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING ORGANIC ELECTRIC STEEL SHEET
WO2018097100A1 (en) 2016-11-28 2018-05-31 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
WO2018116829A1 (en) 2016-12-21 2018-06-28 Jfeスチール株式会社 Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
KR20190083352A (en) 2016-12-21 2019-07-11 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING ORGANIC ELECTRON SHEET
KR20190083351A (en) 2016-12-21 2019-07-11 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING ORGANIC ELECTRON SHEET
US10968521B2 (en) 2016-12-21 2021-04-06 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
WO2018116831A1 (en) 2016-12-21 2018-06-28 Jfeスチール株式会社 Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
US11180834B2 (en) 2016-12-21 2021-11-23 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
KR20210130277A (en) 2016-12-21 2021-10-29 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
WO2019188410A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Equipment for manufacturing grain-oriented electromagnetic steel sheet
EP3761326A4 (en) * 2018-03-30 2021-03-24 JFE Steel Corporation Equipment for manufacturing grain-oriented electromagnetic steel sheet
KR20200120676A (en) 2018-03-30 2020-10-21 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet manufacturing equipment
KR20200118874A (en) 2018-03-30 2020-10-16 제이에프이 스틸 가부시키가이샤 Surface treatment equipment
KR20200118870A (en) 2018-03-30 2020-10-16 제이에프이 스틸 가부시키가이샤 Target exchange device and surface treatment facility
WO2019189122A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Target exchanging device and surface treatment facility
KR20230008237A (en) 2018-03-30 2023-01-13 제이에프이 스틸 가부시키가이샤 Equipment for manufacturing grain-oriented electromagnetic steel sheet
US11732348B2 (en) 2018-03-30 2023-08-22 Jfe Steel Corporation Surface treatment facility
WO2019188683A1 (en) 2018-03-30 2019-10-03 Jfeスチール株式会社 Surface treatment facility

Similar Documents

Publication Publication Date Title
JP6838601B2 (en) Low iron loss directional electromagnetic steel sheet and its manufacturing method
JPS6345444B2 (en)
WO1990006378A1 (en) Production method of crystal member having controlled crystal orientation
US4975127A (en) Method of producing grain oriented silicon steel sheets having magnetic properties
JPH01176034A (en) Production of grain-oriented magnetic steel sheet having excellent magnetic characteristic
KR930010323B1 (en) Process for manufacturing double oriented electrical steel sheet having high magnetic flux density
JPH08253816A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JP3928275B2 (en) Electrical steel sheet
JP3430426B2 (en) Method for producing grain-oriented silicon steel sheet having uniform magnetic properties in the sheet width direction
JPH0784615B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic flux density
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPS63149318A (en) Production of uni-oriented magnetic steel plate having excellent magnetic characteristic
EP4450655A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS63277717A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPH08157963A (en) Production of grain oriented silicon steel sheet
EP4317472A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
JPS63130713A (en) Production of uni-orientated electrical steel sheet having excellent magnetic characteristic
JPH09143560A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
EP4317471A1 (en) Production method for grain-oriented electrical steel sheet
JPS63277718A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPH08311557A (en) Production of ferritic stainless steel sheet free from ridging
JPH0445274A (en) Production of extra thin grain-oriented silicon steel sheet minimal in iron loss