JPS63277712A - Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic - Google Patents

Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic

Info

Publication number
JPS63277712A
JPS63277712A JP62112404A JP11240487A JPS63277712A JP S63277712 A JPS63277712 A JP S63277712A JP 62112404 A JP62112404 A JP 62112404A JP 11240487 A JP11240487 A JP 11240487A JP S63277712 A JPS63277712 A JP S63277712A
Authority
JP
Japan
Prior art keywords
temp
annealing
steel sheet
temperature
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62112404A
Other languages
Japanese (ja)
Inventor
Yoshinori Kobayashi
小林 義紀
Mitsumasa Kurosawa
黒沢 光正
Yoshiaki Iida
飯田 嘉明
Masayuki Sakaguchi
雅之 坂口
Katsuo Iwamoto
岩本 勝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62112404A priority Critical patent/JPS63277712A/en
Priority to US07/190,280 priority patent/US4975127A/en
Priority to DE3888725T priority patent/DE3888725T2/en
Priority to EP88304050A priority patent/EP0292150B1/en
Priority to CA000566363A priority patent/CA1332344C/en
Priority to KR1019880005531A priority patent/KR960003173B1/en
Publication of JPS63277712A publication Critical patent/JPS63277712A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture a grain-oriented silicon steel sheet excellent in magnetic flux density, by hot-rolling and cold-rolling a silicon-steel slab, by subjecting the resulting steel sheet to decarburization and primary recrystallization annealing under specific conditions, and then by applying secondary recrystallization annealing. CONSTITUTION:A silicon-steel slab is hot-rolled and successively subjected to single cold rolling or to two-time or more cold rollings, while process-annealed between the cold rolling stages, so as to be worked into a cold-rolled steel sheet of the final sheet thickness. Subsequently, at the time of applying decarburization and primary recrystallization annealing, the above steel sheet is placed into a continuous annealing furnace in which heaters are dividedly disposed and temp. differences can be provided in a sheet-width direction and then decarburization and primary recrystallization annealing are carried out by dividing into a region where temp. is raised at >=10 deg.C/sec temp.-rise rate and a region where temp. is raised at <=10 deg.C/sec temp.-rise rate or holding is applied for 10sec-10min in a temp. range of 550-750 deg.C in the course of temp. rise, so that annealing is carried out by providing >=10 deg.C temp. difference to the initial temp. of the secondary recrystallization at the time of subsequent secondary recrystallization annealing.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気特性に優れた一方向性けい素鋼板の製
造方法に関し、磁気特性中でも磁束密度の有利な改善を
図ろうとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a unidirectional silicon steel sheet with excellent magnetic properties, and aims to advantageously improve magnetic flux density among the magnetic properties. .

(従来の技術) 主しとて変圧器等の鉄心材料として用いられる一方向性
けい素鋼板に要求される特性は、一定の磁化力において
得られる磁束密度が高いこと、および一定の磁束密度を
与えた場合にその鉄損が低いことである。通常これらの
代表値としては、磁化力800A/mにおける磁束密度
Be(T:テスラ)および磁束密度1.70T、周波数
50)+2における鉄損−+ tzso (W/kg)
が採用されている。
(Prior art) The properties required of unidirectional silicon steel sheets, which are mainly used as core materials for transformers, are that they have a high magnetic flux density at a constant magnetization force, and a high magnetic flux density at a constant magnetization force. The iron loss is low when the iron is given. Typically, these typical values are: magnetic flux density Be (T: Tesla) at magnetizing force of 800 A/m and iron loss at magnetic flux density of 1.70 T, frequency 50) + 2 (W/kg).
has been adopted.

これらの両特性を含む磁気特性を向上させるためには、
現在まで多くの研究がなされ、特に素材の成分、熱間お
よび冷間圧延法、熱処理方法等の改善によってそれぞれ
少なからざる成果が得られている。
In order to improve magnetic properties including both of these properties,
Much research has been carried out to date, and considerable results have been obtained, particularly through improvements in the composition of materials, hot and cold rolling methods, heat treatment methods, etc.

従来の一方向性けい素鋼板は、通常Si:2.5〜4.
5wt%(以下単にχで示す)を含む低炭素鋼に微量の
Mn、 S、 Se+ Sb、 Sn、八l、Nおよび
B等のインヒビター形成元素を添加した素材を熱間圧延
した後、1回もしくは中間焼鈍を挟む2回以上の冷間圧
延を経て・該冷延鋼板に脱炭を兼ねた1次再結晶焼鈍を
施し・しかるのち最終仕上げ焼鈍工程において2次再結
晶処理を施すことによって2次再結晶粒を(110)<
001>方位に高度に集積させると共に、引き続く純化
焼鈍によって鋼板中の不純物を除去することにより良好
な磁気特性を得ている。
Conventional unidirectional silicon steel sheets usually have Si: 2.5 to 4.
After hot rolling a material in which trace amounts of inhibitor-forming elements such as Mn, S, Se+Sb, Sn, 8L, N, and B are added to low carbon steel containing 5 wt% (hereinafter simply indicated as χ), it is rolled once. Alternatively, by performing two or more cold rollings with intermediate annealing in between, performing primary recrystallization annealing that also serves as decarburization on the cold rolled steel sheet, and then performing secondary recrystallization treatment in the final finishing annealing step. The next recrystallized grain is (110)<
Good magnetic properties are obtained by highly accumulating the steel in the 001> direction and removing impurities in the steel sheet through subsequent purification annealing.

この際、2次再結晶粒の方位が(110) <001>
へ集積するほど鋼板の磁束密度は高くなるが、一方で巨
大な2次粒と成り易く、粒内の磁区幅が増し、渦流損の
増加により鉄損特性が劣化する傾向にあった。そこで2
次粒を微細化することを目的とした努力が種々施され、
例えば特開昭60−89521号公報では、再結晶促進
域と遅滞域を交互に設け2次粒の核発生を増しかつ成長
を阻止することで2次粒の微細化を図り鉄損を向上させ
る方法が提案されている。しかしながら、近年物理的な
局所歪の導入による磁区細分化技術の確立により、とく
に2次粒を微細化せずとも低鉄損が得られるようになっ
たため、技術開発の方向は、磁束密度の向上に傾いてい
る。
At this time, the orientation of the secondary recrystallized grains is (110) <001>
The magnetic flux density of the steel sheet becomes higher as it accumulates, but on the other hand, it tends to form huge secondary grains, the magnetic domain width within the grains increases, and the iron loss characteristics tend to deteriorate due to an increase in eddy current loss. So 2
Various efforts have been made to refine the secondary grains,
For example, in Japanese Patent Application Laid-Open No. 60-89521, recrystallization promotion regions and retardation regions are alternately provided to increase the nucleation of secondary grains and prevent their growth, thereby making the secondary grains finer and improving iron loss. A method is proposed. However, in recent years, with the establishment of magnetic domain refining technology through the introduction of physical local strain, it has become possible to obtain low iron loss without particularly making the secondary grains finer, so the direction of technological development is to improve magnetic flux density. leaning towards

この点、特公昭58−50295号公報では、2次再結
晶時に一方向の温度勾配を与え、(110) <001
>方位の2次粒を選択成長させることで高い磁束密度を
得る方法が開示されている。しかしながらこの方法は温
度制御が極めて難しいことから実用的とは言い難い。
In this regard, in Japanese Patent Publication No. 58-50295, a unidirectional temperature gradient is applied during secondary recrystallization, and (110) <001
A method for obtaining high magnetic flux density by selectively growing secondary grains in the > orientation has been disclosed. However, this method cannot be called practical because temperature control is extremely difficult.

(発明が解決しようとする問題点) この発明は、上記の問題を有利に解決するもので、とく
に煩雑な温度制御などを行う必要なしに、(1101<
001>方位の2次粒を優先的に選択成長させることに
よって容易に高い磁束密度を得ることができる一方向性
けい素鋼板の有利な製造方法を提案することを目的とす
る。
(Problems to be Solved by the Invention) The present invention advantageously solves the above problems, and eliminates the need for particularly complicated temperature control.
It is an object of the present invention to propose an advantageous method for manufacturing a grain-oriented silicon steel sheet that can easily obtain a high magnetic flux density by selectively growing secondary grains with a 001> orientation.

(問題点を解決するための手段) さて発明者らは、上記の問題を解決すべ(鋭意研究を重
ねた結果、とくに2次再結晶時における温度勾配を制御
しなくとも、鋼板の2次再結晶開始温度を制御してやれ
ば、(110) <001>方位の2次粒を優先的に選
択成長させることができ、ひいては高い磁束密度が得ら
れることの知見を得た。
(Means for solving the problem) Now, the inventors have found that the above problem can be solved (as a result of extensive research, it is possible to recrystallize a steel sheet by secondary recrystallization without particularly controlling the temperature gradient during secondary recrystallization. It was found that by controlling the crystal initiation temperature, it is possible to preferentially grow secondary grains in the (110) <001> orientation, and as a result, a high magnetic flux density can be obtained.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、含けい素鋼スラブを、熱間圧延し
、ついで1回または中間焼鈍を挟む2回以上の冷間圧延
を施して最終板厚としたのち、脱炭・1次再結晶焼鈍を
施し、しかるのち2次再結晶焼鈍ついで純化焼鈍を施す
一連の工程からなる一方向性けい素鋼板の製造方法にお
いて、鋼板に、脱炭・1次再結晶焼鈍を施すに当り、1
0″C/s以上の昇温速度で昇温される領域と、10℃
/s未満の昇温速度で昇温されるか又は昇温途中550
〜750℃の温度範囲で10秒以上10分未満保持され
る領域とに区分することによって、その後の2次再結晶
焼鈍における2次再結晶開始温度にlO℃以上の温度差
を付与することから成る、磁気特性に優れた一方向性け
い素鋼板の製造方法である。
In other words, the present invention hot-rolls a silicon-containing steel slab, then cold-rolls it once or twice or more with an intermediate annealing in between to obtain the final thickness, and then decarburizes it and anneales it for primary recrystallization. In the method for producing a unidirectional silicon steel sheet, which consists of a series of steps in which the steel sheet is subjected to decarburization and primary recrystallization annealing, 1.
Area heated at a heating rate of 0″C/s or more and 10°C
The temperature is raised at a temperature increase rate of less than /s, or the temperature is raised in the middle of 550
By dividing the temperature range between 10 seconds and less than 10 minutes in the temperature range of ~750°C, a temperature difference of 10°C or more is given to the secondary recrystallization start temperature in the subsequent secondary recrystallization annealing. This is a method of manufacturing a unidirectional silicon steel sheet with excellent magnetic properties.

以下この発明を具体的に説明する。This invention will be explained in detail below.

まずこの発明の解明経緯について説明する。First, the background to the elucidation of this invention will be explained.

従来、鉄損低域のために2次粒の微細化を図るべく2次
粒の核発生頻度を高くすると、(110)<001>方
位からのずれが増すため、磁束密度の低下が避けられな
かったが、2次再結晶処理を焼鈍温度の均一保定処理と
することで(110) <001>方位を優先的に核発
生させることができ、かくして磁束密度を損わずに2次
粒の微細化を可能にしてきた。磁束密度を向上させるに
あたり、優先的ニ(110) <001>  方位を核
発生させたのち、更  ・に他方位粒に対し選択的に成
長させることで(110)<001>方位に高度に集積
した磁束密度の高い2次再結晶組織が得られる。
Conventionally, when increasing the frequency of nucleation of secondary grains in order to make them finer in order to reduce iron loss, the deviation from the (110) <001> orientation increases, making it impossible to avoid a decrease in magnetic flux density. However, by performing the secondary recrystallization treatment to maintain a uniform annealing temperature, it is possible to preferentially generate nuclei in the (110) <001> orientation, thus increasing the number of secondary grains without impairing the magnetic flux density. It has made miniaturization possible. In order to improve the magnetic flux density, after preferentially nucleating the (110) <001> orientation, the nucleates are further selectively grown with respect to the other grains, resulting in a high degree of accumulation in the (110) <001> orientation. A secondary recrystallized structure with high magnetic flux density is obtained.

しかしながら従来の一方向性けい素鋼板では、2次粒の
核発生頻度が高いためrtlo) <001>方位粒を
十分に選択成長させることはできなかった。
However, in the conventional unidirectional silicon steel sheet, it has not been possible to sufficiently selectively grow grains in the <001> orientation due to the high frequency of nucleation of secondary grains.

この点、発明者らの研究 により鋼板内で(110)<
001>方位の核発生時期を局所的にずらすことで、先
に発生した(110) <001>方位粒を選択的に成
長させことができ、かくして磁束密度の極めて高い2次
再結晶組織が得られることが究明されたのである。
In this regard, the inventors' research showed that (110) <
By locally shifting the timing of nucleation in the 001> orientation, it is possible to selectively grow the (110) <001> oriented grains that were generated earlier, thus obtaining a secondary recrystallized structure with an extremely high magnetic flux density. It has been determined that this is possible.

一方向性けい素鋼板の2次再結晶開始温度は、通常80
0〜1100℃の範囲にあるが、その成分、製造工程に
より鋼板固有の温度が決まる。ここで2次再結晶開始温
度は、最終冷延後、脱炭・1次再結晶焼鈍板を一定温度
で20h保持したときの、2次再結晶粒の発生した温度
を指標として用いている。通常、この2次再結晶開始温
度以上の温度での焼鈍を長時間行うことで2次再結晶を
完了させることができるが、この発明では、2次再結晶
焼鈍に先だち、製造条件に工夫を加えて、該鋼板の2次
再結晶開始温度が鋼板内でlO℃以上、200℃以内の
温度差をもつようにし、まず2次再結晶温度の低い領域
から優先的に(110) <001>方位の2次粒を発
生させ、引続き他領域において2次粒が発生する前に上
記(110) <001>方位の2次粒によって蚕食さ
せて巨大に粒成長せしめることで2次再結晶を完了させ
ることが大きな特徴である。
The secondary recrystallization start temperature of grain-oriented silicon steel sheets is usually 80
Although it is in the range of 0 to 1100°C, the specific temperature of the steel sheet is determined by its components and manufacturing process. Here, the secondary recrystallization start temperature is defined as the temperature at which secondary recrystallized grains are generated when the decarburized and primary recrystallized annealed plate is held at a constant temperature for 20 hours after the final cold rolling. Normally, secondary recrystallization can be completed by performing annealing at a temperature equal to or higher than the secondary recrystallization start temperature for a long time, but in this invention, prior to secondary recrystallization annealing, manufacturing conditions are devised. In addition, the secondary recrystallization start temperature of the steel sheet is made to have a temperature difference within the steel sheet of 10° C. or more and within 200° C., and first, the region with the lower secondary recrystallization temperature is preferentially (110) <001> Secondary grains with the orientation are generated, and before secondary grains are generated in other areas, the secondary grains with the above (110) <001> orientation are eroded to cause huge grain growth, thereby completing the secondary recrystallization. A major feature is that it allows

この際2次再結晶粒の大きさは、2次再結晶温度の分布
状態に依存するため、鋼板の2次再結晶温度の温度差を
制′42Hすることにより高磁束密度を維持したまま2
次再結晶組織の制御も可能となる。
At this time, the size of the secondary recrystallized grains depends on the distribution state of the secondary recrystallization temperature, so by controlling the temperature difference in the secondary recrystallization temperature of the steel sheet, the secondary recrystallization grain size is
It also becomes possible to control the subsequent recrystallization structure.

ここに製造工程において2次再結晶開始温度を制御する
方法としては、種々考えられるが、この発明では脱炭焼
鈍時における昇温条件に着目して研究を重ねた。
Various methods can be considered for controlling the secondary recrystallization start temperature in the manufacturing process, but in the present invention, research has been focused on the temperature raising conditions during decarburization annealing.

その結果、脱炭焼鈍の昇温条件と2次再結晶開始温度と
の間には、第1図および第2図に示すような関係がある
ことを見出した。
As a result, it was found that there is a relationship as shown in FIGS. 1 and 2 between the temperature raising conditions for decarburization annealing and the secondary recrystallization start temperature.

第1図は、方向性けい素鋼板の製造工程において、脱炭
焼鈍時の昇温速度を変化させた時の2次再結晶開始温度
の推移の一例を示したものであるが、同図より明らかな
ように、脱炭焼鈍時の昇温速度が10℃/sのところを
境として2次再結晶開始温度に違いが生じている。
Figure 1 shows an example of the transition of the secondary recrystallization start temperature when the temperature increase rate during decarburization annealing is changed in the manufacturing process of grain-oriented silicon steel sheets. As is clear, there is a difference in the secondary recrystallization start temperature when the temperature increase rate during decarburization annealing reaches 10° C./s.

また第2図は、脱炭焼鈍時の昇温途中において短時間の
保定処理を行った時の2次再結晶開始温度の一例を示し
たものであるが、同図から明らかなように、通常行われ
ている保定無しに比べ550〜750℃で10秒以上保
定することによって2次再結晶開始温度が高くなってい
る。
In addition, Figure 2 shows an example of the secondary recrystallization start temperature when a short holding treatment is performed during the temperature rise during decarburization annealing. By holding at 550 to 750°C for 10 seconds or more, the secondary recrystallization start temperature is higher than when holding is not performed.

従って、上記のように脱炭焼鈍の昇温過程においてその
昇温速度を変えるか又は短時間保定処理を行うことによ
って鋼板の2次再結晶開始温度に局所差を与えることが
できるわけである。
Therefore, as described above, by changing the heating rate during the temperature raising process of decarburization annealing or by performing a holding treatment for a short time, it is possible to give local differences to the secondary recrystallization start temperature of the steel sheet.

すなわち脱炭焼鈍時に、鋼板の幅方向ないし長手方向に
昇温条件の異なる領域を連続的または段階的に形成させ
ることによって、2次再結晶開始温度が相違する領域を
形成させ、脱炭焼鈍で急速昇温させた2次再結晶開始温
度の低い領域から優先的に(110) <001>方位
の2次粒を発生させ、脱炭焼鈍の昇温速度が遅いか、又
は適当な中途保定を行った2次再結晶開始温度の高い領
域において2次粒が発生する前に上記(110) <0
01>方位の2次粒によって蚕食させることによって、
巨大に粒成長せしめることで所望方位の2次再結晶を幅
方向ないしは長手方向に完了させることができるのであ
る。上記の効果を十分得るためには10’C以上の2次
再結晶開始温度の差を鋼板に与えなければならない。と
いうのは10″C未満では、その効果が小さく所定の効
果が得られないからである。
In other words, during decarburization annealing, by forming regions with different heating conditions in the width direction or longitudinal direction of the steel sheet in a continuous or stepwise manner, regions with different secondary recrystallization start temperatures are formed. Secondary grains with the (110) <001> orientation are generated preferentially from the region where the secondary recrystallization start temperature is rapidly raised, and the temperature rise rate during decarburization annealing is slow or the temperature is maintained appropriately midway. (110) <0 before secondary grains are generated in the region where the secondary recrystallization start temperature is high.
By feeding silkworms with secondary grains in the 01> direction,
By causing huge grain growth, secondary recrystallization in a desired orientation can be completed in the width direction or length direction. In order to fully obtain the above effects, it is necessary to give the steel sheets a difference in secondary recrystallization start temperature of 10'C or more. This is because if the temperature is less than 10''C, the effect is small and the desired effect cannot be obtained.

ここに脱炭焼鈍の昇温条件を部分的に、昇温速度10℃
ps以下または550〜750℃で10秒〜1o分間保
定することによって、上記所定の2次再結晶開始の温度
差が確保されるのである。
Here are some of the temperature increase conditions for decarburization annealing: a temperature increase rate of 10℃
By holding the temperature at 550 to 750° C. for 10 seconds to 10 minutes, the predetermined temperature difference for starting secondary recrystallization is ensured.

かような脱炭焼鈍時の昇温条件に差を付与する方法とし
ては、次のような方法がある。
The following methods can be used to vary the heating conditions during decarburization annealing.

例えば炉加熱帯内に冷却ノズルをもうけ低温の雰囲気ガ
スを鋼板の一部にあてて昇温条件をコントロールする方
法、またはレーザー加熱等の局所加熱装置を用いて炉全
体は除熱または2段界温の設定とし、局所的に通常の急
速加熱を行う方法、さらには鋼板を2回以上に分けて上
記条件でそれぞれ部分焼鈍しf8板の2次再結晶開始温
度に差を与える方法などである。
For example, a cooling nozzle is provided in the furnace heating zone and low-temperature atmospheric gas is applied to a part of the steel plate to control the heating conditions, or a local heating device such as laser heating is used to remove heat from the entire furnace or a two-stage heating zone is used. There are two methods: one method is to set the temperature, and perform local rapid heating, and another is to divide the steel plate into two or more parts and partially annealing them under the above conditions, respectively, to give a difference in the secondary recrystallization start temperature of the F8 plate. .

この発明における主要工程は上記の通りであるが、他の
工程については、従来がら用いられている製造工程を適
用すればよい。
The main steps in this invention are as described above, but for other steps, conventional manufacturing steps may be applied.

つまり、Si 4.5%以下を含み、かつ微量添加元素
としてMn、  S、 Se、 Aj2.  N、  
B、 Sn、 Cu、 M。
That is, it contains 4.5% or less of Si, and also contains Mn, S, Se, Aj2. N,
B, Sn, Cu, M.

およびにNb等の少なくとも1種類以上を含む素材を溶
製し、通常の製鋼法、熱延法により熱延板とするか、最
近開発された直接製板法を用いて1.0〜3゜5mm厚
程度の板材とし、必要に応じて熱延板焼鈍を行い、つい
で1回又は中間焼鈍を含む2回以上の冷間圧延によって
最終板厚とし、これに上記脱炭焼鈍を施し、ついで焼鈍
分離剤を塗布したのち、2次再結晶を完了させる焼鈍を
行う。このとき2次再結晶を2次再結晶開始温度が低い
所から発生させて所定の高い磁束密度を得るためには、
2次再結晶開始の最低温度で定温保定するかあるいは2
次再結晶開始の最低温度から完了までを10”C/h以
下の昇温速度で加熱することが望ましい。
A material containing at least one type of Nb, etc. is melted and made into a hot-rolled sheet using a normal steel-making method or hot-rolling method, or a recently developed direct sheet-making method is used to produce a hot-rolled sheet with a diameter of 1.0 to 3°. The plate is made into a plate material with a thickness of about 5 mm, hot-rolled plate annealed as necessary, then cold rolled once or twice or more including intermediate annealing to obtain the final plate thickness, subjected to the above-mentioned decarburization annealing, and then annealed. After applying the separating agent, annealing is performed to complete secondary recrystallization. At this time, in order to generate secondary recrystallization from a place where the secondary recrystallization start temperature is low and obtain a predetermined high magnetic flux density,
Maintain the temperature at the lowest temperature at which secondary recrystallization begins, or
It is desirable to heat at a temperature increase rate of 10''C/h or less from the minimum temperature at which the next recrystallization begins until the completion of the recrystallization.

その後、1150’C以上で純化焼鈍を施したのち、コ
イルの巻きぐせを除去する必要がある場合には平たん化
焼鈍を行い、ときにはさらに強力コーティングを付与し
て製品とする。
After that, a purifying annealing is performed at 1150'C or more, and then a flattening annealing is performed if it is necessary to remove the coil curls, and sometimes a strong coating is applied to produce a product.

さらにこの発明では、その特徴である極めて高い磁束密
度を利用して、レーザー、プラズマジェット等による磁
区細分化技術や鏡面化、イオンブレーティング等の特殊
表面処理の併用により、極めて鉄損のすぐれた一方向性
けい素鋼板を製造することもできる。換言すればこの発
明法は、上記のような最近開発された極低鉄損化手法の
効果をさらに有効に活用できる製造方法といえる。
Furthermore, this invention takes advantage of its characteristic extremely high magnetic flux density and combines magnetic domain refining technology using lasers, plasma jets, etc., and special surface treatments such as mirror polishing and ion brating to achieve extremely low iron loss. It is also possible to produce unidirectional silicon steel sheets. In other words, the method of the present invention can be said to be a manufacturing method that can more effectively utilize the effects of the recently developed ultra-low iron loss method described above.

(作 用) この発明法により、鋼板の2次再結晶開始温度に局部的
に差が生じる機構はまだ明確に解明されたわけではない
が、発明者らの考えでは、脱炭焼鈍の昇温条件を変える
ことによって1次再結晶集合組織に差が生じ、これによ
って上記効果が得られるものと考えている。
(Function) Although the mechanism by which this invention method causes local differences in the secondary recrystallization start temperature of steel sheets has not yet been clearly elucidated, the inventors believe that the temperature increase conditions for decarburization annealing It is believed that by changing the , a difference occurs in the primary recrystallized texture, and that this produces the above effect.

(実施例) 実施例I C:0.044%、Si : 3.35%、Mn : 
0.065%、Se? 0.20%、Sb : 0.0
23%およびMo : 0.011%を含み、残部は実
質的にFeの組成になるけい素鋼熱延板を、熱延板焼鈍
し、脱スケール後、中間焼鈍を挟む2回の冷間圧延を施
して最終板厚0.23mmの冷延板としたのち、4分割
して試料A、B、CおよびDとした。
(Example) Example I C: 0.044%, Si: 3.35%, Mn:
0.065%, Se? 0.20%, Sb: 0.0
A silicon steel hot-rolled sheet containing 23% and Mo: 0.011%, with the remainder essentially having a composition of Fe, is hot-rolled and descaled, then cold-rolled twice with an intermediate annealing in between. After that, a cold-rolled plate with a final thickness of 0.23 mm was obtained, and then divided into four parts to give samples A, B, C, and D.

試料A、Bについては20℃/sの昇温速度で、他方試
料C,Dについては、板幅方向にヒーターが分割され板
幅方向に温度差を付与できるように制御された連続焼鈍
炉を用いて、全幅: 1000mmのコイル中央部3o
IIIII1幅は20℃/Sで、また両端部は5℃/S
で、それぞれ830℃まで昇温し、2分間の脱炭処理後
、焼鈍分離剤を塗布してから、835℃160hの2次
再結晶焼鈍ついで1190℃,7hの純化焼鈍を施した
。なお試料C,Dにおいて、コイル中央部での2次再結
晶開始温度は835℃1一方両端部でのそれは890℃
であった。
Samples A and B were heated at a heating rate of 20°C/s, while Samples C and D were heated in a continuous annealing furnace controlled so that the heater was divided in the width direction of the plate to provide a temperature difference in the width direction of the plate. Using, full width: 1000mm central part of the coil 3o
III1 width is 20℃/S, and both ends are 5℃/S
Then, the temperature was raised to 830°C, and after decarburization treatment for 2 minutes, an annealing separator was applied, followed by secondary recrystallization annealing at 835°C for 160 hours, followed by purification annealing at 1190°C for 7 hours. In samples C and D, the secondary recrystallization start temperature at the center of the coil is 835°C, while that at both ends is 890°C.
Met.

その後、試料B、Dについてはレーザー照射による磁区
細分化処理を施した。
Thereafter, samples B and D were subjected to magnetic domain refining treatment by laser irradiation.

かくして得られた各製品板の磁気特性について調べた結
果を表1に示す。
Table 1 shows the results of investigating the magnetic properties of each product board thus obtained.

なお、いずれも、磁気特性は、幅方向でほぼ同等であっ
た。
Note that the magnetic properties of both samples were almost the same in the width direction.

表   1 実施例2 C: 0.055%、Si : 3.45%、Mn :
 0.080%、S:0.025%、A f : 0.
029%およびN : 0.0082%を含み、残部は
実質的にFeの組成になるけい素鋼熱延板を、1150
’Cで熱延板焼鈍後、1回の冷間圧延によって0.23
mmに仕上げたのち、4分割して試料A−Dとした。
Table 1 Example 2 C: 0.055%, Si: 3.45%, Mn:
0.080%, S: 0.025%, Af: 0.
029% and N: 0.0082%, with the remainder being substantially Fe.
0.23 by one cold rolling after hot-rolled plate annealing at 'C.
After finishing the sample to 1 mm, it was divided into four parts to form samples A to D.

試料A、Bについては17℃/sの昇温速度で835℃
まで昇温し、他方試料C,Dについてはレーザー加熱に
より局所的に加熱できる炉を用いて、全幅: 1000
mmのコイル中央部940 s幅は昇温途中の650℃
で1分間保持後、コイル両端部は試料A。
Samples A and B were heated to 835°C at a heating rate of 17°C/s.
On the other hand, samples C and D were heated using a furnace that could locally heat them by laser heating, with a total width of 1000 mm.
940 s width at the center of the coil is 650°C during heating
After holding for 1 minute, both ends of the coil are sample A.

Bと同じ条件でそれぞれ835℃まで昇温し、2分間の
脱炭焼鈍後、焼鈍分離剤を塗布してから、800℃から
1000℃までを7℃/hの速度で昇温しで2次再結晶
を完了させ、ついで1200℃で10hの純化焼鈍を施
した。なお試料A、BおよびC,Dの両端部の2次再結
晶開始温度は840℃1また試料C9Dの中央部のそれ
は885℃であった。
The temperature was raised to 835°C under the same conditions as B, and after decarburization annealing for 2 minutes, an annealing separator was applied, and then the temperature was raised from 800°C to 1000°C at a rate of 7°C/h. After completing the recrystallization, purification annealing was performed at 1200° C. for 10 hours. The secondary recrystallization start temperature at both ends of Samples A, B, C, and D was 840°C1, and that at the center of Sample C9D was 885°C.

その後、試料B、Dについては、表面を鏡面化後、CV
Dにより鏡面仕上げ表面上にTiNの被膜を被成した。
After that, for samples B and D, after mirror-finishing the surfaces, CV
A TiN film was formed on the mirror-finished surface by step D.

かくして得られた各製品板の磁気特性について調べた結
果を表2に示す。
Table 2 shows the results of investigating the magnetic properties of each product board thus obtained.

なお、いずれも、磁気特性は、幅方向でほぼ同等であっ
た。
Note that the magnetic properties of both samples were almost the same in the width direction.

表   2 (発明の効果) かくしてこの発明によれば、磁気特性とくに磁束密度B
IOが高い一方向性けい素鋼板を製造することができ、
さらには磁区細分化技術や特殊表面処理技術との併用に
より鉄損特性にも優れた一方向性けい素鋼板を得ること
ができる。
Table 2 (Effects of the invention) Thus, according to this invention, the magnetic properties, especially the magnetic flux density B
It is possible to produce unidirectional silicon steel sheets with high IO,
Furthermore, by combining magnetic domain refining technology and special surface treatment technology, it is possible to obtain a unidirectional silicon steel sheet with excellent iron loss characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、脱炭焼鈍における昇温速度と2次再結晶開始
温度との関係を示したグラフ、第2図は、脱炭焼鈍の昇
温中における保定時間、温度と2次再結晶開始温度との
関係を示したグラフである。 特許出願人  川崎製鉄株式会社 第1図 算私通度(’C/s)
Figure 1 is a graph showing the relationship between temperature increase rate and secondary recrystallization start temperature during decarburization annealing, and Figure 2 is a graph showing the holding time, temperature, and secondary recrystallization start temperature during temperature increase during decarburization annealing. It is a graph showing the relationship with temperature. Patent Applicant: Kawasaki Steel Co., Ltd. 1st Calculation Private Degree ('C/s)

Claims (1)

【特許請求の範囲】 1、含けい素鋼スラブを、熱間圧延し、ついで1回また
は中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚
としたのち、脱炭・1次再結晶焼鈍を施し、しかるのち
2次再結晶焼鈍ついで純化焼鈍を施す一連の工程からな
る一方向性けい素鋼板の製造方法において、 鋼板に、脱炭・1次再結晶焼鈍を施すに当 り、10℃/s以上の昇温速度で昇温される領域と、1
0℃/s未満の昇温速度で昇温されるか又は昇温途中5
50〜750℃の温度範囲で10秒以上10分未満保持
される領域とに区分することによって、その後の2次再
結晶焼鈍における2次再結晶開始温度に10℃以上の温
度差を付与することを特徴とする、磁気特性に優れた一
方向性けい素鋼板の製造方法。
[Claims] 1. A silicon-containing steel slab is hot-rolled, then cold-rolled once or twice or more with intermediate annealing to achieve the final thickness, and then decarburized and subjected to primary In a method for producing a unidirectional silicon steel sheet, which consists of a series of steps of recrystallization annealing, then secondary recrystallization annealing, and purification annealing, when decarburizing and primary recrystallization annealing is performed on the steel sheet, A region heated at a heating rate of 10°C/s or more, and 1
The temperature is raised at a temperature increase rate of less than 0°C/s or in the middle of heating5
A temperature difference of 10°C or more is provided to the secondary recrystallization start temperature in the subsequent secondary recrystallization annealing by dividing it into a region where the temperature range is 50 to 750°C for 10 seconds or more and less than 10 minutes. A method for manufacturing a unidirectional silicon steel sheet with excellent magnetic properties.
JP62112404A 1987-05-11 1987-05-11 Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic Pending JPS63277712A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62112404A JPS63277712A (en) 1987-05-11 1987-05-11 Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
US07/190,280 US4975127A (en) 1987-05-11 1988-05-04 Method of producing grain oriented silicon steel sheets having magnetic properties
DE3888725T DE3888725T2 (en) 1987-05-11 1988-05-05 Process for the production of grain-oriented silicon steel sheets with excellent magnetic properties.
EP88304050A EP0292150B1 (en) 1987-05-11 1988-05-05 Method of producing grain oriented silicon steel sheets having excellent magnetic properties
CA000566363A CA1332344C (en) 1987-05-11 1988-05-10 Method of producing grain oriented silicon steel sheets having excellent magnetic properties
KR1019880005531A KR960003173B1 (en) 1987-05-11 1988-05-11 Method of producing grain oriented silicon steel sheets having magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62112404A JPS63277712A (en) 1987-05-11 1987-05-11 Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic

Publications (1)

Publication Number Publication Date
JPS63277712A true JPS63277712A (en) 1988-11-15

Family

ID=14585807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62112404A Pending JPS63277712A (en) 1987-05-11 1987-05-11 Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS63277712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022501518A (en) * 2018-09-27 2022-01-06 ポスコPosco Directional electrical steel sheet and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022501518A (en) * 2018-09-27 2022-01-06 ポスコPosco Directional electrical steel sheet and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
KR100831756B1 (en) Process for the control of inhibitors distribution in the production of grain oriented electrical steel strips
JP4279993B2 (en) Method for producing unidirectional silicon steel sheet
JPS63277712A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPS63277713A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPS63277717A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPH08157963A (en) Production of grain oriented silicon steel sheet
JPS63277718A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPH04341518A (en) Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH0222422A (en) Production of unidirectional type silicon steel sheet excellent in magnetic property
JP2883224B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH042724A (en) Production of thin grain-oriented silicon steel sheet excellent in magnetic property
JP3301622B2 (en) Method for producing grain-oriented silicon steel sheet having uniform and excellent magnetic properties in the sheet width direction
JP3885240B2 (en) Method for producing unidirectional silicon steel sheet
JPH02263923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPS63277711A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPH0987747A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH066747B2 (en) Method for producing unidirectional silicon steel sheet having high magnetic flux density and low iron loss
JPH1030125A (en) Production of grain oriented silicon steel sheet
JP3858280B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH0353022A (en) Manufacture of low core loss-high magnetic flux density nonoriented silicon steel sheet
JPH07116515B2 (en) Method for producing unidirectional silicon steel sheet having excellent magnetic properties
JPH06330174A (en) Production of low iron loss grain oriented silicon steel sheet