JPS63253616A - Formation of semiconductor thin film - Google Patents
Formation of semiconductor thin filmInfo
- Publication number
- JPS63253616A JPS63253616A JP8821287A JP8821287A JPS63253616A JP S63253616 A JPS63253616 A JP S63253616A JP 8821287 A JP8821287 A JP 8821287A JP 8821287 A JP8821287 A JP 8821287A JP S63253616 A JPS63253616 A JP S63253616A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- ions
- implanted
- region
- semiconductor thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 45
- 239000004065 semiconductor Substances 0.000 title claims abstract description 21
- 230000015572 biosynthetic process Effects 0.000 title 1
- 239000013078 crystal Substances 0.000 claims abstract description 26
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 12
- -1 nitrogen ions Chemical class 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000007790 solid phase Substances 0.000 claims description 7
- 238000002513 implantation Methods 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 14
- 239000010408 film Substances 0.000 abstract description 6
- 238000005468 ion implantation Methods 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract 2
- 238000000034 method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、薄膜トランジスタの形成等に用いられる半導
体薄膜の形成方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a semiconductor thin film used for forming thin film transistors and the like.
本発明は、上記の様な半導体薄膜の形成方法において、
絶縁性基体上の非単結晶の半導体薄膜に窒素イオンを選
択的に注入し、その後に半導体薄膜で固相成長を行わせ
ることによって、所望の位置に結晶化領域を有する半導
体薄膜を形成することができる様にしたものである。The present invention provides a method for forming a semiconductor thin film as described above.
Forming a semiconductor thin film having crystallized regions at desired positions by selectively implanting nitrogen ions into a non-single-crystal semiconductor thin film on an insulating substrate and then performing solid phase growth on the semiconductor thin film. It was made so that it could be done.
半導体薄膜に薄膜トランジスタを形成したりする場合、
絶縁性基体に例えばSi薄膜を堆積させ、このSi薄膜
にSi゛イオンを注入して一旦は非単結晶化し、更に5
iFil膜を熱処理してこのSim膜で固相成長を行わ
せ、その後にそのSi薄膜に薄膜トランジスタを形成し
たりしていた。When forming thin film transistors on semiconductor thin films,
For example, a Si thin film is deposited on an insulating substrate, and Si ions are implanted into this Si thin film to make it non-single crystal.
The iFil film is heat-treated to perform solid phase growth on the Sim film, and then a thin film transistor is formed on the Si thin film.
ところが、結晶核の発生位置が全くランダムなために、
上述の様にして半導体薄膜を形成しただけでは、結晶粒
がランダムに成長し、結晶化領域を所望の位置に形成す
ることができない。However, since the location of the crystal nuclei is completely random,
If a semiconductor thin film is simply formed as described above, crystal grains will grow randomly and crystallized regions cannot be formed at desired positions.
この結果、薄膜トランジスタ等の活性領域として用いる
領域内に粒界の存在する確率が高く、性能の高い薄膜ト
ランジスタ等を形成することができなかった。As a result, there is a high probability that grain boundaries exist in a region used as an active region of a thin film transistor, etc., making it impossible to form a thin film transistor or the like with high performance.
本発明による半導体薄膜の形成方法は、絶縁性基体11
上の非単結晶の半導体薄膜12に窒素イオン15を選択
的に注入する工程と、前記注入の後に前記半導体薄膜1
2で固相成長を行わせる工程とを夫々具備している。In the method for forming a semiconductor thin film according to the present invention, an insulating substrate 11
A step of selectively implanting nitrogen ions 15 into the non-single crystal semiconductor thin film 12 above, and a step of selectively implanting nitrogen ions 15 into the non-single crystal semiconductor thin film 12,
2 and a step of performing solid phase growth.
本発明による半導体薄膜の形成方法では、窒素イオン1
5を選択的に注入してから半導体薄膜12で固相成長を
行わせており、窒素イオン15を注入しなかった領域1
2aでは結晶粒の成長が相対的に早く、窒素イオン15
を注入した領域12bでは結晶粒の成長が相対的に遅い
。In the method for forming a semiconductor thin film according to the present invention, nitrogen ions 1
After selectively implanting nitrogen ions 15, solid phase growth is performed on the semiconductor thin film 12, and the region 1 in which nitrogen ions 15 are not implanted.
In 2a, the growth of crystal grains is relatively fast, and nitrogen ions 15
The growth of crystal grains is relatively slow in the region 12b where the ions are implanted.
従って、窒素イオン15を注入した領域12bで成長し
始めた結晶粒が窒素イオン15を注入しなかった領域1
2a内にまで広がってこの領域12a内に粒界の存在す
る確率は低く、窒素イオン15を注入しなかった領域1
2aが単一の結晶粒で占有される確率は高く、単一の結
晶粒を所望の位置に形成することができる。Therefore, the crystal grains that started to grow in the region 12b into which the nitrogen ions 15 were implanted are the regions 1 into which the nitrogen ions 15 were not implanted.
The probability that a grain boundary exists in this region 12a is low, and the region 1 in which the nitrogen ions 15 are not implanted is
The probability that 2a is occupied by a single crystal grain is high, and a single crystal grain can be formed at a desired position.
以下、本発明の一実施例を第1図及び第2図を参照しな
がら説明する。An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
第1図が、本実施例の工程を示している。本実施例では
、第1A図に示す様に、Siの表面に5iOzを形成し
たものや石英等から成る絶縁性基体11に、厚さが80
0人程度の5iF)膜12をまず堆積させる。FIG. 1 shows the steps of this embodiment. In this embodiment, as shown in FIG. 1A, an insulating substrate 11 made of Si, quartz, or the like with 5 iOz formed on the surface thereof has a thickness of 80
A 5iF) film 12 of about 0 is first deposited.
次に、1.5 x 101S個/c艷の密度のSi”イ
オン13を40keVのエネルギでSil膜12の全面
に注入して、このSii膜12の全体を一旦は非単結晶
化する。Next, Si'' ions 13 at a density of 1.5 x 101S/c are implanted into the entire surface of the Sil film 12 with an energy of 40 keV, and the entire Si film 12 is once made into a non-single crystal.
次に、第1B図に示す様に、イオン注入に対するマスク
14をSi薄膜12の所望の領域に形成する。そして、
5×1014個/dの密度のN+イオン15を25ke
VのエネルギでSi薄膜12及びマクス14に打ち込む
。Next, as shown in FIG. 1B, a mask 14 for ion implantation is formed in a desired region of the Si thin film 12. and,
25ke of N+ ions 15 with a density of 5×1014 ions/d
The energy of V is implanted into the Si thin film 12 and the mask 14.
すると、Si薄膜12のうちでマスク14に覆われてい
ない領域にのみN°イオン15が注入され、Si薄膜1
2のうちでマスク14に覆われている領域にはN゛イオ
ン15注入されていない。Then, N° ions 15 are implanted only into the region of the Si thin film 12 that is not covered by the mask 14, and the Si thin film 1
In the region covered by the mask 14, the N ion 15 is not implanted.
その後、マスク14を除去し、600”C程度と比較的
低い温度でSi薄膜12で固相成長を行わせる。Thereafter, the mask 14 is removed and solid phase growth is performed on the Si thin film 12 at a relatively low temperature of about 600''C.
すると、第1C図に示す様に、Si薄膜12のうちでN
°イオン15が注入されなかった領域12aでは結晶粒
が相対的に早く成長し、Si薄膜12のうちでN゛イオ
ン15注入された領域12bでは結晶粒が相対的に遅く
成長する。Then, as shown in FIG. 1C, N in the Si thin film 12
Crystal grains grow relatively quickly in the region 12a where the ions 15 are not implanted, and crystal grains grow relatively slowly in the region 12b where the N ions 15 are implanted in the Si thin film 12.
第2図は、15時間の固相成長を行った後の領域12a
、12bに種々の波長の光を入射させた場合の反射率を
示している。この第2図から明らかな様に、略全部の波
長の光に対して、領域12aの反射率16aが領域12
bの反射率16bよりも高い。これは、領域12aに対
して領域12bの結晶化が遅れていることを示している
。FIG. 2 shows the region 12a after 15 hours of solid phase growth.
, 12b shows the reflectance when light of various wavelengths is incident on the light beams 12b. As is clear from this FIG.
It is higher than the reflectance 16b of b. This indicates that the crystallization of the region 12b is delayed relative to the region 12a.
このために、領域12bで成長し始めた結晶粒が領域1
2a内にまで広がる前に、領域12a内で成長し始めた
結晶粒がこの領域12aを占有してしまう確率が高い。For this reason, the crystal grains that have started to grow in region 12b are
There is a high probability that the crystal grains that have started to grow within the region 12a will occupy this region 12a before spreading to the inside of the region 2a.
つまり、領域12bで成長し始めた結晶粒が領域12a
内にまで広がってこの領域12a内に粒界の存在する確
率は低く、領域12aは単一の結晶粒で占有される確率
が高い。In other words, the crystal grains that have started to grow in the region 12b are grown in the region 12a.
The probability that a grain boundary exists within this region 12a is low, and the probability that the region 12a is occupied by a single crystal grain is high.
従って、領域12aを薄膜トランジスタ等の活性領域と
して用いる様にすれば、性能の高い薄膜トランジスタ等
を形成することができる。Therefore, if the region 12a is used as an active region of a thin film transistor or the like, a thin film transistor or the like with high performance can be formed.
なお、領域12・aの面積を小さくすればする程、この
領域12a内で成長し始める結晶粒が単一である確率が
高くなり、性能の更に高い薄膜トランジスタ等を形成す
ることができる。Note that the smaller the area of the region 12.a, the higher the probability that a single crystal grain will start growing within this region 12a, making it possible to form a thin film transistor or the like with even higher performance.
本発明による半導体薄膜の形成方法では、単一の結晶粒
を所望の位置に形成することができるので、所望の位置
に結晶化領域を有する半導体薄膜を形成することができ
る。In the method for forming a semiconductor thin film according to the present invention, a single crystal grain can be formed at a desired position, so a semiconductor thin film having a crystallized region at a desired position can be formed.
第1A図及び第1B図は本発明の一実施例の工程を順次
に示す側断面図、第1C図は一実施例において第1B図
に示した工程に続く工程を示す平面図、第2図は一実施
例で形成した半導体薄膜の反射率を示すグラフである。
なお図面に用いた符号において、
11 ・・・・−・−・−・−・・・・・・絶縁性基
体12 −−−−−−−・・・−−一−−−−−・Si
薄膜12a、 12b −−−−・−領域
14−・・−・・・−・・・・−マスク15−・・−・
−・・−・・−N1イオンである。1A and 1B are side sectional views sequentially showing the steps of an embodiment of the present invention, FIG. 1C is a plan view showing the steps following the step shown in FIG. 1B in an embodiment, and FIG. is a graph showing the reflectance of a semiconductor thin film formed in one example. In addition, in the reference numerals used in the drawings, 11...---------... Insulating substrate 12--------------Si
Thin films 12a, 12b -------Region 14--Mask 15--
-...-...-N1 ion.
Claims (1)
択的に注入する工程と、 前記注入の後に前記半導体薄膜で固相成長を行わせる工
程とを夫々具備する半導体薄膜の形成方法。[Scope of Claims] A semiconductor comprising the steps of selectively implanting nitrogen ions into a non-single crystal semiconductor thin film on an insulating substrate, and performing solid phase growth on the semiconductor thin film after the implantation. How to form a thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62088212A JP2595525B2 (en) | 1987-04-10 | 1987-04-10 | Method of forming semiconductor thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62088212A JP2595525B2 (en) | 1987-04-10 | 1987-04-10 | Method of forming semiconductor thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63253616A true JPS63253616A (en) | 1988-10-20 |
JP2595525B2 JP2595525B2 (en) | 1997-04-02 |
Family
ID=13936598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62088212A Expired - Fee Related JP2595525B2 (en) | 1987-04-10 | 1987-04-10 | Method of forming semiconductor thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2595525B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0390607A2 (en) * | 1989-03-31 | 1990-10-03 | Canon Kabushiki Kaisha | Process for forming crystalline semiconductor film |
JPH03120715A (en) * | 1989-10-04 | 1991-05-22 | Canon Inc | Method of crystal growth and crystal |
JPH03155124A (en) * | 1989-11-14 | 1991-07-03 | Nippon Sheet Glass Co Ltd | Manufacture of semiconductor film |
EP0472970A2 (en) * | 1990-08-08 | 1992-03-04 | Canon Kabushiki Kaisha | Process for growing crystalline thin film |
US5207863A (en) * | 1990-04-06 | 1993-05-04 | Canon Kabushiki Kaisha | Crystal growth method and crystalline article obtained by said method |
US5278093A (en) * | 1989-09-23 | 1994-01-11 | Canon Kabushiki Kaisha | Method for forming semiconductor thin film |
US5290712A (en) * | 1989-03-31 | 1994-03-01 | Canon Kabushiki Kaisha | Process for forming crystalline semiconductor film |
US5457058A (en) * | 1989-10-09 | 1995-10-10 | Canon Kabushiki Kaisha | Crystal growth method |
US5495824A (en) * | 1990-04-10 | 1996-03-05 | Canon Kabushiki Kaisha | Method for forming semiconductor thin film |
WO2008015649A1 (en) * | 2006-08-04 | 2008-02-07 | Nxp B.V. | Method of manufacturing a double gate transistor |
JP2011505685A (en) * | 2007-11-13 | 2011-02-24 | ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド | Improvement of thin film materials with particle beam assistance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5676522A (en) * | 1979-11-29 | 1981-06-24 | Toshiba Corp | Formation of semiconductor thin film |
JPS6130018A (en) * | 1984-07-20 | 1986-02-12 | 日本電信電話株式会社 | Thick film capacitor and method of producing same |
JPS6263417A (en) * | 1985-09-13 | 1987-03-20 | Sony Corp | Solid phase growth method of polycrystalline semiconductor thin film |
-
1987
- 1987-04-10 JP JP62088212A patent/JP2595525B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5676522A (en) * | 1979-11-29 | 1981-06-24 | Toshiba Corp | Formation of semiconductor thin film |
JPS6130018A (en) * | 1984-07-20 | 1986-02-12 | 日本電信電話株式会社 | Thick film capacitor and method of producing same |
JPS6263417A (en) * | 1985-09-13 | 1987-03-20 | Sony Corp | Solid phase growth method of polycrystalline semiconductor thin film |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0390607A2 (en) * | 1989-03-31 | 1990-10-03 | Canon Kabushiki Kaisha | Process for forming crystalline semiconductor film |
US5290712A (en) * | 1989-03-31 | 1994-03-01 | Canon Kabushiki Kaisha | Process for forming crystalline semiconductor film |
US5278093A (en) * | 1989-09-23 | 1994-01-11 | Canon Kabushiki Kaisha | Method for forming semiconductor thin film |
JPH03120715A (en) * | 1989-10-04 | 1991-05-22 | Canon Inc | Method of crystal growth and crystal |
US5457058A (en) * | 1989-10-09 | 1995-10-10 | Canon Kabushiki Kaisha | Crystal growth method |
JPH03155124A (en) * | 1989-11-14 | 1991-07-03 | Nippon Sheet Glass Co Ltd | Manufacture of semiconductor film |
US5207863A (en) * | 1990-04-06 | 1993-05-04 | Canon Kabushiki Kaisha | Crystal growth method and crystalline article obtained by said method |
US5495824A (en) * | 1990-04-10 | 1996-03-05 | Canon Kabushiki Kaisha | Method for forming semiconductor thin film |
EP0472970A3 (en) * | 1990-08-08 | 1992-04-08 | Canon Kabushiki Kaisha | Process for growing crystalline thin film |
EP0472970A2 (en) * | 1990-08-08 | 1992-03-04 | Canon Kabushiki Kaisha | Process for growing crystalline thin film |
US5318661A (en) * | 1990-08-08 | 1994-06-07 | Canon Kabushiki Kaisha | Process for growing crystalline thin film |
WO2008015649A1 (en) * | 2006-08-04 | 2008-02-07 | Nxp B.V. | Method of manufacturing a double gate transistor |
US8183116B2 (en) | 2006-08-04 | 2012-05-22 | Nxp B.V. | Method of manufacturing a double gate transistor |
JP2011505685A (en) * | 2007-11-13 | 2011-02-24 | ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド | Improvement of thin film materials with particle beam assistance |
Also Published As
Publication number | Publication date |
---|---|
JP2595525B2 (en) | 1997-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5927995A (en) | Reduction of threading dislocations by amorphization and recrystallization | |
JPS63253616A (en) | Formation of semiconductor thin film | |
JP2000195798A (en) | Manufacture of semiconductor | |
JPH0492413A (en) | Growth of crystal thin film | |
JPH0252419A (en) | Manufacture of semiconductor substrate | |
JP2800060B2 (en) | Method for manufacturing semiconductor film | |
JPH03104210A (en) | Manufacture of semiconductor device | |
JPS6327852B2 (en) | ||
JP2550968B2 (en) | Crystallization method of semiconductor thin film | |
JPH04188612A (en) | Crystal growth method and crystallized substance obtained by said method | |
JPS62119914A (en) | Method for solid-phase epitaxy of semiconductor layer | |
JPS6185815A (en) | Method for formation of polycrystalline silicon film | |
JPS61127117A (en) | Method for forming polycrystalline semiconductor thin film | |
JPS60164316A (en) | Formation of semiconductor thin film | |
KR970003805A (en) | Semiconductor device manufacturing method | |
JPS5856408A (en) | Method of growing single crystal silicon film | |
JP2760449B2 (en) | Semiconductor thin film manufacturing method | |
JPS6265409A (en) | Formation of semiconductor thin film | |
JPH0670965B2 (en) | Method for forming semiconductor layer | |
JP2727564B2 (en) | Heteroepitaxial growth method | |
JPH07273028A (en) | Semiconductor substrate and manufacture thereof | |
JP3216318B2 (en) | Semiconductor crystal growth method | |
JPH01261291A (en) | Laser annealing process | |
JPS6043814A (en) | Manufacture of semiconductor crystalline film | |
JPH04286111A (en) | Manufacture of polycrystal silicon thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |