JPS63277718A - Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic - Google Patents

Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic

Info

Publication number
JPS63277718A
JPS63277718A JP62112410A JP11241087A JPS63277718A JP S63277718 A JPS63277718 A JP S63277718A JP 62112410 A JP62112410 A JP 62112410A JP 11241087 A JP11241087 A JP 11241087A JP S63277718 A JPS63277718 A JP S63277718A
Authority
JP
Japan
Prior art keywords
temp
annealing
secondary recrystallization
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62112410A
Other languages
Japanese (ja)
Inventor
Yoshinori Kobayashi
小林 義紀
Mitsumasa Kurosawa
黒沢 光正
Yoshiaki Iida
飯田 嘉明
Masayuki Sakaguchi
雅之 坂口
Katsuo Iwamoto
岩本 勝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62112410A priority Critical patent/JPS63277718A/en
Priority to US07/190,280 priority patent/US4975127A/en
Priority to EP88304050A priority patent/EP0292150B1/en
Priority to DE3888725T priority patent/DE3888725T2/en
Priority to CA000566363A priority patent/CA1332344C/en
Priority to KR1019880005531A priority patent/KR960003173B1/en
Publication of JPS63277718A publication Critical patent/JPS63277718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture a grain-oriented silicon steel sheet excellent in magnetic flux density, by hot-rolling and cold-rolling a silicon-steel slab to form a steel sheet, subjecting this steel sheet to primary recrystallization annealing which doubles as decarburization under specific conditions, and successively applying secondary recrystallization annealing. CONSTITUTION:A silicon-steel slab is hot-rolled and the hot-rolled steel plate is annealed and subjected to removal of surface scales, which is cold-rolled twice, while process-annealed between the cold-rolling stages, so as to be finished into a steel sheet of 0.23mm final thickness. A coil of this steel sheet is subjected to primary recrystallization annealing which doubles as decarburization by dividing both coil ends into a region where temp. is raised at >=10 deg.C/sec temp.-rise rate and a region where temp. is raised at <=10 deg.C/sec temp.-rise rate or holding is applied at a temp. in the range of 550-750 deg.C for 10sec-10min in the course of temp. rise by means of a continuous furnace where heaters are dividedly disposed in a coil-width direction and the temp. rise at the coil width end can be inhibited by means of a heat-removing device for cooling, by which >=10 deg.C local difference in temp. is provided to the subsequent secondary recrystallization annealing initiation, and, under a temp. gradient larger than the above-mentioned difference, secondary recrystallization annealing is carried out from a region having high initial temp. of secondary recrystallization.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気特性に優れた一方向性けい素鋼板の製
造方法に関し、磁気特性中でも磁束密度の有利な改善を
図ろうとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a unidirectional silicon steel sheet with excellent magnetic properties, and aims to advantageously improve magnetic flux density among the magnetic properties. .

(従来の技術) 主として変圧器や電動機などの鉄心材料として用いられ
る一方向性けい素鋼板に要求される特性は、一定の磁化
力において得られる磁束密度が高いこと、および一定の
磁束密度を与えた場合にその鉄損が低いことである。通
常これらの代表値としては、磁化力800A/mにおけ
る磁束密度B。
(Prior art) The properties required of unidirectional silicon steel sheets, which are mainly used as core materials for transformers and electric motors, are high magnetic flux density obtained at a constant magnetization force, and a high magnetic flux density that can be obtained at a constant magnetization force. The core loss is low when Typically, these representative values are magnetic flux density B at a magnetizing force of 800 A/m.

(T:テスラ)および磁束密度1.70T、周波数50
Hzにおける鉄損W+t/5o(W/kg)が採用され
ている。
(T: Tesla) and magnetic flux density 1.70T, frequency 50
Iron loss W+t/5o (W/kg) at Hz is adopted.

これらの両特性を含む磁気特性を向上させるためには、
現在まで多くの研究がなされ、特に素材の成分、熱間お
よび冷間圧延法、熱処理方法等の改善によってそれぞれ
少なからざる成果が得られている。
In order to improve magnetic properties including both of these properties,
Much research has been carried out to date, and considerable results have been obtained, particularly through improvements in the composition of materials, hot and cold rolling methods, heat treatment methods, etc.

従来の一方向性けい素鋼板は、通常Si:2.5〜4.
5wtX(以下単にχで示す)を含む低炭素鋼に微量の
Mn、S、Se+Sb、AI、Sn、NおよびB等のイ
ンヒビター形成元素を添加した素材を熱間圧延した後、
1回もしくは中間焼鈍を挟む2回以上の冷間圧延を経て
、該冷延鋼板に脱炭を兼ねた1次再結晶焼鈍を施し、し
かるのち最終仕上げ焼鈍工程において2次再結晶処理を
施すことによって2次再結晶粒を(11(1<001>
方位に高度に集積させると共に、引き続く純化焼鈍によ
って鋼板中の不純物を除去することにより艮好な磁気特
性を得ている。
Conventional unidirectional silicon steel sheets usually have Si: 2.5 to 4.
After hot rolling a material in which trace amounts of inhibitor-forming elements such as Mn, S, Se+Sb, AI, Sn, N, and B are added to low carbon steel containing 5wt
After cold rolling once or twice or more with intermediate annealing in between, the cold rolled steel sheet is subjected to primary recrystallization annealing that also serves as decarburization, and then subjected to secondary recrystallization treatment in the final finishing annealing step. The secondary recrystallized grains are defined as (11(1<001>
Excellent magnetic properties are obtained by highly accumulating the steel in different directions and by removing impurities from the steel plate through subsequent purification annealing.

この際、2次再結晶粒の方位が(110) <OOI>
へ集積するほど鋼板の磁束密度は高くなるが、一方で巨
大な2次粒と成り易(、粒内の磁区幅が増し、渦流損の
増加により鉄損特性が劣化する傾向にあった。そこで2
次粒を微細化することを目的とした努力が種々施され、
例えば特開昭60−89521号公報では、再結晶促進
域と遅滞域を交互に設け2次粒の核発生を増しかつ成長
を阻止することで2次粒の微細化を図り鉄損を向上させ
る方法が提案されている。しかしながら、近年物理的な
局所歪の導入による磁区細分化技術(たとえば特開昭5
8−26410号公報)の確立により、とくに2次粒を
微細化せずとも低鉄損が得られるようになったため、技
術開発の方向は、磁束密度の向上に傾いている。
At this time, the orientation of the secondary recrystallized grains is (110) <OOI>
The magnetic flux density of the steel sheet increases as it accumulates in the steel sheet, but on the other hand, it tends to form huge secondary grains (the magnetic domain width within the grains increases, and the iron loss characteristics tend to deteriorate due to an increase in eddy current loss. 2
Various efforts have been made to refine the secondary grains,
For example, in Japanese Patent Application Laid-Open No. 60-89521, recrystallization promotion regions and retardation regions are alternately provided to increase the nucleation of secondary grains and prevent their growth, thereby making the secondary grains finer and improving iron loss. A method is proposed. However, in recent years, magnetic domain refining technology by introducing physical local strain (for example,
8-26410), it has become possible to obtain low iron loss without particularly making the secondary grains finer, so the direction of technological development is leaning toward improving magnetic flux density.

この点、特公昭58−50295号公報では、2次再結
晶時に一方向の温度勾配を与え、(1,101<001
>方位の2次粒を選択成長させることで高い磁束密度を
得る方法が開示されている。この方法は、相対的に高温
では2次粒の核発生速度が大きく、一方低温では粒成長
速度が大きいという、2次再結晶に特有の現象を利用し
たものであり、発生した2次粒を温度勾配を与えながら
加熱することによヮて巨大に粒成長させて、鋼板全体の
方向性を向上させようとするものである。
In this regard, in Japanese Patent Publication No. 58-50295, a unidirectional temperature gradient is applied during secondary recrystallization, and (1,101<001
A method for obtaining high magnetic flux density by selectively growing secondary grains in the > orientation has been disclosed. This method utilizes a phenomenon unique to secondary recrystallization, in which the nucleation rate of secondary grains is high at relatively high temperatures, while the grain growth rate is high at low temperatures. By heating while applying a temperature gradient, the grains grow to a large extent, thereby improving the directionality of the steel sheet as a whole.

(発明が解決しようとする問題点) しかしながら上記の方法は、最初に発生する2時粒につ
いては何ら工夫が施されていないために、最初に核発生
した2次粒の方位によって板金体の特性が大きく影響さ
れるという、言わば偶然性に負うところが大きく、従っ
て必ずしも常に高いB10値が得られるわけではないと
ころに問題を残していた。
(Problem to be Solved by the Invention) However, in the above method, no improvements have been made to the secondary grains that are generated first, so the properties of the sheet metal body are determined by the orientation of the secondary grains that are generated first. The problem remains that a high B10 value cannot always be obtained because the B10 value is largely influenced by chance, so to speak.

この発明は上記の問題を有利に解決するもので、最初に
高い確率の下で(110) <001>すなわちゴス方
位粒を核発生させ、ついでこの方位の2次粒を優先的に
成長させることによって、2次粒の方位がゴス方位に高
度に揃ったひいて・は高磁束密度の一方向性けい素鋼板
を安定して製造することができる有利な方法を提案する
ことを目的とする。
This invention advantageously solves the above problem by first nucleating (110) <001>, that is, Goss oriented grains under a high probability, and then preferentially growing secondary grains in this orientation. The purpose of the present invention is to propose an advantageous method that can stably produce a grain-oriented silicon steel sheet in which the orientation of secondary grains is highly aligned with the Goss orientation and thus has a high magnetic flux density.

(問題点を解決するための手段) さて発明者らは、以上のような観点から、核発生と粒成
長に関する研究を系統的に進めた。
(Means for Solving the Problems) From the above-mentioned viewpoints, the inventors systematically conducted research on nucleation and grain growth.

その結果、一般に抑制力の強い領域から核生成して発生
した2次再結晶粒の(110) <oot>方位配向性
は優れていること、しかしながらこういった抑制力の強
い領域では、2次再結晶の開始する温度(Ts++)が
高くなっているため、通常の焼鈍を施した場合、よりT
3.lの低い領域から核生成した配向性の悪い結晶粒の
粒成長によって1次再結晶組織が蚕食されてしまい(1
10) <ool>方位配向性の良い2次粒の核生成は
望み難いことが判った。
As a result, it was found that (110) <oot> orientation of secondary recrystallized grains generated by nucleation from regions with strong restraining force is generally excellent; Since the temperature at which recrystallization starts (Ts++) is higher, when normal annealing is performed, Ts
3. The primary recrystallized structure is eroded by the grain growth of poorly oriented crystal grains nucleated from the low l region (1
10) It was found that it is difficult to expect the nucleation of secondary grains with good orientation in the <ool> direction.

ここに2次再結晶温度とは、最終冷延後、脱炭1次再結
晶焼鈍板を750〜1050℃の温度勾配を持つ温度傾
斜炉にて20時間の焼鈍の後、該鋼板の1次再結晶領域
から2次再結晶領域へ変わる温度を指標としている。
Here, the secondary recrystallization temperature refers to the temperature at which the decarburized primary recrystallization annealed sheet is annealed for 20 hours in a temperature gradient furnace with a temperature gradient of 750 to 1050°C after the final cold rolling. The temperature at which the recrystallization region changes to the secondary recrystallization region is used as an index.

これに対し、鋼板の板面内での集合組織またはインヒビ
ターによる抑制力を意識的に変化させ、より抑制力の強
い’rsiの高い領域から抑制力の弱い方向へ向って、
T□よりも大きな温度勾配を与えながら粒成長をさせて
やれば、T、Rの高い領域で核生成して得られた(11
0) <ool>配向性の良い2次粒を安定して成長さ
せ得ることが判明した。
In contrast, by consciously changing the suppressing force due to the texture or inhibitor within the surface of the steel sheet, we move from the high 'rsi region where the suppressing force is stronger to the direction where the suppressing force is weaker.
If grains were allowed to grow while giving a temperature gradient larger than T□, nucleation occurred in the region with high T and R (11
0) <ool> It was found that secondary grains with good orientation could be stably grown.

この発明は、J二記の知見に立脚するものである。This invention is based on the knowledge of J.2.

すなわちこの発明は、含けい素鋼スラブを、熱間圧延し
、ついで1回又は中間焼鈍を挟む2回以上の冷間圧延を
施して最終板厚としたのち、脱炭・1次再結晶焼鈍を施
し、しかるのち2次再結晶焼鈍ついで純化焼鈍を施′J
−一連の工程によっ°ζ一方向性けい素鋼板を製造する
に当り、上記の脱炭・1次再結晶焼鈍工程におい′ζ、
10℃/s以上の昇温速度で昇温される領域と、10’
C/′S未満の昇温速度で昇温されるか又は昇温途中5
50〜750℃の温度範囲で10秒以上10分未満保持
される領域とに区分することによって、その後の鋼板の
2次再結晶開始温度に10℃以上の局所的な差を与え、
しかるのち上記2次再結晶開始温度の差よりも大きい温
度勾配の下に、2次再結晶開始温度が高い領域から2次
再結晶を開始させる傾斜焼鈍を施すことから成る、磁気
特性に優れた一方向性けい素鋼板の製造方法である。
In other words, the present invention hot-rolls a silicon-containing steel slab, then cold-rolls it once or twice or more with an intermediate annealing in between to obtain the final thickness, and then decarburizes and primary recrystallization annealing. , followed by secondary recrystallization annealing and then purification annealing.
- In manufacturing °ζ unidirectional silicon steel sheet through a series of steps, in the decarburization and primary recrystallization annealing process,
A region heated at a heating rate of 10°C/s or more, and 10'
The temperature is raised at a temperature increase rate of less than C/'S or is in the middle of heating5
By dividing the area into a region where the temperature range is 50 to 750°C for 10 seconds or more and less than 10 minutes, a local difference of 10°C or more is given to the subsequent secondary recrystallization start temperature of the steel plate,
Then, under a temperature gradient larger than the difference in the secondary recrystallization start temperatures, gradient annealing is performed to start the secondary recrystallization from the region where the secondary recrystallization start temperature is high. This is a method for manufacturing a unidirectional silicon steel sheet.

以下この発明を具体的に説明する。This invention will be specifically explained below.

この発明の対称とする鋼は、<001>軸と圧延方向と
の平行度を高める目的で2次再結晶させ、さらに好まし
くは磁区細分化技術により鉄損を大幅に改善させて電気
機器等に使用される一方向性けい素鋼板であって、特に
成分に制約はなく、現在工業的に使用さている鋼はすべ
て含まれる。
The steel that is the object of this invention is subjected to secondary recrystallization for the purpose of increasing the parallelism between the <001> axis and the rolling direction, and more preferably, by magnetic domain refining technology, the iron loss is significantly improved, and the steel is used in electrical equipment, etc. There are no particular restrictions on the composition of the unidirectional silicon steel sheets used, and all steels currently used industrially are included.

すなわち、4.5%以下のSiを含み、2次再結晶の発
生に必要な微量のMn + S 、 AI +Se l
 B 、 Nb等のインヒビター成分を少なくとも1種
以上含佇する組成である。
That is, it contains 4.5% or less of Si, and trace amounts of Mn + S and AI + Se l necessary for the occurrence of secondary recrystallization.
The composition contains at least one inhibitor component such as B and Nb.

この種のけい素鋼板は、インゴット法或いは連続鋳造法
で造塊し鋼片(スラブ)とし、これを熱延、ついで1回
又は中間焼鈍を含む2回以上の冷延を経た後、脱炭、1
次再結晶焼鈍及び仕上げ焼鈍(2次再結晶及び純化焼鈍
)を施して製造される。仕上げ焼鈍をコイル状又は積層
状の鋼板として処理する場合はあらかじめ焼鈍分離剤を
塗布する。
This type of silicon steel sheet is made into a steel slab by ingot method or continuous casting method, which is hot rolled, then cold rolled once or twice or more including intermediate annealing, and then decarburized. ,1
It is manufactured by performing secondary recrystallization annealing and final annealing (secondary recrystallization and purification annealing). When finishing annealing a coiled or laminated steel plate, an annealing separator is applied in advance.

要するに、この発明においては、従来用いられ、あるい
は開発された公知の製造工程の適用が可能なわけである
が、2次再結晶前の段階で、鋼板にTSMの勾配を持た
せる必要がある。
In short, in this invention, conventionally used or developed known manufacturing processes can be applied, but it is necessary to give the steel plate a TSM gradient before secondary recrystallization.

ここに2次再結晶前の段階において、抑制力を板面内で
変化させて2次再結晶開始温度を制御する方法としては
、種々考えられるが、この発明では脱炭焼鈍時における
昇温条件に着目して研究を重ねた。
Various methods can be considered to control the secondary recrystallization start temperature by changing the suppressing force within the sheet surface at the stage before the secondary recrystallization, but in this invention, the heating conditions during decarburization annealing are We have conducted repeated research with a focus on

その結果、脱炭焼鈍の昇温条件と2次再結晶開始温度と
の間には、第1図および第2図に示すような関係がある
ことを見出した。
As a result, it was found that there is a relationship as shown in FIGS. 1 and 2 between the temperature raising conditions for decarburization annealing and the secondary recrystallization start temperature.

第1図は、方向性けい素鋼板の製造工程において、脱炭
焼鈍時の昇温速度を変化させた時の2次再結晶開始温度
の推移の一例を示したものであるが、同図より明らかな
ように、脱炭焼鈍時の昇温速度が10℃/sのところを
境として2次再結晶開始温度に違いが生じている。
Figure 1 shows an example of the transition of the secondary recrystallization start temperature when the temperature increase rate during decarburization annealing is changed in the manufacturing process of grain-oriented silicon steel sheets. As is clear, there is a difference in the secondary recrystallization start temperature when the temperature increase rate during decarburization annealing reaches 10° C./s.

また第2図は、脱炭焼鈍時の昇温途中において短時間の
保定処理を行った時の2次再結晶開始温度の一例を示し
たものであるが、同図から明らかなように、通常行われ
ている保定無しに比べ550〜750℃で10秒以上保
定することによって2次再結晶開始温度が高くなってい
る。
In addition, Figure 2 shows an example of the secondary recrystallization start temperature when a short holding treatment is performed during the temperature rise during decarburization annealing. By holding at 550 to 750°C for 10 seconds or more, the secondary recrystallization start temperature is higher than when holding is not performed.

従って、上記のように脱炭焼鈍の昇温過程においてその
昇温速度を変えるか又は短時間保定処理を行うことによ
って鋼板の2次再結晶開始温度に局所差を与えることが
できるわけである。
Therefore, as described above, by changing the heating rate during the temperature raising process of decarburization annealing or by performing a holding treatment for a short time, it is possible to give local differences to the secondary recrystallization start temperature of the steel sheet.

すなわち脱炭焼鈍時に、鋼板の幅方向ないし長手方向に
昇温条件の異なる領域を連続的または段階的に形成させ
ることによって、2次再結晶開始温度が相違する領域を
形成させ、脱炭焼鈍の昇温速度が遅いか、又は適当な中
途保定を行った2次再結晶開始温度の高い領域から優先
的に(1101<001>方位の2次粒を発生させ、脱
炭焼鈍で急速昇温させた2次再結晶開始温度の低い領域
において2次粒が発生する前に上記(110) <00
1>方位の2次粒によって蚕食させることによって、巨
大に粒成長せしめることで所望方位の2次再結晶を幅方
向ないしは長手方向に完了させることができるのである
。上記の効果を十分得るためには10℃以上の2次再結
晶開始温度の差を鋼板に与えなければならない。という
のは10℃未満では、その効果が小さく所定の効果が得
られないからである。
That is, during decarburization annealing, by forming regions with different heating conditions continuously or stepwise in the width direction or longitudinal direction of the steel sheet, regions with different secondary recrystallization start temperatures are formed, and the decarburization annealing is performed. Preferentially (secondary grains with 1101<001> orientation are generated from the region where the temperature rise rate is slow or the secondary recrystallization start temperature is high with appropriate intermediate holding, and the temperature is rapidly raised by decarburization annealing. (110) <00 before secondary grains are generated in the region where the secondary recrystallization start temperature is low.
By causing the secondary grains in the 1> orientation to cause grain growth, secondary recrystallization in the desired orientation can be completed in the width direction or the length direction. In order to sufficiently obtain the above effect, it is necessary to give the steel sheet a difference in secondary recrystallization start temperature of 10° C. or more. This is because if the temperature is less than 10°C, the effect is small and the desired effect cannot be obtained.

ここに脱炭焼鈍の昇温条件を部分的に、昇温速度10℃
/s以下または550〜750℃で10秒〜10分間保
定することによって、上記所定の2次再結晶開始の温度
差、が確保されるのである。
Here are some of the temperature increase conditions for decarburization annealing: a temperature increase rate of 10℃
By holding the temperature at 550 to 750° C. for 10 seconds to 10 minutes, the predetermined temperature difference for starting secondary recrystallization can be ensured.

かような脱炭焼鈍時の昇温条件に差を付与する方法とし
ては、次のような方法がある。
The following methods can be used to vary the heating conditions during decarburization annealing.

例えば炉加熱帯内に冷却ノズルをもうけ低温の雰囲気ガ
スを鋼板の一部にあてて昇温条件をコントロールする方
法、またはレーザー加熱等の局所加熱装置を用いて炉全
体は除熱または2段昇温の設定とし、局所的に通常の急
速加熱を行う方法、さらには鋼板を2回以上に分けて上
記条件でそれぞれ部分焼鈍し鋼板の2次回結晶開始温度
に差を与える方法などである。
For example, a cooling nozzle is installed in the furnace heating zone and low-temperature atmospheric gas is applied to a part of the steel plate to control the heating conditions, or a local heating device such as laser heating is used to remove heat from the entire furnace or raise the temperature in two stages. There are two methods: one method is to set the temperature, and locally perform normal rapid heating; another method is to divide the steel sheet into two or more parts and partially annealing them under the above conditions, each time giving a difference in the secondary crystallization start temperature of the steel sheet.

ついで2次再結晶焼鈍を施すが、この2次再結晶焼鈍は
、上記のようにして付与したTiNの勾配よりも大きい
温度勾配の下に、T’siが高い領域から2次再結晶を
開始させる傾斜焼鈍とすることが肝要である。
Next, secondary recrystallization annealing is performed, but in this secondary recrystallization annealing, secondary recrystallization is started from a region where T'si is high under a temperature gradient larger than the TiN gradient applied as described above. It is important to perform inclined annealing so that the

ここにかような傾斜焼鈍における温度勾配は、単位長さ
1 cm当り2℃以上とすることが望ましい。
The temperature gradient in such inclined annealing is desirably 2° C. or more per 1 cm of unit length.

しかるのち乾水素雰囲気中で1100〜1250℃15
〜25h程度の純化焼鈍を施す。
After that, it was heated to 1100-1250℃15 in a dry hydrogen atmosphere.
Purification annealing is performed for about 25 hours.

なお上記したような仕上げ焼鈍は、コイル状の銅帯を処
理するタイプが工業的に実施されているが、鋼板(切板
を含む)を一枚または積層した状態で連続的に焼鈍する
連続タイプも提案されていて、この発明ではどちらのタ
イプも使用できる。
The above-mentioned finish annealing is carried out industrially in a type that processes coiled copper strips, but it is also a continuous type in which a single steel plate (including cut plates) or a stack of steel plates is continuously annealed. has also been proposed, and both types can be used in this invention.

また温度勾配の付与に当っては、炉内に温度勾配をもつ
ゾーンを設けることによって容易に達成でき、さらに温
度勾配の付与方向は、鋼板の板幅方向、長さ方向あるい
はその他任意の方向いずれであっても良い。
Furthermore, the temperature gradient can be easily achieved by providing a zone with a temperature gradient in the furnace, and the direction of the temperature gradient can be the width direction, length direction, or any other arbitrary direction of the steel plate. It may be.

かかる一連の処理を施すことによって磁気特性の効果的
な向上を図ることができるが、この発明では、純化焼鈍
後、鋼板表面に張力付与型の極薄被膜を被成することに
よって磁気特性のより一層の向上を図ることもできる。
The magnetic properties can be effectively improved by performing such a series of treatments, but in this invention, after purification annealing, an ultra-thin tension-applying film is formed on the surface of the steel sheet, thereby improving the magnetic properties. Further improvements can also be made.

かかる極薄被膜を被成するためには、まず純化焼鈍後の
鋼板表面の非金属物質を除去後、化学研磨あるいは電解
研磨を施して鋼板表面の平滑度を中心線平均粗さRaで
0.4μm以下とする。というのはこれ以上の粗さでは
、次に続く極薄被膜付与ニヨっても鉄損の改善効果が望
めないからである。
In order to form such an ultra-thin film, first remove non-metallic substances from the surface of the steel sheet after purification annealing, and then perform chemical polishing or electrolytic polishing to reduce the smoothness of the steel sheet surface to a centerline average roughness Ra of 0. The diameter shall be 4 μm or less. This is because if the roughness is greater than this, no improvement in iron loss can be expected even if the next extremely thin coating is applied.

ついでCVD法やPVD法(イオンブレーティングやイ
オンインブランテイシシン)などの蒸着法によって、T
i、Nb、Si、V、Cr、AI+Mn+B、Ni、C
o、Mo、Zr、 Ta+11f、−の窒化物および/
又は炭化物なにびにAltSi+Mn、 Mg+ Zn
+Tiの酸化物のうちからiんだ少くとも1種より主と
して成る極薄被膜を鋼板表面に強固に被成するのである
Next, T is deposited using a vapor deposition method such as CVD or PVD (ion blating or ion imbuing).
i, Nb, Si, V, Cr, AI+Mn+B, Ni, C
o, Mo, Zr, Ta+11f, - nitride and/
Or carbide AltSi+Mn, Mg+Zn
An extremely thin film consisting mainly of at least one type of +Ti oxide is firmly formed on the surface of the steel sheet.

なおかかる被膜の材質としては、玉揚したもののほか、
熱膨張係数が低く鋼板に強固に付着するものであれば何
であってもよい。
In addition to doffing, the material for the coating may be doffed,
Any material may be used as long as it has a low coefficient of thermal expansion and firmly adheres to the steel plate.

さらに必要により常法に従って好ましくは張力付与型低
熱膨張の上塗り絶縁被膜を被成し、レーザー照射、プラ
ズマジェット照射、放電加工、けがき法およびボールペ
ン加工法等の磁区細分化技術を適用する。
Further, if necessary, a tension-applied low thermal expansion top insulating film is preferably applied according to a conventional method, and magnetic domain refining techniques such as laser irradiation, plasma jet irradiation, electrical discharge machining, scribing method, and ballpoint pen processing method are applied.

(作 用) Ts、lの高い領域からTS、lの勾配より大きい温度
勾配を付与しながら鋼板を加熱すると、まず鋼板の端部
がTsR以上の温度に上昇し、配向性の良い粒が少量核
発生して、2次再結晶領域を形成する。
(Function) When a steel plate is heated while applying a temperature gradient larger than the gradient of TS, l from a region where Ts, l is high, the edge of the steel plate first rises to a temperature above TsR, and a small amount of grains with good orientation occur. Nuclei are generated to form a secondary recrystallized region.

このとき最初の粒が核発生するまで温度をT5.lがら
あまり昇温させず、できるだけ低い温度で保定しておく
のが望ましい。
At this time, the temperature is increased to T5 until the first grain is nucleated. It is desirable to keep the temperature as low as possible without raising the temperature too much.

2次再結晶領域とまだTiNに達していない領域との間
に、狭い範囲で1次再結晶組織と2次再結晶組織が混在
した領域が住じる。そして鋼板の温度が上昇するにつれ
てかがる領域は低温側へと移動を続けることになり、そ
れに伴って2次再結晶領域が拡大して行き、粒成長が起
こる。
A region in which the primary recrystallized structure and the secondary recrystallized structure are mixed resides in a narrow range between the secondary recrystallized region and the region that has not yet reached TiN. As the temperature of the steel sheet rises, the warped region continues to move toward the lower temperature side, and the secondary recrystallization region expands accordingly, causing grain growth.

前述したように、2次再結晶における粒成長は核発生温
度よりも低温で起こるので、温度勾配を付与しなから昇
熱する場合、昇熱速度が過大でな(、TS、Iに大きな
バラツキが存在しない限り途中で新たな核生成が起こる
ことは無く、最初の結晶方位粒が低温側へ向かって成長
して行く。このときT、Rに勾配がついており、結晶粒
の成長方向がTs、Iの低い領域つまり抑制力が弱い領
域であると、粒成長がより安定かつ迅速になる特徴があ
る。そしてこの成長を通じて、1次再結晶と2次再結晶
の境界領域の温度は比較的一定に保たれる。
As mentioned above, grain growth in secondary recrystallization occurs at a lower temperature than the nucleation temperature, so when heating without applying a temperature gradient, the heating rate should be excessive (large variations in , TS, and I). As long as there is no new nucleation, no new nucleation will occur during the process, and the first crystal orientation grains will grow toward the low temperature side.At this time, there is a gradient in T and R, and the growth direction of the crystal grains will be Ts. , a region with low I, that is, a region where the suppressing force is weak, has the characteristic that grain growth becomes more stable and rapid.Throughout this growth, the temperature in the boundary region between primary recrystallization and secondary recrystallization remains relatively low. remains constant.

発明者らは、脱炭・1次再結晶焼鈍における焼鈍処理に
工夫を加えてTSRが連続的に変化している鋼板を作成
し、ついでこれらの鋼板をTSRの高い領域でT、Rの
勾配と直角に切断し、鋼板の両端のTSR差が5℃11
0℃、20℃である3水準の試料を作製したのち、これ
らの鋼板に、T3.Iの高い領域を高温側にしてそれぞ
れO’C/cm、1℃/cm。
The inventors created steel sheets in which the TSR changes continuously by modifying the annealing process during decarburization and primary recrystallization annealing, and then applied these steel sheets to the T and R gradients in the high TSR region. The difference in TSR between both ends of the steel plate is 5℃11.
After preparing samples at three levels, 0°C and 20°C, these steel plates were treated with T3. O'C/cm and 1°C/cm, respectively, with the high I region as the high temperature side.

2℃/cm、  5℃/ cmの温度勾配を付与して仕
上げ焼鈍を行った。
Finish annealing was performed by applying a temperature gradient of 2°C/cm and 5°C/cm.

かくして得られた製品板の磁束密度について調べた結果
を次表に示すが、2次再結晶粒の最初の核生成場所のT
3Rが他の部分よりも10℃以上高く、かつ温度勾配が
2℃/cm以上であるとき、B、の改善に顕著な効果が
見られることがわかった。
The results of investigating the magnetic flux density of the thus obtained product plate are shown in the table below.
It has been found that when 3R is 10° C. or more higher than other parts and the temperature gradient is 2° C./cm or more, a remarkable effect is seen in improving B.

温度勾配を付与しながら2次再結晶を進行させた場合、
2次再結晶がおこる温度は鋼板の種類や昇熱条件によっ
て一定ではなく、その温度範囲を限定することは出来な
いが、例えばMnSeとsbをインヒビターとする方向
性けい素鋼板の場合は850〜1000℃の範囲にあり
、この発明においてはこの境界領域に温度勾配を設けれ
ば良いのであって、その前後は従来採用している処理条
件を採用しても良く、もちろん温度勾配を設けてもよい
When secondary recrystallization progresses while applying a temperature gradient,
The temperature at which secondary recrystallization occurs is not constant depending on the type of steel sheet and heating conditions, and the temperature range cannot be limited, but for example, in the case of grain-oriented silicon steel sheet with MnSe and sb as inhibitors, it is 850 ~ It is within the range of 1000°C, and in this invention, it is sufficient to provide a temperature gradient in this boundary region, and before and after that, the conventional processing conditions may be used, and of course, even if a temperature gradient is provided. good.

かくして磁気特性と(に磁束密度に優れた一方向性けい
素鋼板を安定して得ることができるようになったのであ
る。
In this way, it became possible to stably obtain unidirectional silicon steel sheets with excellent magnetic properties and magnetic flux density.

なお、この発明法により鋼板の2次再結晶開始温度に局
所的に差が生じる機構は定かではないが、発明者らの考
えでは、脱炭焼鈍時の昇温条件を変えることによって1
次回結晶集合組織に差が生じ、これによって上記効果が
得られたものと考えている。
Although the mechanism by which the method of this invention causes local differences in the secondary recrystallization start temperature of the steel sheet is not clear, the inventors believe that by changing the heating conditions during decarburization annealing,
It is believed that the above effect was obtained due to the difference in the crystal texture.

(実施例) 実施例I C: 0.045%、St : 3.40%、Mn :
 0.065%、Se: 0.022%、Sb : 0
.025%およびMo : 0.011%を含有し、残
部は不可避的不純物を除いてFeの組成になるけい素鋼
熱延板を、熱延板焼鈍し、脱スケール後、中間焼鈍を含
む2回の冷間圧延を施して0.23mm厚に仕上げたの
ち、4分割して試料A、B。
(Example) Example I C: 0.045%, St: 3.40%, Mn:
0.065%, Se: 0.022%, Sb: 0
.. A silicon steel hot-rolled sheet containing 0.025% and Mo: 0.011%, with the remainder having a composition of Fe excluding unavoidable impurities, was annealed, and after descaling, it was annealed twice, including intermediate annealing. After cold rolling to a thickness of 0.23 mm, samples A and B were divided into four parts.

CおよびDとした。C and D.

A、Bについては、コイル幅方向にヒーターが分割され
また冷却用抜熱装置によりコイル幅端部の温度上昇を抑
制できるように作られた連続炉を用いて、全幅: 10
00mのコイル一端部30fflI1幅を7”C/sで
、一方他端を23℃/sで昇温し、2分間の脱炭・1次
再結晶焼鈍を施した。
For A and B, a continuous furnace was used in which the heater was divided in the width direction of the coil and a cooling heat removal device was used to suppress the temperature rise at the ends of the coil width, and the total width was 10.
One end of the 00m coil with a width of 30fflI1 was heated at 7''C/s, and the other end was heated at 23°C/s to perform decarburization and primary recrystallization annealing for 2 minutes.

これに対して試料C,Dは、コイル全幅を22℃/Sで
均一に昇温させた。この時7℃/sで昇温した所の2次
再結晶開始温度は890℃5一方他端部および比較材C
,Dのそれは840℃であった。第3図に、幅方向にわ
たる2次再結晶開始温度の分布を実線で示す。
On the other hand, in samples C and D, the temperature was uniformly raised across the entire width of the coil at 22° C./S. At this time, the temperature at which the secondary recrystallization started was 890°C when the temperature was raised at 7°C/s.
, D was 840°C. In FIG. 3, the distribution of the secondary recrystallization start temperature across the width direction is shown by a solid line.

ついで各鋼板に、焼鈍分離剤を塗布したのち、コイル端
面に加熱ヒーターと冷却装置のついたBox型焼鈍炉を
用いて、2次再結晶開始温度が高い側が890℃1反対
側が820℃となるように昇温し30時間保定後、その
温度傾斜を保ったまま5℃/hで10時間昇温し、しか
るのち1200″Cで10時間の純化焼鈍を施した。
Next, after applying an annealing separator to each steel plate, using a box-type annealing furnace equipped with a heating heater and a cooling device on the end face of the coil, the side where the secondary recrystallization start temperature is higher is 890°C, and the opposite side is 820°C. After raising the temperature as shown above and holding it for 30 hours, the temperature was raised at 5° C./h for 10 hours while maintaining the temperature gradient, and then purification annealing was performed at 1200″C for 10 hours.

なお試料B、Dについては、さらに絶縁被膜を除去後、
3%HFとH2O2液中で化学研磨し、鏡面に仕上げた
のち、CH,ガスとNtガス、TiC1mガスの混合ガ
ス雰囲気中で熱処理し、CVDによって鋼板表面にTi
(C、N)層を0.5μ#I厚みで形成させた。
For samples B and D, after removing the insulation coating,
After chemical polishing in 3% HF and H2O2 solution to give a mirror finish, heat treatment is performed in a mixed gas atmosphere of CH gas, Nt gas, and TiC1m gas, and Ti is applied to the steel plate surface by CVD.
A (C,N) layer was formed with a thickness of 0.5μ#I.

かくして得られた製品板の磁気特性について調べた結果
を下表に示す。
The results of investigating the magnetic properties of the thus obtained product plate are shown in the table below.

なお、いずれも、磁気特性は幅方向で同等であった。In addition, the magnetic properties were all the same in the width direction.

実施例2 C: 0.056%、Si : 3.30%、Mn :
 0.079%、Se:  0.025%、Al : 
0.031%およびN : 0.0081%を含有し、
残部は不可避的不純物を除いてFeの組成になるけい素
鋼熱延板を、熱延板焼鈍後、冷間圧延によって0.23
mm厚に仕上げたのちA−Dに4分割した。
Example 2 C: 0.056%, Si: 3.30%, Mn:
0.079%, Se: 0.025%, Al:
Contains 0.031% and N: 0.0081%,
A silicon steel hot-rolled sheet having a composition of Fe with the remainder excluding unavoidable impurities is annealed and then cold-rolled to a 0.23
After finishing it to a thickness of mm, it was divided into four parts A to D.

試料A、Bについては、前段に赤外線ヒーターによる局
所加熱帯のついた炉で、全幅: 1000mmのコイル
の幅中央40画だけをまず600℃で30秒保定し、次
いで通常の加熱帯において19℃/sで835℃まで加
熱し、脱炭焼鈍を行った。
For samples A and B, in a furnace equipped with a local heating zone using an infrared heater at the front stage, only the center 40 strokes of a coil with a total width of 1000 mm were first held at 600°C for 30 seconds, and then heated to 19°C in a normal heating zone. /s to 835°C to perform decarburization annealing.

これに対して試料C,Dは、コイル幅全域を19”C/
sで均一に835℃まで加熱し同様の脱炭・1次再結晶
焼鈍を行った。
On the other hand, samples C and D have a coil width of 19”C/
Similar decarburization and primary recrystallization annealing was performed by uniformly heating to 835° C. at s.

この時コイル中央部の2次回結晶開始温度は940℃1
一方その他の部分および比較材のそれは870℃であっ
た。試料A、Bの幅方向にわたる2次回結晶開始温度の
分布を第3図に破線で示す。
At this time, the temperature at which the secondary crystallization starts at the center of the coil is 940℃1
On the other hand, the temperature in other parts and the comparative material was 870°C. The distribution of secondary crystal initiation temperatures across the width direction of samples A and B is shown in FIG. 3 by a broken line.

ついで各試料に焼鈍分離剤を塗布したのち、コイル両端
部に冷却盤のついたコイルBox炉を用いて高温部が8
00℃から1000℃までを、コイル中央部と両端部で
100℃の温度傾斜がつくようにして8℃/hで加熱し
、ついで1200℃で13時間の純化焼鈍を施した。
Next, after applying an annealing separator to each sample, a coil box furnace with cooling plates at both ends of the coil was used to heat the high temperature part to 8.
The coil was heated at 8°C/h from 00°C to 1000°C with a temperature gradient of 100°C between the center and both ends of the coil, and then purified annealed at 1200°C for 13 hours.

なお試料B、Dについてはさらにレーザーを用いて圧延
方向に直角に21J/cm2のエネルギー密度で9cm
ピッチで磁区細分化処理を施した。
For samples B and D, a laser was further used to roll 9 cm perpendicularly to the rolling direction at an energy density of 21 J/cm2.
Magnetic domain refining processing was performed using pitch.

かくして得られた各製品板の磁気特性について調べた結
果を下表に示す。
The results of investigating the magnetic properties of each product board thus obtained are shown in the table below.

なお、いずれも、磁気特性は幅方向でほぼ同等であった
In addition, the magnetic properties of both samples were almost the same in the width direction.

(発明の効果) かくしてこの発明によれば、磁束密度BIlが2.0T
に近いきわめて磁束密度の高い一方向性けい素鋼板が製
造でき、さらにはレーザー処理やCVDによる表面処理
との併用により鉄損特性にも優れた一方向性けい素鋼板
を得ることができる。
(Effect of the invention) Thus, according to this invention, the magnetic flux density BIl is 2.0T.
It is possible to produce a unidirectional silicon steel sheet with an extremely high magnetic flux density close to 100%, and furthermore, by combining surface treatment with laser treatment or CVD, it is possible to obtain a unidirectional silicon steel sheet with excellent iron loss characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、脱炭焼鈍における昇温速度と2次回結晶開始
温度との関係を示したグラフ、第2図は、脱炭焼鈍の昇
温中における保定時間・温度と2次回結晶開始温度との
関係を示したグラフ、 第3図は、実施例1および2の板幅方向にわたる2次回
結晶開始温度分布を示した図である。
Figure 1 is a graph showing the relationship between temperature increase rate and secondary crystal start temperature during decarburization annealing, and Figure 2 is a graph showing the relationship between holding time and temperature during temperature increase during decarburization annealing and secondary crystal start temperature. FIG. 3 is a diagram showing the secondary crystallization start temperature distribution across the plate width direction in Examples 1 and 2.

Claims (1)

【特許請求の範囲】 1、含けい素鋼スラブを、熱間圧延し、ついで1回又は
中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚と
したのち、脱炭・1次再結晶焼鈍を施し、しかるのち2
次再結晶焼鈍ついで純化焼鈍を施す一連の工程によって
一方向性けい素鋼板を製造するに当り、 上記の脱炭・1次再結晶焼鈍工程において、10℃/s
以上の昇温速度で昇温される領域と、10℃/s未満の
昇温速度で昇温されるか又は昇温途中550〜750℃
の温度範囲で10秒以上10分未満保持される領域とに
区分することによって、その後の鋼板の2次再結晶開始
温度に10℃以上の局所的な差を与え、 しかるのち上記2次再結晶開始温度の差よ りも大きい温度勾配の下に、2次再結晶開始温度が高い
領域から2次再結晶を開始させる傾斜焼鈍を施すことを
特徴とする、磁気特性に優れた一方向性けい素鋼板の製
造方法。 2、傾斜焼鈍における温度勾配が、単位長さ1cm当り
2℃以上である特許請求の範囲第1項記載の方法。
[Claims] 1. A silicon-containing steel slab is hot-rolled, then cold-rolled once or twice or more with intermediate annealing to achieve the final thickness, and then decarburized and subjected to primary After recrystallization annealing, 2
In manufacturing unidirectional silicon steel sheets through a series of steps of secondary recrystallization annealing and then purification annealing,
Areas that are heated at a heating rate of 550 to 750°C, or areas that are heated at a heating rate of less than 10°C/s or 550 to 750°C during heating.
A local difference of 10°C or more is given to the subsequent secondary recrystallization start temperature of the steel plate by dividing the steel plate into a region where the temperature range is maintained for 10 seconds or more but less than 10 minutes, and then the secondary recrystallization is performed. Unidirectional silicon with excellent magnetic properties, characterized by performing gradient annealing to start secondary recrystallization from a region where the secondary recrystallization start temperature is high under a temperature gradient greater than the difference in starting temperatures. Method of manufacturing steel plates. 2. The method according to claim 1, wherein the temperature gradient in inclined annealing is 2° C. or more per 1 cm of unit length.
JP62112410A 1987-05-11 1987-05-11 Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic Pending JPS63277718A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62112410A JPS63277718A (en) 1987-05-11 1987-05-11 Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
US07/190,280 US4975127A (en) 1987-05-11 1988-05-04 Method of producing grain oriented silicon steel sheets having magnetic properties
EP88304050A EP0292150B1 (en) 1987-05-11 1988-05-05 Method of producing grain oriented silicon steel sheets having excellent magnetic properties
DE3888725T DE3888725T2 (en) 1987-05-11 1988-05-05 Process for the production of grain-oriented silicon steel sheets with excellent magnetic properties.
CA000566363A CA1332344C (en) 1987-05-11 1988-05-10 Method of producing grain oriented silicon steel sheets having excellent magnetic properties
KR1019880005531A KR960003173B1 (en) 1987-05-11 1988-05-11 Method of producing grain oriented silicon steel sheets having magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62112410A JPS63277718A (en) 1987-05-11 1987-05-11 Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic

Publications (1)

Publication Number Publication Date
JPS63277718A true JPS63277718A (en) 1988-11-15

Family

ID=14585951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62112410A Pending JPS63277718A (en) 1987-05-11 1987-05-11 Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS63277718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104263A (en) * 1988-06-21 1990-04-17 Yoshie Kurihara Protein curculine and use thereof
JP2014194073A (en) * 2013-02-28 2014-10-09 Jfe Steel Corp Method for manufacturing oriented electromagnetic steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104263A (en) * 1988-06-21 1990-04-17 Yoshie Kurihara Protein curculine and use thereof
JP2014194073A (en) * 2013-02-28 2014-10-09 Jfe Steel Corp Method for manufacturing oriented electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
JP5988027B2 (en) Method for producing ultrathin grain-oriented electrical steel sheet
KR20240035911A (en) Method for producing grain-oriented electrical steel sheet
JP7197068B1 (en) Manufacturing method of grain-oriented electrical steel sheet
KR960003173B1 (en) Method of producing grain oriented silicon steel sheets having magnetic properties
JPWO2019131853A1 (en) Low iron loss grain-oriented electrical steel sheet and its manufacturing method
JPS63277718A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JPS63277717A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JPH01176034A (en) Production of grain-oriented magnetic steel sheet having excellent magnetic characteristic
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3067164B2 (en) Manufacturing method of ultra-low iron loss unidirectional ultra-thin silicon steel sheet
JPH067527B2 (en) Ultra-low iron loss grain-oriented silicon steel sheet and method for producing the same
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP2000129354A (en) Manufacture of grain oriented silicon steel sheet with high magnetic flux density
JPS63277716A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPS63277711A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPS63277712A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPH02263923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH042724A (en) Production of thin grain-oriented silicon steel sheet excellent in magnetic property
JPS63277714A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPS63277710A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic properties
JPS6256205B2 (en)
JPS63277715A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic