JPS63253616A - Formation of semiconductor thin film - Google Patents

Formation of semiconductor thin film

Info

Publication number
JPS63253616A
JPS63253616A JP8821287A JP8821287A JPS63253616A JP S63253616 A JPS63253616 A JP S63253616A JP 8821287 A JP8821287 A JP 8821287A JP 8821287 A JP8821287 A JP 8821287A JP S63253616 A JPS63253616 A JP S63253616A
Authority
JP
Japan
Prior art keywords
thin film
ions
implanted
region
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8821287A
Other languages
Japanese (ja)
Other versions
JP2595525B2 (en
Inventor
Takashi Noguchi
隆 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62088212A priority Critical patent/JP2595525B2/en
Publication of JPS63253616A publication Critical patent/JPS63253616A/en
Application granted granted Critical
Publication of JP2595525B2 publication Critical patent/JP2595525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable a single crystal grain to be formed at a desired position, by selectively implanting nitrogen ions in a non-single-crystal semiconductor thin film on an insulating substrate and subjecting the semiconductor thin film to solid growth. CONSTITUTION:An Si thin film 12 is first deposited on an insulating substrate 11 and Si<+> ions 13 are implanted all over the Si thin film 12 so that the whole Si thin film 12 is once converted to non-single crystals. A mask 14 to be used for ion implantation is formed in a desired region on the Si thin film 12. N<+> ions 15 are implanted in the Si film 12 and the mask 14. The mask 14 is then removed and the Si thin film 12 is subjected to solid growth at a relatively low temperature of about 600 deg.C, whereby crystal grains are allowed to grow relatively fast in the regions 12a where no N<+> ions 15 have been implanted while crystal grains grow relatively slowly in the regions 12b where the N<+> ions 15 have been implanted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜トランジスタの形成等に用いられる半導
体薄膜の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a semiconductor thin film used for forming thin film transistors and the like.

〔発明の概要〕[Summary of the invention]

本発明は、上記の様な半導体薄膜の形成方法において、
絶縁性基体上の非単結晶の半導体薄膜に窒素イオンを選
択的に注入し、その後に半導体薄膜で固相成長を行わせ
ることによって、所望の位置に結晶化領域を有する半導
体薄膜を形成することができる様にしたものである。
The present invention provides a method for forming a semiconductor thin film as described above.
Forming a semiconductor thin film having crystallized regions at desired positions by selectively implanting nitrogen ions into a non-single-crystal semiconductor thin film on an insulating substrate and then performing solid phase growth on the semiconductor thin film. It was made so that it could be done.

〔従来の技術〕[Conventional technology]

半導体薄膜に薄膜トランジスタを形成したりする場合、
絶縁性基体に例えばSi薄膜を堆積させ、このSi薄膜
にSi゛イオンを注入して一旦は非単結晶化し、更に5
iFil膜を熱処理してこのSim膜で固相成長を行わ
せ、その後にそのSi薄膜に薄膜トランジスタを形成し
たりしていた。
When forming thin film transistors on semiconductor thin films,
For example, a Si thin film is deposited on an insulating substrate, and Si ions are implanted into this Si thin film to make it non-single crystal.
The iFil film is heat-treated to perform solid phase growth on the Sim film, and then a thin film transistor is formed on the Si thin film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、結晶核の発生位置が全くランダムなために、
上述の様にして半導体薄膜を形成しただけでは、結晶粒
がランダムに成長し、結晶化領域を所望の位置に形成す
ることができない。
However, since the location of the crystal nuclei is completely random,
If a semiconductor thin film is simply formed as described above, crystal grains will grow randomly and crystallized regions cannot be formed at desired positions.

この結果、薄膜トランジスタ等の活性領域として用いる
領域内に粒界の存在する確率が高く、性能の高い薄膜ト
ランジスタ等を形成することができなかった。
As a result, there is a high probability that grain boundaries exist in a region used as an active region of a thin film transistor, etc., making it impossible to form a thin film transistor or the like with high performance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による半導体薄膜の形成方法は、絶縁性基体11
上の非単結晶の半導体薄膜12に窒素イオン15を選択
的に注入する工程と、前記注入の後に前記半導体薄膜1
2で固相成長を行わせる工程とを夫々具備している。
In the method for forming a semiconductor thin film according to the present invention, an insulating substrate 11
A step of selectively implanting nitrogen ions 15 into the non-single crystal semiconductor thin film 12 above, and a step of selectively implanting nitrogen ions 15 into the non-single crystal semiconductor thin film 12,
2 and a step of performing solid phase growth.

〔作用〕[Effect]

本発明による半導体薄膜の形成方法では、窒素イオン1
5を選択的に注入してから半導体薄膜12で固相成長を
行わせており、窒素イオン15を注入しなかった領域1
2aでは結晶粒の成長が相対的に早く、窒素イオン15
を注入した領域12bでは結晶粒の成長が相対的に遅い
In the method for forming a semiconductor thin film according to the present invention, nitrogen ions 1
After selectively implanting nitrogen ions 15, solid phase growth is performed on the semiconductor thin film 12, and the region 1 in which nitrogen ions 15 are not implanted.
In 2a, the growth of crystal grains is relatively fast, and nitrogen ions 15
The growth of crystal grains is relatively slow in the region 12b where the ions are implanted.

従って、窒素イオン15を注入した領域12bで成長し
始めた結晶粒が窒素イオン15を注入しなかった領域1
2a内にまで広がってこの領域12a内に粒界の存在す
る確率は低く、窒素イオン15を注入しなかった領域1
2aが単一の結晶粒で占有される確率は高く、単一の結
晶粒を所望の位置に形成することができる。
Therefore, the crystal grains that started to grow in the region 12b into which the nitrogen ions 15 were implanted are the regions 1 into which the nitrogen ions 15 were not implanted.
The probability that a grain boundary exists in this region 12a is low, and the region 1 in which the nitrogen ions 15 are not implanted is
The probability that 2a is occupied by a single crystal grain is high, and a single crystal grain can be formed at a desired position.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図を参照しな
がら説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図が、本実施例の工程を示している。本実施例では
、第1A図に示す様に、Siの表面に5iOzを形成し
たものや石英等から成る絶縁性基体11に、厚さが80
0人程度の5iF)膜12をまず堆積させる。
FIG. 1 shows the steps of this embodiment. In this embodiment, as shown in FIG. 1A, an insulating substrate 11 made of Si, quartz, or the like with 5 iOz formed on the surface thereof has a thickness of 80
A 5iF) film 12 of about 0 is first deposited.

次に、1.5 x 101S個/c艷の密度のSi”イ
オン13を40keVのエネルギでSil膜12の全面
に注入して、このSii膜12の全体を一旦は非単結晶
化する。
Next, Si'' ions 13 at a density of 1.5 x 101S/c are implanted into the entire surface of the Sil film 12 with an energy of 40 keV, and the entire Si film 12 is once made into a non-single crystal.

次に、第1B図に示す様に、イオン注入に対するマスク
14をSi薄膜12の所望の領域に形成する。そして、
5×1014個/dの密度のN+イオン15を25ke
VのエネルギでSi薄膜12及びマクス14に打ち込む
Next, as shown in FIG. 1B, a mask 14 for ion implantation is formed in a desired region of the Si thin film 12. and,
25ke of N+ ions 15 with a density of 5×1014 ions/d
The energy of V is implanted into the Si thin film 12 and the mask 14.

すると、Si薄膜12のうちでマスク14に覆われてい
ない領域にのみN°イオン15が注入され、Si薄膜1
2のうちでマスク14に覆われている領域にはN゛イオ
ン15注入されていない。
Then, N° ions 15 are implanted only into the region of the Si thin film 12 that is not covered by the mask 14, and the Si thin film 1
In the region covered by the mask 14, the N ion 15 is not implanted.

その後、マスク14を除去し、600”C程度と比較的
低い温度でSi薄膜12で固相成長を行わせる。
Thereafter, the mask 14 is removed and solid phase growth is performed on the Si thin film 12 at a relatively low temperature of about 600''C.

すると、第1C図に示す様に、Si薄膜12のうちでN
°イオン15が注入されなかった領域12aでは結晶粒
が相対的に早く成長し、Si薄膜12のうちでN゛イオ
ン15注入された領域12bでは結晶粒が相対的に遅く
成長する。
Then, as shown in FIG. 1C, N in the Si thin film 12
Crystal grains grow relatively quickly in the region 12a where the ions 15 are not implanted, and crystal grains grow relatively slowly in the region 12b where the N ions 15 are implanted in the Si thin film 12.

第2図は、15時間の固相成長を行った後の領域12a
、12bに種々の波長の光を入射させた場合の反射率を
示している。この第2図から明らかな様に、略全部の波
長の光に対して、領域12aの反射率16aが領域12
bの反射率16bよりも高い。これは、領域12aに対
して領域12bの結晶化が遅れていることを示している
FIG. 2 shows the region 12a after 15 hours of solid phase growth.
, 12b shows the reflectance when light of various wavelengths is incident on the light beams 12b. As is clear from this FIG.
It is higher than the reflectance 16b of b. This indicates that the crystallization of the region 12b is delayed relative to the region 12a.

このために、領域12bで成長し始めた結晶粒が領域1
2a内にまで広がる前に、領域12a内で成長し始めた
結晶粒がこの領域12aを占有してしまう確率が高い。
For this reason, the crystal grains that have started to grow in region 12b are
There is a high probability that the crystal grains that have started to grow within the region 12a will occupy this region 12a before spreading to the inside of the region 2a.

つまり、領域12bで成長し始めた結晶粒が領域12a
内にまで広がってこの領域12a内に粒界の存在する確
率は低く、領域12aは単一の結晶粒で占有される確率
が高い。
In other words, the crystal grains that have started to grow in the region 12b are grown in the region 12a.
The probability that a grain boundary exists within this region 12a is low, and the probability that the region 12a is occupied by a single crystal grain is high.

従って、領域12aを薄膜トランジスタ等の活性領域と
して用いる様にすれば、性能の高い薄膜トランジスタ等
を形成することができる。
Therefore, if the region 12a is used as an active region of a thin film transistor or the like, a thin film transistor or the like with high performance can be formed.

なお、領域12・aの面積を小さくすればする程、この
領域12a内で成長し始める結晶粒が単一である確率が
高くなり、性能の更に高い薄膜トランジスタ等を形成す
ることができる。
Note that the smaller the area of the region 12.a, the higher the probability that a single crystal grain will start growing within this region 12a, making it possible to form a thin film transistor or the like with even higher performance.

〔発明の効果〕〔Effect of the invention〕

本発明による半導体薄膜の形成方法では、単一の結晶粒
を所望の位置に形成することができるので、所望の位置
に結晶化領域を有する半導体薄膜を形成することができ
る。
In the method for forming a semiconductor thin film according to the present invention, a single crystal grain can be formed at a desired position, so a semiconductor thin film having a crystallized region at a desired position can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図及び第1B図は本発明の一実施例の工程を順次
に示す側断面図、第1C図は一実施例において第1B図
に示した工程に続く工程を示す平面図、第2図は一実施
例で形成した半導体薄膜の反射率を示すグラフである。 なお図面に用いた符号において、 11  ・・・・−・−・−・−・・・・・・絶縁性基
体12 −−−−−−−・・・−−一−−−−−・Si
薄膜12a、 12b −−−−・−領域 14−・・−・・・−・・・・−マスク15−・・−・
−・・−・・−N1イオンである。
1A and 1B are side sectional views sequentially showing the steps of an embodiment of the present invention, FIG. 1C is a plan view showing the steps following the step shown in FIG. 1B in an embodiment, and FIG. is a graph showing the reflectance of a semiconductor thin film formed in one example. In addition, in the reference numerals used in the drawings, 11...---------... Insulating substrate 12--------------Si
Thin films 12a, 12b -------Region 14--Mask 15--
-...-...-N1 ion.

Claims (1)

【特許請求の範囲】 絶縁性基体上の非単結晶の半導体薄膜に窒素イオンを選
択的に注入する工程と、 前記注入の後に前記半導体薄膜で固相成長を行わせる工
程とを夫々具備する半導体薄膜の形成方法。
[Scope of Claims] A semiconductor comprising the steps of selectively implanting nitrogen ions into a non-single crystal semiconductor thin film on an insulating substrate, and performing solid phase growth on the semiconductor thin film after the implantation. How to form a thin film.
JP62088212A 1987-04-10 1987-04-10 Method of forming semiconductor thin film Expired - Fee Related JP2595525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62088212A JP2595525B2 (en) 1987-04-10 1987-04-10 Method of forming semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62088212A JP2595525B2 (en) 1987-04-10 1987-04-10 Method of forming semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS63253616A true JPS63253616A (en) 1988-10-20
JP2595525B2 JP2595525B2 (en) 1997-04-02

Family

ID=13936598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62088212A Expired - Fee Related JP2595525B2 (en) 1987-04-10 1987-04-10 Method of forming semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2595525B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390607A2 (en) * 1989-03-31 1990-10-03 Canon Kabushiki Kaisha Process for forming crystalline semiconductor film
JPH03120715A (en) * 1989-10-04 1991-05-22 Canon Inc Method of crystal growth and crystal
JPH03155124A (en) * 1989-11-14 1991-07-03 Nippon Sheet Glass Co Ltd Manufacture of semiconductor film
EP0472970A2 (en) * 1990-08-08 1992-03-04 Canon Kabushiki Kaisha Process for growing crystalline thin film
US5207863A (en) * 1990-04-06 1993-05-04 Canon Kabushiki Kaisha Crystal growth method and crystalline article obtained by said method
US5278093A (en) * 1989-09-23 1994-01-11 Canon Kabushiki Kaisha Method for forming semiconductor thin film
US5290712A (en) * 1989-03-31 1994-03-01 Canon Kabushiki Kaisha Process for forming crystalline semiconductor film
US5457058A (en) * 1989-10-09 1995-10-10 Canon Kabushiki Kaisha Crystal growth method
US5495824A (en) * 1990-04-10 1996-03-05 Canon Kabushiki Kaisha Method for forming semiconductor thin film
WO2008015649A1 (en) * 2006-08-04 2008-02-07 Nxp B.V. Method of manufacturing a double gate transistor
JP2011505685A (en) * 2007-11-13 2011-02-24 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Improvement of thin film materials with particle beam assistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676522A (en) * 1979-11-29 1981-06-24 Toshiba Corp Formation of semiconductor thin film
JPS6130018A (en) * 1984-07-20 1986-02-12 日本電信電話株式会社 Thick film capacitor and method of producing same
JPS6263417A (en) * 1985-09-13 1987-03-20 Sony Corp Solid phase growth method of polycrystalline semiconductor thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676522A (en) * 1979-11-29 1981-06-24 Toshiba Corp Formation of semiconductor thin film
JPS6130018A (en) * 1984-07-20 1986-02-12 日本電信電話株式会社 Thick film capacitor and method of producing same
JPS6263417A (en) * 1985-09-13 1987-03-20 Sony Corp Solid phase growth method of polycrystalline semiconductor thin film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390607A2 (en) * 1989-03-31 1990-10-03 Canon Kabushiki Kaisha Process for forming crystalline semiconductor film
US5290712A (en) * 1989-03-31 1994-03-01 Canon Kabushiki Kaisha Process for forming crystalline semiconductor film
US5278093A (en) * 1989-09-23 1994-01-11 Canon Kabushiki Kaisha Method for forming semiconductor thin film
JPH03120715A (en) * 1989-10-04 1991-05-22 Canon Inc Method of crystal growth and crystal
US5457058A (en) * 1989-10-09 1995-10-10 Canon Kabushiki Kaisha Crystal growth method
JPH03155124A (en) * 1989-11-14 1991-07-03 Nippon Sheet Glass Co Ltd Manufacture of semiconductor film
US5207863A (en) * 1990-04-06 1993-05-04 Canon Kabushiki Kaisha Crystal growth method and crystalline article obtained by said method
US5495824A (en) * 1990-04-10 1996-03-05 Canon Kabushiki Kaisha Method for forming semiconductor thin film
EP0472970A3 (en) * 1990-08-08 1992-04-08 Canon Kabushiki Kaisha Process for growing crystalline thin film
EP0472970A2 (en) * 1990-08-08 1992-03-04 Canon Kabushiki Kaisha Process for growing crystalline thin film
US5318661A (en) * 1990-08-08 1994-06-07 Canon Kabushiki Kaisha Process for growing crystalline thin film
WO2008015649A1 (en) * 2006-08-04 2008-02-07 Nxp B.V. Method of manufacturing a double gate transistor
US8183116B2 (en) 2006-08-04 2012-05-22 Nxp B.V. Method of manufacturing a double gate transistor
JP2011505685A (en) * 2007-11-13 2011-02-24 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Improvement of thin film materials with particle beam assistance

Also Published As

Publication number Publication date
JP2595525B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US5927995A (en) Reduction of threading dislocations by amorphization and recrystallization
JPS63253616A (en) Formation of semiconductor thin film
JPH0492413A (en) Growth of crystal thin film
JPH0252419A (en) Manufacture of semiconductor substrate
JP2800060B2 (en) Method for manufacturing semiconductor film
JPH03104210A (en) Manufacture of semiconductor device
JPS6327852B2 (en)
JP2550968B2 (en) Crystallization method of semiconductor thin film
JPH04188612A (en) Crystal growth method and crystallized substance obtained by said method
JPS62119914A (en) Method for solid-phase epitaxy of semiconductor layer
JPS6185815A (en) Method for formation of polycrystalline silicon film
JPS60164316A (en) Formation of semiconductor thin film
KR970003805A (en) Semiconductor device manufacturing method
JPS5856408A (en) Method of growing single crystal silicon film
JP2760449B2 (en) Semiconductor thin film manufacturing method
JPS6265409A (en) Formation of semiconductor thin film
JPH01312821A (en) Heteroepitaxial growth method
JPH0670965B2 (en) Method for forming semiconductor layer
JPH07273028A (en) Semiconductor substrate and manufacture thereof
JP3216318B2 (en) Semiconductor crystal growth method
JPH01261291A (en) Laser annealing process
JPH01292814A (en) Hetero epitaxial growth
JPH04286111A (en) Manufacture of polycrystal silicon thin film
JPH0774361A (en) Manufacture of polysilicon thin film transistor
JPS62190721A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees