JPH03155124A - Manufacture of semiconductor film - Google Patents

Manufacture of semiconductor film

Info

Publication number
JPH03155124A
JPH03155124A JP29532989A JP29532989A JPH03155124A JP H03155124 A JPH03155124 A JP H03155124A JP 29532989 A JP29532989 A JP 29532989A JP 29532989 A JP29532989 A JP 29532989A JP H03155124 A JPH03155124 A JP H03155124A
Authority
JP
Japan
Prior art keywords
semiconductor film
substrate
crystal
ion implantation
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29532989A
Other languages
Japanese (ja)
Other versions
JP2662058B2 (en
Inventor
Keiji Oyoshi
啓司 大吉
Tomonori Yamaoka
智則 山岡
Shuhei Tanaka
修平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP1295329A priority Critical patent/JP2662058B2/en
Publication of JPH03155124A publication Critical patent/JPH03155124A/en
Application granted granted Critical
Publication of JP2662058B2 publication Critical patent/JP2662058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a polycrystalline semiconductor film of large uniform grain size at low temperature by introducing ions into an amorphous semiconductor film on a substrate to create crystal nuclei in it for crystal growth. CONSTITUTION:A 150nm-thick amorphous silicon film 2 is deposited on a glass substrate 1 of quartz, or borosilicate of alkali rare earth and alumina by sputtering. Silicon ions are implanted at normal temperature under the conditions of an acceleration energy of 180keV, a dose of 3X10<16> ions/cm<2>, and a beam current density of 10muA/cm<2>. As a result, crystal nuclei 3 are produced in the amorphous silicon film by the ion implantation. In an early stage, nuclei grow to about 600nm size, and finally the whole amorphous silicon is converted to polysilicon 4.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、非晶質半導体膜中に結晶核を形成する技術に
間し、特にイオンビームを用いて結晶核を形成する技術
および均一な粒径をもつ多結晶半導体膜を形成する技術
に間する。
The present invention relates to a technology for forming crystal nuclei in an amorphous semiconductor film, and in particular to a technology for forming crystal nuclei using an ion beam and a technology for forming a polycrystalline semiconductor film having a uniform grain size. do.

【従来の技術】[Conventional technology]

従来、イオンビームを用いた結晶成長に間して、珪素基
板上に形成した非晶質珪素を、砒素のイオン注入により
固相エピタキシャル成長させた例(J、 Nakata
 and K、にajiya+na、 Jpn、 J、
 Appl、 Phys、 21 (+982) 5u
pp1.2+−1,p2+1  )やキセノンのイオン
注入と注入時の基板加熱を組合せた例(A、 Re1b
erich et al、、 Nuclear In5
trun+、 Methods Res、 B 19/
20 (1987) p457 )がある。 また、ガラス基板上の半導体膜とイオン注入に間して、
石英ガラス上に堆積した多結晶ゲルマニラム膜あるいは
珪素膜に、ゲルマニウムあるいは珪素をそれぞれ加熱し
ながらイオン注入し、粒径を大きくさせた例CH,A、
 Atwater et at、、 J、 Appl、
 Phys、 64 (1988) p2337 )が
ある。これらイオンビームな用いた例は、他の方法に比
べ、低温で固相成長を行なうことが可能であり、半導体
プロセスの低温化や三次元集積回路への応用が期待され
ている。
Conventionally, an example of solid-phase epitaxial growth of amorphous silicon formed on a silicon substrate by arsenic ion implantation during crystal growth using an ion beam (J, Nakata)
and K, Niajiya+na, Jpn, J,
Appl, Phys, 21 (+982) 5u
Example of combining ion implantation of xenon (pp1.2+-1, p2+1) and substrate heating during implantation (A, Re1b
Erich et al., Nuclear In5
trun+, Methods Res, B 19/
20 (1987) p457). In addition, between the semiconductor film on the glass substrate and ion implantation,
Examples of increasing the grain size by implanting ions of germanium or silicon into a polycrystalline germanilum film or silicon film deposited on quartz glass while heating them respectively CH, A,
Atwater et at, J. Appl.
Phys, 64 (1988) p2337). Compared to other methods, these methods using ion beams can perform solid phase growth at lower temperatures, and are expected to be applied to lower temperature semiconductor processes and three-dimensional integrated circuits.

【発明が解決しようとする課!】[The problem that the invention tries to solve! ]

しかしながら、上記従来のイオンビームな用いた結晶成
長法は、基板あるいは膜中に既存する結晶を成長させる
方法であり、種となる結晶がない場合あるいは膜中に結
晶核がない場合、例えばガラス上に堆積した非晶質珪素
膜について、これを結晶化させることはできなかった。 また、イオン注入により多結晶半導体膜の結晶粒径を大
きくさせる場合においても、粒径の最大値は膜厚により
制限されるという重大な問題があった。 また、熱処理により固相で結晶核を形成するためには、
非晶質珪素膜について、少なくとも60θ℃以上の温度
が必要であり、この温度に耐えられない材料を非晶質半
導体膜の基板として使用した場合、基板形状の変形や基
板構成元素の半導体膜への拡散といった重大な問題があ
った。
However, the above-mentioned conventional crystal growth method using an ion beam is a method of growing crystals that already exist in the substrate or film. It was not possible to crystallize the amorphous silicon film deposited on the substrate. Further, even when increasing the crystal grain size of a polycrystalline semiconductor film by ion implantation, there is a serious problem in that the maximum value of the grain size is limited by the film thickness. In addition, in order to form crystal nuclei in the solid phase by heat treatment,
For amorphous silicon films, a temperature of at least 60θ°C is required, and if a material that cannot withstand this temperature is used as a substrate for an amorphous semiconductor film, the shape of the substrate may be deformed or the semiconductor film of the constituent elements of the substrate may change. There were serious problems such as the spread of

【課題を解決するための手段】[Means to solve the problem]

上記従来の問題点を解決するために、本発明は、基体上
に形成した非晶質半導体膜に結晶核を形成し、形成され
た結晶核を基に結晶成長を行なう半導体膜の製造方法に
おいて該結晶核をイオン注入により形成している。 非晶質半導体膜にイオン注入により結晶核を形成する方
法としては、イオン注入におけるビーム電流密度を上昇
させることによフて、基板加熱を特に行なうことなしに
結晶核を形成することができる。 (例えば石英基板上
の非晶質珪素に珪素を注入して結晶核を形成する場合、
イオンビーム電流密度が8μA/cm2以上) また、イオンビームの電流密度が低い場合には、基板を
加熱する(50℃〜800℃)ことで、結晶核を形成す
ることも可能である。 基板加熱が必要な電流密度の境界値く結晶核生成率が大
きく低下する電流密度)は、半導体膜や基板の種類、イ
オン種により大きく変化する。 イオン種は特に問わないが、結晶化させる半導体構成元
素または基板構成元素か希ガス元素が望ましい、注入エ
ネルギーは、半導体膜の種類や膜厚、注入イオンの種類
により変化させなければならないが、注入イオンの投影
飛程が半導体膜の膜厚より大きくなるよう設定し、注入
原子と半導体膜の構成原子のカスケード衡突による非晶
質化の効果が小さい方が、半導体膜中で結晶化させた領
域内の欠陥密度は小さく、良質の結晶核が得られる。な
お、注入イオンの投影飛程がこれより小さいか等しい場
合でも結晶核の形成は可能である。 結晶核の形成密度は、半導体膜の種類や膜厚、基板の種
類、イオン注入条件(イオン種、加速エネルギー 注入
量、ビーム電流密度、イオン注入時の基板温度等)によ
り左右される。これらの条件を適当に選ぶことで、結晶
核の形成密度を制御することができる。 また、マスク(半導体膜の上に堆積した5i02等の任
意の膜に窓を設けたものや金属板等に窓を設けたもの)
を通してイオン注入を行ない、結晶核の密度を制御する
こともできる。 密度を制御して結晶核の生成を行なった後に、熱処理、
イオン注入等を行なうことで、結晶を成長させ、均一で
、粒径が制御された多結晶半導体膜を形成することがで
きる。 また、マスクに代わって、収束イオンビームを用いて、
結晶核の発生位置および密度を制御してもよい。 一方、基板に到達した注入元素により光吸収が生じた場
合、2種類以上の元素をイオン注入することでこれらを
反応させ(例えば珪素注入により光吸収が発生した場合
は酸素、窒素等をイオン注入)、化合物を形成すること
により光吸収を抑制した。
In order to solve the above conventional problems, the present invention provides a method for manufacturing a semiconductor film in which crystal nuclei are formed in an amorphous semiconductor film formed on a substrate, and crystal growth is performed based on the formed crystal nuclei. The crystal nucleus is formed by ion implantation. As a method for forming crystal nuclei by ion implantation into an amorphous semiconductor film, by increasing the beam current density during ion implantation, crystal nuclei can be formed without particularly heating the substrate. (For example, when silicon is implanted into amorphous silicon on a quartz substrate to form crystal nuclei,
(Ion beam current density is 8 μA/cm 2 or more) Furthermore, when the ion beam current density is low, it is also possible to form crystal nuclei by heating the substrate (50° C. to 800° C.). The boundary value of the current density at which substrate heating is necessary (the current density at which the crystal nucleation rate is significantly reduced) varies greatly depending on the type of semiconductor film and substrate, and ion species. The type of ion is not particularly important, but it is preferable to use a semiconductor constituent element to be crystallized, a substrate constituent element, or a rare gas element.The implantation energy must be changed depending on the type and thickness of the semiconductor film and the type of implanted ions. The projected range of the ions is set to be larger than the film thickness of the semiconductor film, and the smaller the effect of amorphization due to cascade equilibrium between the implanted atoms and the constituent atoms of the semiconductor film, the better the crystallization in the semiconductor film. The defect density within the region is small and good quality crystal nuclei can be obtained. Note that crystal nuclei can be formed even if the projected range of implanted ions is smaller than or equal to this. The formation density of crystal nuclei depends on the type and thickness of the semiconductor film, the type of substrate, and ion implantation conditions (ion species, acceleration energy implantation amount, beam current density, substrate temperature during ion implantation, etc.). By appropriately selecting these conditions, the formation density of crystal nuclei can be controlled. In addition, a mask (one in which a window is provided in an arbitrary film such as 5i02 deposited on a semiconductor film, or one in which a window is provided in a metal plate, etc.)
It is also possible to control the density of crystal nuclei by performing ion implantation through the crystal. After controlling the density and generating crystal nuclei, heat treatment,
By performing ion implantation or the like, it is possible to grow crystals and form a polycrystalline semiconductor film that is uniform and has a controlled grain size. Also, instead of a mask, a focused ion beam is used to
The location and density of crystal nuclei may be controlled. On the other hand, if light absorption occurs due to the implanted elements that reach the substrate, ion implantation of two or more elements will cause them to react (for example, if light absorption occurs due to silicon implantation, ion implantation of oxygen, nitrogen, etc.) ), suppressed light absorption by forming a compound.

【作用】[Effect]

本発明によれば、加速されたイオンが半導体膜に打ち込
まれ、エネルギーを失いながら減速する過程で、格子系
に直接的に(入射原子と半導体原子の弾性衝突)あるい
は間接的にく入射原子と半導体電子系との非弾性衝突)
エネルギーを与え、半導体膜を原子レベルで局所的に高
温に加熱するよう作用する。このとき、結晶核形成が起
きるためには、それに必要な局所的温度上昇が、結晶の
臨界核のサイズ程度かそれより大きい領域で、格子系の
再配列に必要な時間以上実現しなければならない。この
イオンビームによる温度上昇は、時間的にも短く、局所
的に作用するため、平均的な基板の温度上昇はこれと比
較して、はるかに小さく、比較的融点の低い基板材料の
上に堆積した半導体膜に結晶核を形成することができる
。また、収束イオンビームの使用やイオン注入時に設け
たマスクは結晶核の位置および密度を制御するよう作用
する。注入した元素に関係した光吸収が基板に発生した
場合には、これと反応して化合物を形成し、光吸収を抑
制する別種の注入元素が基板の透明性を維持するよう作
用する。
According to the present invention, accelerated ions are implanted into a semiconductor film, and in the process of decelerating while losing energy, they interact with the lattice system either directly (elastic collision between incident atoms and semiconductor atoms) or indirectly. Inelastic collision with semiconductor electronic system)
It provides energy and acts to locally heat the semiconductor film to a high temperature at the atomic level. At this time, in order for crystal nucleation to occur, the local temperature increase required for this must occur in a region that is about the size of the critical nucleus of the crystal or larger, and for a period of time that is necessary for the rearrangement of the lattice system. . The temperature rise caused by this ion beam is short in time and acts locally, so the average temperature rise of the substrate is much smaller compared to this, and the material is deposited on a substrate material with a relatively low melting point. Crystal nuclei can be formed in the semiconductor film formed by the above method. Additionally, the use of a focused ion beam and the mask provided during ion implantation act to control the location and density of crystal nuclei. If light absorption related to the implanted element occurs in the substrate, another type of implanted element that reacts with it to form a compound and suppresses the light absorption acts to maintain the transparency of the substrate.

【実施例】【Example】

(実施例1) 石英、アルカリ土類・アルミナボロシリケート、といっ
た2種のガラス基板上に、スパッタリング法により非晶
質珪素膜を150nmの膜厚て堆積した(第1図(a)
)。次に珪素を、加速エネルギー:180keV、 ド
ーズ量:  3 X 10 ”1ons/cm2 ビー
ム電流密度: lθμA/cm2、基板加熱なし、の条
件でイオン注入した(第1図(b))。 注入珪素の分布の様子を第3図に示す。これら試料を、
透過電子顕微鏡観察および透過電子線回折によりイオン
注入の前後で比較した。イオン注入前には非晶質であっ
た珪素膜に、イオン注入により結晶核が形成され、さら
に初期に形成された核が600 nm程度の粒径に成長
している様子が確認できた。イオンビームの電流密度を
変化させた−ところ、これ以上の電流密度ではより高密
度に結晶核が形成され、これ以下の電流密度では結晶核
の形成密度が極端に低下することが明らかとなった。 また、ドーズ量を増加させると結晶核の密度は更に増加
し、非晶質珪素層の全域が多結晶に変化した。さらに、
400℃程度に基板を加熱して先の条件でイオン注入を
行なったところ、基板加熱を行なわない場合と比較して
高密度に結晶核が形成された。 (実施例2) 実施例1においてガラス基板上に形成した結晶核を含む
非晶質珪素膜に、次の2通りの方法により結晶成長を施
し、均一な粒径を有する多結晶珪素膜を形成したく第1
図(c))。 1)結晶核を形成した膜に、以下の条件のイオン注入に
より、固相における結晶成長を行なった。 結晶成長に用いたイオン注入条件は、珪素の加速エネル
ギー:180keV、  珪素のドーズ量= 5X 1
0”1ons/cm2  ビーム電流密度:2μA/C
112、および基板温度= 250℃であった。 これらを透過電子顕微鏡観察および透過電子線回折によ
り評価したところ、膜全域が結晶化しており、実施例1
でドーズ量を増加させ膜全域を結晶化した試料と比較し
て、粒径が揃った多結晶珪素膜が得られた。さらに、結
晶核の形成や結晶成長を行なうために基板中に注入した
珪素を酸化させるために、酸素を110keVドーズf
fi:  1. 6X 1017ions/ cm2注
入した。酸素の注入深さは珪素と一致させ、注入量は珪
素の2倍としたく第4図)、この後、多結晶珪素膜にパ
ターンを形成し、珪素をエツチングした部分の光吸収を
調べたところ、酸素注入を行なっていない場合と比較し
て光吸収の顕著な抑制効果が認められた。 2)結晶核を形成した膜に熱処理を加え、固相で結晶成
長を行なった。熱処理は、窒素雰囲気中、600℃で1
0時間行なった。これらを透過電子顕微鏡観察および透
過電子線回折により評価したところ、膜全域が結晶化し
ており、実施例1でドーズ量を増加させ膜全域を結晶化
した試料と比較して、粒径が揃った多結晶珪素膜が得ら
れた。なお、熱処理による結晶成長は、レーザーアニー
ルやランプアニールでも可能であった。 (実施例3) 石英、アルカリ土類・アルミナボロシリケート、といっ
た2種のガラス基板上に、スパッタリング法により非晶
質珪素膜を150r+mの膜厚で堆積した。この上に第
2図(a)に示すように、酸化珪素をスパッタリング法
により500 nm堆積し、酸化膜にフォトリソグラフ
ィー工程を通して縦横200nmの窓を縦横3μm毎に
設けた0次に、珪素を、加速エネルギー:180keV
、  ドーズ量: 3X 1016ions/ cm2
  ビーム電流密度:10μA/crn2、基板加熱な
し、の条件でイオン注入した(第2図(b))。この後
、酸化珪素膜を除去し、透過電子顕微鏡観察および透過
電子線回折により評価したところ、窓の下部に結晶核が
1〜2個形成されたことが確認された。これに、実施例
2で述べた2種の結晶成長法を施した後(第2図(c)
)、透過電子顕微鏡観察および透過電子線口7折により
評価した。その結果、3μ−程度の比較的粒径の揃った
多結晶珪素膜が形成されてることが解った。
(Example 1) An amorphous silicon film was deposited to a thickness of 150 nm by sputtering on two types of glass substrates, quartz and alkaline earth/alumina borosilicate (Fig. 1(a)).
). Next, silicon was ion-implanted under the following conditions: acceleration energy: 180 keV, dose: 3 x 10" 1 ons/cm2, beam current density: lθμA/cm2, and without heating the substrate (Fig. 1(b)). The distribution is shown in Figure 3.These samples are
Comparisons were made before and after ion implantation by transmission electron microscopy and transmission electron diffraction. It was confirmed that crystal nuclei were formed by ion implantation in the silicon film, which was amorphous before ion implantation, and that the initially formed nuclei had grown to a grain size of about 600 nm. By varying the current density of the ion beam, it was found that at higher current densities, crystal nuclei are formed at a higher density, and at lower current densities, the density of crystal nucleation is extremely reduced. . Furthermore, when the dose amount was increased, the density of crystal nuclei further increased, and the entire area of the amorphous silicon layer changed to polycrystal. moreover,
When the substrate was heated to about 400° C. and ion implantation was performed under the above conditions, crystal nuclei were formed at a higher density than when the substrate was not heated. (Example 2) The amorphous silicon film containing crystal nuclei formed on the glass substrate in Example 1 was subjected to crystal growth using the following two methods to form a polycrystalline silicon film having a uniform grain size. The first thing I want to do is
Figure (c)). 1) Crystal growth in the solid phase was performed by ion implantation under the following conditions into the film in which crystal nuclei were formed. The ion implantation conditions used for crystal growth were: silicon acceleration energy: 180 keV, silicon dose = 5X 1
0”1ons/cm2 Beam current density: 2μA/C
112, and substrate temperature = 250°C. When these were evaluated by transmission electron microscopy and transmission electron beam diffraction, it was found that the entire film was crystallized.
Compared to the sample in which the dose was increased and the entire film was crystallized, a polycrystalline silicon film with uniform grain sizes was obtained. Furthermore, in order to oxidize the silicon implanted into the substrate for crystal nucleus formation and crystal growth, oxygen was applied at a dose of 110 keV f.
fi: 1. 6X 1017ions/cm2 were injected. The implantation depth of oxygen should be the same as that of silicon, and the implantation amount should be twice that of silicon (Fig. 4). After this, a pattern was formed on the polycrystalline silicon film, and the light absorption in the etched silicon film was examined. , a remarkable effect of suppressing light absorption was observed compared to the case without oxygen injection. 2) Heat treatment was applied to the film in which crystal nuclei were formed, and crystal growth was performed in the solid phase. The heat treatment was performed at 600°C in a nitrogen atmosphere for 1
I did it for 0 hours. When these were evaluated by transmission electron microscopy and transmission electron beam diffraction, it was found that the entire film was crystallized, and compared to the sample in which the dose was increased and the entire film was crystallized in Example 1, the grain size was uniform. A polycrystalline silicon film was obtained. Note that crystal growth by heat treatment was also possible by laser annealing or lamp annealing. (Example 3) An amorphous silicon film with a thickness of 150 r+m was deposited by sputtering on two types of glass substrates, quartz and alkaline earth/alumina borosilicate. As shown in FIG. 2(a), silicon oxide was deposited to a thickness of 500 nm by sputtering, and windows of 200 nm in length and width were formed in the oxide film every 3 μm in length and width through a photolithography process. Acceleration energy: 180keV
, Dose: 3X 1016ions/cm2
Ion implantation was performed under the following conditions: beam current density: 10 μA/crn2, without substrate heating (FIG. 2(b)). Thereafter, the silicon oxide film was removed and evaluation was made by transmission electron microscopy and transmission electron diffraction, and it was confirmed that one or two crystal nuclei were formed at the bottom of the window. After applying the two types of crystal growth methods described in Example 2 to this (Fig. 2(c)
), and was evaluated by transmission electron microscopy and transmission electron beam 7-fold analysis. As a result, it was found that a polycrystalline silicon film having a relatively uniform grain size of about 3 μm was formed.

【発明の効果】【Effect of the invention】

本発明によれば、従来不可能であった大粒径で、しかも
粒径の揃った多結晶半導体膜の形成を、これまでにない
低温で実現できる。さらに、従来の高温プロセスでは様
々な理由(例えば、熱による変形や基板構成元素の拡散
等)で半導体用として使用できなかった基板が、本発明
により使用可能となる。
According to the present invention, it is possible to form a polycrystalline semiconductor film with a large grain size and uniform grain size, which was previously impossible, at an unprecedented low temperature. Furthermore, the present invention makes it possible to use substrates that could not be used for semiconductors in conventional high-temperature processes for various reasons (for example, deformation due to heat, diffusion of substrate constituent elements, etc.).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明による多結晶珪素膜の製
造方法を示したものである。第3図は、実施例1〜3で
結晶核の形成に用いた注入珪素の分布を示したものであ
る。第4図は、実施例2(1)において注入した酸素の
分布を示したものである。 ◆ Si令  Si今  Si◆  Si中1ii111i 第1図 第2図 手 続 補 正 書 事件の表示 特願平1−295329号 発明の名称 半導体膜の製造方法 補正をする者 事件との関係 特許出願人 住所 大阪市中央区道修町3丁目5番11号氏名 (4
00)  日本板硝子株式会社代表者 中心 違二
1 and 2 show a method for manufacturing a polycrystalline silicon film according to the present invention. FIG. 3 shows the distribution of implanted silicon used for forming crystal nuclei in Examples 1 to 3. FIG. 4 shows the distribution of oxygen implanted in Example 2 (1). ◆ Si Ordinance Si Now Si ◆ Si Chu 1ii111i Figure 1 Figure 2 Indication of Written Amendment Case Patent Application No. 1-295329 Name of Invention Relationship with the Person Who Amends the Manufacturing Method of a Semiconductor Film Case Patent Applicant Address Osaka 3-5-11 Doshomachi, Chuo-ku, City Name (4
00) Nippon Sheet Glass Co., Ltd. Representative Niji Nakako

Claims (5)

【特許請求の範囲】[Claims] (1)基体上に形成した非晶質半導体膜に結晶核を形成
し、形成された結晶核を基に結晶成長を行なう半導体膜
の製造方法において該結晶核をイオン注入により形成さ
せることを特徴とする半導体膜の製造方法。
(1) A method for manufacturing a semiconductor film in which a crystal nucleus is formed in an amorphous semiconductor film formed on a substrate and crystal growth is performed based on the formed crystal nucleus, characterized in that the crystal nucleus is formed by ion implantation. A method for manufacturing a semiconductor film.
(2)該結晶核の形成において、集束イオンビームおよ
び/またはマスク材を用いて、結晶核の形成密度および
/または結晶核形成位置を制御し、形成された該結晶核
を基に結晶成長を行ない、均一で制御された粒径をもつ
多結晶半導体膜を形成する請求項1記載の半導体膜の製
造方法。
(2) In forming the crystal nuclei, a focused ion beam and/or a mask material is used to control the formation density and/or crystal nucleus formation position, and crystal growth is performed based on the formed crystal nuclei. 2. The method of manufacturing a semiconductor film according to claim 1, wherein a polycrystalline semiconductor film having a uniform and controlled grain size is formed.
(3)該イオン注入として、2種類以上の元素をイオン
注入させ、これらを基体内で安定化させることにより、
注入元素による光吸収を抑制する請求項1または2記載
の半導体膜の製造方法。
(3) As the ion implantation, two or more types of elements are implanted and stabilized within the substrate,
3. The method for manufacturing a semiconductor film according to claim 1, wherein light absorption by the implanted element is suppressed.
(4)該イオン注入を基体の加熱下で行なう請求項1な
いし3記載の半導体膜の製造方法。
(4) The method of manufacturing a semiconductor film according to any one of claims 1 to 3, wherein the ion implantation is performed while heating the substrate.
(5)該結晶成長が、イオン注入によるものである請求
項1ないし4記載の半導体膜の製造方法。
(5) The method of manufacturing a semiconductor film according to any one of claims 1 to 4, wherein the crystal growth is performed by ion implantation.
JP1295329A 1989-11-14 1989-11-14 Method for manufacturing semiconductor film Expired - Lifetime JP2662058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1295329A JP2662058B2 (en) 1989-11-14 1989-11-14 Method for manufacturing semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1295329A JP2662058B2 (en) 1989-11-14 1989-11-14 Method for manufacturing semiconductor film

Publications (2)

Publication Number Publication Date
JPH03155124A true JPH03155124A (en) 1991-07-03
JP2662058B2 JP2662058B2 (en) 1997-10-08

Family

ID=17819205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1295329A Expired - Lifetime JP2662058B2 (en) 1989-11-14 1989-11-14 Method for manufacturing semiconductor film

Country Status (1)

Country Link
JP (1) JP2662058B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710050A (en) * 1994-08-25 1998-01-20 Sharp Kabushiki Kaisha Method for fabricating a semiconductor device
CN1055791C (en) * 1994-07-06 2000-08-23 夏普公司 Crystalline silicon film, and semiconductor device and method for producing the same
US6475840B1 (en) * 1993-06-12 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR100460209B1 (en) * 2002-11-08 2004-12-04 엘지.필립스 엘시디 주식회사 Method of Solidification for Amorphous Silicon layer
JP2011505685A (en) * 2007-11-13 2011-02-24 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Improvement of thin film materials with particle beam assistance

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037719A (en) * 1983-08-10 1985-02-27 Seiko Epson Corp Manufacture of semiconductor device
JPS6130018A (en) * 1984-07-20 1986-02-12 日本電信電話株式会社 Thick film capacitor and method of producing same
JPS6212001A (en) * 1985-07-08 1987-01-21 オムロン株式会社 Coaxial color digital lighting apparatus
JPS62120014A (en) * 1985-11-20 1987-06-01 Nec Corp Manufacture of substrate for semiconductor device
JPS62230017A (en) * 1986-03-31 1987-10-08 Agency Of Ind Science & Technol Single crystal film forming method
JPS63185016A (en) * 1987-01-27 1988-07-30 Sony Corp Forming method for semiconductor thin film
JPS63253616A (en) * 1987-04-10 1988-10-20 Sony Corp Formation of semiconductor thin film
JPH01257643A (en) * 1988-04-08 1989-10-13 Honda Motor Co Ltd Wiper device
JPH02165619A (en) * 1988-12-20 1990-06-26 Seiko Epson Corp Crystal growth of semiconductor thin film
JPH02260524A (en) * 1989-03-31 1990-10-23 Canon Inc Crystalline semiconductor film and formation thereof
JPH02288328A (en) * 1989-04-28 1990-11-28 Canon Inc Method of growing crystal
JPH0329316A (en) * 1989-06-26 1991-02-07 Canon Inc Formation of semiconductor thin film
JPH03120715A (en) * 1989-10-04 1991-05-22 Canon Inc Method of crystal growth and crystal

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037719A (en) * 1983-08-10 1985-02-27 Seiko Epson Corp Manufacture of semiconductor device
JPS6130018A (en) * 1984-07-20 1986-02-12 日本電信電話株式会社 Thick film capacitor and method of producing same
JPS6212001A (en) * 1985-07-08 1987-01-21 オムロン株式会社 Coaxial color digital lighting apparatus
JPS62120014A (en) * 1985-11-20 1987-06-01 Nec Corp Manufacture of substrate for semiconductor device
JPS62230017A (en) * 1986-03-31 1987-10-08 Agency Of Ind Science & Technol Single crystal film forming method
JPS63185016A (en) * 1987-01-27 1988-07-30 Sony Corp Forming method for semiconductor thin film
JPS63253616A (en) * 1987-04-10 1988-10-20 Sony Corp Formation of semiconductor thin film
JPH01257643A (en) * 1988-04-08 1989-10-13 Honda Motor Co Ltd Wiper device
JPH02165619A (en) * 1988-12-20 1990-06-26 Seiko Epson Corp Crystal growth of semiconductor thin film
JPH02260524A (en) * 1989-03-31 1990-10-23 Canon Inc Crystalline semiconductor film and formation thereof
JPH02288328A (en) * 1989-04-28 1990-11-28 Canon Inc Method of growing crystal
JPH0329316A (en) * 1989-06-26 1991-02-07 Canon Inc Formation of semiconductor thin film
JPH03120715A (en) * 1989-10-04 1991-05-22 Canon Inc Method of crystal growth and crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475840B1 (en) * 1993-06-12 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN1055791C (en) * 1994-07-06 2000-08-23 夏普公司 Crystalline silicon film, and semiconductor device and method for producing the same
US5710050A (en) * 1994-08-25 1998-01-20 Sharp Kabushiki Kaisha Method for fabricating a semiconductor device
KR100460209B1 (en) * 2002-11-08 2004-12-04 엘지.필립스 엘시디 주식회사 Method of Solidification for Amorphous Silicon layer
JP2011505685A (en) * 2007-11-13 2011-02-24 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Improvement of thin film materials with particle beam assistance

Also Published As

Publication number Publication date
JP2662058B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
US5278093A (en) Method for forming semiconductor thin film
JPH03155124A (en) Manufacture of semiconductor film
US5234843A (en) Method of making a semiconductor film where the hydrogen and/or fluorine is released prior to ion beam crystallization
JP2800060B2 (en) Method for manufacturing semiconductor film
JP3203746B2 (en) Semiconductor crystal growth method
JPS5892227A (en) Gettering for crystal defect
JPH059099A (en) Method for growing crystal
EP0420516B1 (en) Method for forming semiconductor thin film
JPS5927521A (en) Fabrication of semiconductor substrate
JPH0635360B2 (en) Method for manufacturing single crystal aluminum nitride film
JP2541456B2 (en) Microstructure fabrication method
JPH02188499A (en) Production of polycrystal silicon film having large crystal grain diameter
JP2833878B2 (en) Method of forming semiconductor thin film
JPS60164316A (en) Formation of semiconductor thin film
JPH0442918A (en) Formation of semiconductor thin film
JPH0334533A (en) Manufacture of semiconductor crystal layer
Tanaka et al. Ion implantation for large-area optoelectronics on glass substrates
Song et al. Excimer-laser crystallization of patterned Si films at high temperatures via artificially controlled super-lateral growth
JPS59181609A (en) Manufacture of semiconductor device
Baumgart Silicon-on-insulator technology by crystallization on quartz substrates
JPH02258690A (en) Method for forming semiconductor thin film
JPS63254720A (en) Forming method for semiconductor thin film
JPS58112324A (en) Manufacture of semiconductor device
JPH06263599A (en) Processing of substrate
JPS59228713A (en) Manufacture of semiconductor device