JPH0442918A - Formation of semiconductor thin film - Google Patents

Formation of semiconductor thin film

Info

Publication number
JPH0442918A
JPH0442918A JP14786390A JP14786390A JPH0442918A JP H0442918 A JPH0442918 A JP H0442918A JP 14786390 A JP14786390 A JP 14786390A JP 14786390 A JP14786390 A JP 14786390A JP H0442918 A JPH0442918 A JP H0442918A
Authority
JP
Japan
Prior art keywords
thin film
amorphous
interface
regions
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14786390A
Other languages
Japanese (ja)
Inventor
Takao Yonehara
隆夫 米原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14786390A priority Critical patent/JPH0442918A/en
Priority to DE69116202T priority patent/DE69116202T2/en
Priority to AT91105613T priority patent/ATE132919T1/en
Priority to EP91105613A priority patent/EP0451789B1/en
Publication of JPH0442918A publication Critical patent/JPH0442918A/en
Priority to US08/352,113 priority patent/US5495824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To control nucleation positions, determine grain boundary positions, and form single-crystal regions of few defects by forming a plurality of micro regions, which act as nucleation points with priority, at predetermined sections of an amorphous thin film and then heat-treating the regions. CONSTITUTION:Nucleated regions are coated with a mask, such as resist, formed on the surface of an amorphous Si laminated layer and Si ions are implanted only into regions not nucleated with energy selected to damage the amorphous Si layer and the section near a base interface. The amorphous Si layer having the Si-ion-implanted interface is heat-treated in N2 or H2. The heat treatment forms nuclei locally. Continuous heat treatment moves a crystal phase to the periphery and an amorphous phase interface outward. That is, the Si atoms in the amorphous material skip the interface and are incorporated in the crystal phase. The Si atoms are incorporated in the single crystal phase, which is produced from the undamaged interface regions before nuclei are formed in the damaged interface regions, by re-arrangement of the component atoms of the damaged interface regions, the crystals are grown in a solid phase, and adjacent crystals collide to form crystal grain boundaries.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は3次元集積回路の構成要素、あるいは大面積電
子装置に適用されうる半導体i#膜の形成方ン去に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a semiconductor i# film that can be applied to a component of a three-dimensional integrated circuit or a large area electronic device.

[従来の技術] 非晶質基板上に結晶薄膜を成長させる結晶形成技術の分
野におけるひとつの方法として基板上に予め形成された
非晶X薄膜を融点以下の低温における熱処理によって固
相成長させる方法が提案されている。
[Prior Art] One of the methods in the field of crystal formation technology for growing a crystal thin film on an amorphous substrate is a method in which an amorphous X thin film previously formed on a substrate is grown in solid phase by heat treatment at a low temperature below the melting point. is proposed.

例えば非晶質5i02上に形成された膜厚1100n程
のSiイオン注入によって非晶賀化された5ifiJ膜
をN2雰囲気中において600℃数十時間熱処理するこ
とにより前記非晶質Si薄膜を結晶化し、最大粒径が5
μmにも達する樹枝状大粒径多結晶薄膜が形成されると
の報告がある。  (T、Noguchi、)1.)I
ayashi & H。
For example, a 5ifiJ film formed on amorphous 5i02 and made amorphous by Si ion implantation to a thickness of about 1100 nm is heat-treated at 600°C for several tens of hours in an N2 atmosphere to crystallize the amorphous Si thin film. , the maximum particle size is 5
It has been reported that a polycrystalline thin film with a large dendritic grain size of up to μm is formed. (T, Noguchi,) 1. )I
ayashi & h.

Ohshima、1987.Materials Re
5earch 5ocietySya+posium 
Proceeding vol、106.”Po1ys
iliconand Interfaces 、p、p
、293.EIsevier SciencePubl
ishing、New York、1988 )この方
法により得られる多結晶薄膜は、従来の堆積したまま多
結晶となる薄膜の粒径よりも数百倍も大きいため高性能
の電子素子の作製が可能であった。
Ohshima, 1987. Materials Re
5earch 5ocietySya+posium
Proceedings vol, 106. “Polys
iliconand Interfaces, p, p
, 293. EIsevier SciencePubl
(Ishing, New York, 1988) The polycrystalline thin film obtained by this method is several hundred times larger than the grain size of conventional thin films that become polycrystalline as they are deposited, making it possible to fabricate high-performance electronic devices. .

例えば、電界効果トランジスターの電子移動度は堆積さ
れたまま多結晶となる化学気相法で作製された?[のそ
れに比較して十倍程高速に動作する。
For example, the electron mobility of a field-effect transistor was fabricated using a chemical vapor deposition method in which the deposit remains polycrystalline? It operates about 10 times faster than [.

しかしながら、この結晶成長方法によって得られた薄膜
には次の2点の問題点が存在する。
However, the following two problems exist in the thin film obtained by this crystal growth method.

■この固相成長膜はその最大粒径こそμmサイズに達し
大きいものの、その粒径分布と、結晶粒界の位置が制御
されていない。なぜなら、非晶質Si薄膜の結晶化は熱
処理によって非晶頁中にランダムに発生した結晶核の固
相成長に基づいているため、結晶粒同士の衝突によって
形成される粒界の位置もまた無秩序となり、その結果、
粒径が広い範囲にわたって分布してしまうからである。
(2) Although the maximum grain size of this solid-phase grown film is large, reaching μm size, its grain size distribution and the position of crystal grain boundaries are not controlled. This is because the crystallization of an amorphous Si thin film is based on the solid phase growth of crystal nuclei randomly generated in the amorphous layer by heat treatment, so the positions of grain boundaries formed by collisions between crystal grains are also disordered. As a result,
This is because the particle sizes are distributed over a wide range.

粒界にはキャリアトラップが多数密集しており、そこに
はキャリア走行に対して障壁が形成されていることが知
られており、粒界の位置は、そこに作製された電子デバ
イスの諸特性に著しい影響を与える。例えばSiイオン
注入によって非晶賀化された薄膜をN2中で600℃5
0時間熱処理して得られた最大粒径5μmの薄膜を透過
電子顕微鏡によ)て詳細に粒径分布を観察すると1μm
以下の粒径をもつ結晶粒がその大半を占めその粒径は0
.1μmから5μmまで非常に広範に分布していること
が判明した。
It is known that a large number of carrier traps are densely packed in grain boundaries, and that barriers are formed there against carrier movement, and the position of grain boundaries depends on the various characteristics of electronic devices fabricated there. have a significant impact on For example, a thin film made amorphous by Si ion implantation is heated to 600°C in N2 at 50°C.
When the particle size distribution of a thin film with a maximum particle size of 5 μm obtained by heat treatment for 0 hours was observed in detail using a transmission electron microscope, it was found to be 1 μm.
Most of them are crystal grains with the following grain sizes, and the grain size is 0.
.. It was found that the size was very widely distributed from 1 μm to 5 μm.

この分布は、そこに作製した電界効果トランジスターの
諸特性、特に易動度、しきい値、サブスレッシュ特性の
ウェハー内バラツキに大きな影響を与えることが観測さ
れた。特にチャネル長が最大粒径以下となると、より明
確にその傾向が大きくなる。これは粒径および粒界の無
秩序性がチャネル内のlllmWの数、量の均一性を劣
化させるためである。これは集積回路を組む場合、極め
て深刻な問題である。
It has been observed that this distribution has a great influence on the various characteristics of the field effect transistors fabricated there, particularly the intra-wafer variations in mobility, threshold value, and subthreshold characteristics. In particular, when the channel length becomes equal to or less than the maximum particle size, this tendency becomes more obvious. This is because the disorder of grain size and grain boundaries deteriorates the uniformity of the number and amount of llmW in the channel. This is an extremely serious problem when building integrated circuits.

■第2の問題点は、結晶粒内の結晶欠陥である。前述し
たように、固相成長した結晶は樹枝状結晶であり、双晶
粒界を内部に多数導入して側杖を伸ばしながら成長する
もので側枝間に成長する結晶群を透過電子顕微鏡の高分
解能観察すると格子縞が寸断されていることがわかった
(2) The second problem is crystal defects within crystal grains. As mentioned above, solid-phase grown crystals are dendrites, which grow by introducing many twin grain boundaries inside and extending the side rods. Resolution observation revealed that the lattice stripes were fragmented.

ここで、低倍率の電子顕微鏡の電子線回折によればμm
サイズの大粒径樹枝状結晶内は全体としては結晶方向の
そろった単結晶である。
Here, according to electron beam diffraction using a low magnification electron microscope, μm
The inside of the large-grain dendrite crystal is a single crystal with a uniform crystal direction as a whole.

この粒内の欠陥群はキャリア移動の阻害要因であること
は論を待たず、最大粒径以下のチャネル長をもつ短チヤ
ネル素子を作製したとしてもバルクSiの性能には到底
及ばない。
It goes without saying that this group of defects within grains is a factor that inhibits carrier movement, and even if a short channel element with a channel length less than the maximum grain size is manufactured, it will never reach the performance of bulk Si.

本発明は、上記従来例の有する2つの課題を解決するも
のであり、本発明の目的は固相中における核形成位置を
制御し、粒界位置の決定され、しかも低欠陥単結晶領域
を形成できる結晶の成長方法を提供することにある。
The present invention solves the two problems of the conventional example, and the purpose of the present invention is to control the nucleation position in the solid phase, determine the grain boundary position, and form a low-defect single crystal region. The purpose of this invention is to provide a method for growing crystals.

[課題を解決するための手段] 本発明の半導体薄膜の形成方法は、非晶質薄膜を固相成
長によって結晶化させて薄膜結晶とする結晶成長方法に
おいて、非晶質薄膜の予め定められた位置に、優先的に
核発生点となる複数個の微小領域を形成し、次いで加熱
処理を行うことにより、該微小領域から優先的に隼−の
核より固相成長せしめて粒界の位置が指定された結晶半
導体薄膜を形成させ、次いで該結晶半導体薄膜を110
0℃以上の熱処理によって粒内欠陥を減少させることを
特徴とする。
[Means for Solving the Problems] The method for forming a semiconductor thin film of the present invention is a crystal growth method in which an amorphous thin film is crystallized by solid phase growth to form a thin film crystal. By forming a plurality of micro regions that will preferentially serve as nucleation points, and then performing a heat treatment, solid-phase growth will occur from the micro regions preferentially from Hayabusa's nuclei, and the position of the grain boundary will be changed. A specified crystalline semiconductor thin film is formed, and then the crystalline semiconductor thin film is heated to 110
It is characterized by reducing intragranular defects by heat treatment at 0°C or higher.

[作用コ 以下に本発明の作用を詳細な構成とともに説明する。[Action Co. The operation of the present invention will be explained below along with the detailed configuration.

本発明でjよ■非晶質薄膜中jζ任意位置「固相におけ
る熱処理により、核を発生させ、樹枝状結晶を固相成長
さぜ粒界体管を決定する8 核発生領域の設置(1す例えば次の方法により成1ッ得
る。
In the present invention, nucleation is generated at any position in an amorphous thin film by heat treatment in the solid phase, and dendrites are grown in the solid phase to determine the grain boundary body tube. 8. Setting of the nucleation region (1) For example, this can be achieved by the following method.

非晶質薄膜内に他の領域よりもイオン注入による損傷の
程度が小さtz微小領誠1が非晶質薄膜ど下地基板との
前面近傍(こ形成されるように該非晶質薄膜の構成物質
のイオンを注入1〕、次いで融点以下の比較的低温(例
えば700℃以下)において熱処理を行うことにより、
該微小領域より優先的に核形成さ1(る。なお、この熱
処理は例えば電気炉等の通常の加熱手段で行スばよい。
The degree of damage due to ion implantation is smaller in the amorphous thin film than in other regions. By implanting ions of
Nucleation is preferentially performed in the minute regions. Note that this heat treatment may be performed using a conventional heating means such as an electric furnace.

杉は固相中で成長をつづけ、双晶を導入しつつμmサイ
ズまで成長し、予め固相結晶成長の起点が設計された隣
接の大粒径樹枝状結晶と結晶端面を接触させ粒界を形成
し成長を停止する。
Cedar continues to grow in the solid phase, growing to a μm size while introducing twins, and the crystal end face is brought into contact with an adjacent large-grain dendrite crystal, which has been designed as a starting point for solid phase crystal growth, to form a grain boundary. form and stop growing.

このように1)で欠陥を含有するμmサイズの結晶粒が
予め定められた位置に形成され、非晶質領域は完全に結
晶化する。その結果、隣接する核発生領域のほぼ中間の
位置に粒訝位ff1711<決定ざかた多結晶薄膜が形
成さiする9 また、粒界を形成せずに単結晶領域のみを成長させるに
は、予め粒界形成領域をある1〕をもって′fii膜を
分断しておけばよい。例えば最大粒径より小さく数ミク
ロン角のSi層を形成する。
In this way, in step 1), μm-sized crystal grains containing defects are formed at predetermined positions, and the amorphous region is completely crystallized. As a result, a polycrystalline thin film with grain orientation ff1711<determined is formed at a position approximately in the middle of adjacent nucleation regions.9 Also, in order to grow only a single crystal region without forming grain boundaries, The 'fii film may be divided in advance by a grain boundary forming region at a certain point 1]. For example, a Si layer of several microns square is formed, which is smaller than the maximum grain size.

■上記■の方法で粒着位置、あるいは結晶位置を規定さ
t’+た大量の欠陥(双晶、マイクロ双晶、転位、積層
欠陥、点欠陥)を粒界移動が無く結晶粒内部の欠陥が減
少する温度(1200℃以上)で熱!A埋する。
■By the method of ■ above, a large number of defects (twins, micro-twins, dislocations, stacking faults, point defects) whose grain attachment positions or crystal positions are defined t'+ are removed without grain boundary movement and defects inside crystal grains. Heat at a temperature that decreases (above 1200℃)! Fill in A.

この場合、インコヒーレント光による融点以下の加熱が
遺している。その理由は通常の電気炉に比べて簡便に短
時間で高温での昇降温ができること、レーザー等のコヒ
ーレント光のビーム走査に比べて大面積、−括、しかも
波長域を選択することで薄膜のみを選択加熱できること
にある。
In this case, heating below the melting point by incoherent light remains. The reason for this is that it is easier to raise and lower the temperature at high temperatures in a short time compared to a normal electric furnace, and it is possible to use a thin film over a large area compared to beam scanning with coherent light such as a laser. It can be heated selectively.

また、インコヒーレント光を用いるため膜厚のわずかな
分布がありても光の干渉による不均一な加熱を防ぎ、光
間射面全面を均一に加熱することができる。
Furthermore, since incoherent light is used, even if there is a slight distribution in film thickness, uneven heating due to light interference can be prevented, and the entire surface of the light incident surface can be heated uniformly.

なお、E−温速度としては100〜500t:/SeC
が好ましく加熱時間は1−3分が好ましり、) また、インコヒーレント光による加熱は、大気圧、減圧
、加圧のチッ素ガスや不活性ガス雰囲気中等の不活性雰
囲気中で行うことが好ましい。
In addition, the E-temperature rate is 100 to 500t:/SeC
(Preferably, the heating time is preferably 1 to 3 minutes.) In addition, heating with incoherent light can be performed in an inert atmosphere such as atmospheric pressure, reduced pressure, or pressurized nitrogen gas or inert gas atmosphere. preferable.

(1)核形成位置制御(固相における)以下に本発明の
より一層の詳細を本発明をなすに際し得た知見とともに
説明する。
(1) Control of nucleation position (in solid phase) Further details of the present invention will be explained below along with the findings obtained in making the present invention.

本発明のポイントは如何に固相中で結晶体の成長する位
置を制御するかにある。すなわち、非晶質薄膜において
、核を特定位置に優先的に発生させ、他の領域の核発生
を制御するかにある。
The key point of the present invention is how to control the growing position of crystals in the solid phase. That is, in an amorphous thin film, nuclei are generated preferentially in a specific position, and nucleation in other areas is controlled.

本発明者は、例えばS i 02等の核形成密度の小さ
い材料からなる下地材料上に多結晶5ifiを堆積さぜ
、その後例えばSiイオン等を注入し多結晶SiNを非
晶質化した後、熱処理する際に、その結晶核発生温度(
結晶化温度)がそのイオン注入エネルギーに強く依存す
るという現象を発見した。
The present inventor deposited polycrystalline 5ifi on a base material made of a material with a low nucleation density, such as SiO2, and then implanted, for example, Si ions to make the polycrystalline SiN amorphous. During heat treatment, the crystal nucleation temperature (
We discovered that the crystallization temperature strongly depends on the ion implantation energy.

そこで、結晶核発生温度が如何にイオン注入エネルギー
に依存するかの解明を行ったところ次の事項が判明した
。以下にその詳細を述べる。
Therefore, we investigated how the crystal nucleation temperature depends on the ion implantation energy and found the following. The details are described below.

注入エネルギーを変化さゼると、非晶質化した後のSi
層(非晶質Si層)中において、注入されたSiイオン
の分布は変化し、その結果、生成される空孔子の分布、
即ち注入損傷の存在する領域の分布が注入エネルギーに
よって膜厚方向に変化する。
When the implantation energy is changed, the Si after becoming amorphous becomes
In the layer (amorphous Si layer), the distribution of the implanted Si ions changes, and as a result, the distribution of the generated vacancies,
That is, the distribution of regions where implantation damage exists changes in the film thickness direction depending on the implantation energy.

また、非晶貿物貿内では、表面エネルギー不利を克服し
形成された幼胚がざらに成長1ノ核が生成し、その後、
Si原子の非晶質相から結晶相の相転移が生ずる。
In addition, in the amorphous trade, the embryo that is formed by overcoming the surface energy disadvantage roughly grows to produce one nucleus, and then,
A phase transition from an amorphous phase to a crystalline phase of Si atoms occurs.

ところで、核形成は均一核形成と不均一核形成とがあり
、前者は、均一物質中(例えば非晶質Si膜内部)の核
形成であり、かかる核形成が生じるか否かは主に表面エ
ネルギー不利を克服して形成ざiまた幼胚が犬きくなれ
るか否かにかかっている。一方、後者の不均一核形成で
は、異物との接触によって核発生がうながされるもので
あり、その活性化エネルギーは、後者の方が前者より低
い、即ち、不均一核形成が均一核形成より起こりやすい
、実際、非晶質Si薄膜における核形成は主に下地界面
近傍の不均一核形成に律速されている。
By the way, there are two types of nucleation: uniform nucleation and heterogeneous nucleation. The former is nucleation in a homogeneous material (for example, inside an amorphous Si film), and whether such nucleation occurs is mainly determined by the surface It depends on whether or not the embryo can become a dog by overcoming the energy disadvantage. On the other hand, in the latter case of heterogeneous nucleation, nucleation is stimulated by contact with foreign matter, and the activation energy of the latter is lower than that of the former, meaning that heterogeneous nucleation occurs more than homogeneous nucleation. In fact, the rate of nucleation in an amorphous Si thin film is mainly determined by heterogeneous nucleation near the underlying interface.

イオン注入の注入量が最大となる深さ(投影飛程)は、
注入量一定の条件下でも、前述した界面における不均一
核形成に重大な影響を与えることを本発明者は発見した
The depth at which the ion implantation dose reaches its maximum (projected range) is
The present inventors have discovered that even under conditions where the injection amount is constant, it has a significant effect on the aforementioned heterogeneous nucleation at the interface.

第1図に、注入エネルギーと結晶化温度の相関を示す。FIG. 1 shows the correlation between implantation energy and crystallization temperature.

この時の条件は以下の通りである。注入層は、5i02
基板上に620℃でSiH4の分解による減圧CVDに
て堆積した厚さ1100nの多晶買Si層であり、注入
イオンはSL”である。注入量は臨界注入量(約10 
”c m−2)を越えて一定(この場合5 x 101
Sc m−2)であった、注入エネルギーを、40ke
Vから80keVまで変化させ、注入層は、イオン衝突
によりSt原子は格子位置よりノックオン(knock
 on)され臨界注入量以上の注入で損傷領域は層厚方
向に損傷の度合いが連続となり、非晶質化される。この
非晶質Si層をN2雰囲気中で、各温度において20時
間熱処理し、固相における再結晶化過程を主に透過電子
顕微鏡を用いて観察し、上記条件下における結晶化温度
を調べた。
The conditions at this time are as follows. The injection layer is 5i02
This is a polycrystalline Si layer with a thickness of 1100 nm deposited on the substrate by low pressure CVD by decomposition of SiH4 at 620°C, and the implanted ions are SL''.The implanted amount is the critical implanted amount (approx.
” constant over m-2) (in this case 5 x 101
Sc m-2), the implantation energy was 40ke
V to 80keV.
When the layer is turned on) and the implantation amount exceeds the critical implantation dose, the degree of damage in the damaged region becomes continuous in the layer thickness direction and becomes amorphous. This amorphous Si layer was heat treated in a N2 atmosphere at various temperatures for 20 hours, and the recrystallization process in the solid phase was observed mainly using a transmission electron microscope, and the crystallization temperature under the above conditions was investigated.

例えば40keVの注入エネルギーと、70keVのも
のに注目する。40keVと70keyの注入深さ(投
影飛程)は各々55.2nmと99.7nmであり、こ
れらは、1100nの層内で、膜厚中央近傍と、下地材
料との界面近傍に相応する。そして、それらの結晶化温
度には50℃以上の差異があり、下地界面近傍に注入し
たものの方が結晶化温度が高く結晶化しにくいことを示
しており、これは、損傷領域が界面にまでより大きくお
よびその結果不均一核形成による結晶成長が阻害された
ものと考えられる。さらに、加うるに、膜厚中央近傍に
投影飛程が来るように40keVで注入して非晶質化し
た層や、CVDで堆積した非晶層が1時間以内で結晶化
する温度(即ち600℃)において、70keVで界面
近傍に注入深さが来るようにして非晶質化した層を熱処
理したところ、この層は100時間以上経通しても結晶
化しないことが透過電子顕微鏡に確認された。即ち、イ
オン打込みの加速電圧を変化させることにより結晶化す
る領域と結晶化させない領域とを形成することができた
。熱処理から結晶化開始までの時間(潜伏時間)と注入
深さ(投影飛程)の関係を第2図に示す、第2図に示す
ように、注入深さが界面に向って深くなればなるほど潜
伏時間は伸長し、結晶化しにくい、(投影飛程)/(膜
厚)=1即ち界面近傍が最も損傷を受ける所で潜伏時間
は最大(1,、、)となり極大点をもつ。
For example, focus on implant energies of 40 keV and 70 keV. The implantation depths (projected ranges) of 40 keV and 70 key are 55.2 nm and 99.7 nm, respectively, and these correspond to the vicinity of the center of the film thickness and the vicinity of the interface with the underlying material within the 1100 nm layer. There is a difference of more than 50°C in their crystallization temperatures, indicating that the crystallization temperature is higher and it is more difficult to crystallize when implanted near the base interface.This indicates that the damaged area extends to the interface. It is considered that this is because the crystal growth was inhibited due to the large amount of nucleation and, as a result, heterogeneous nucleation. In addition, a layer made amorphous by implanting at 40 keV so that the projected range is near the center of the film thickness, or a layer deposited by CVD that crystallizes within 1 hour (i.e. 600 keV) When the amorphous layer was heat-treated at 70 keV at 70 keV with the implantation depth near the interface, it was confirmed by transmission electron microscopy that this layer did not crystallize even after over 100 hours. . That is, by changing the accelerating voltage of ion implantation, it was possible to form a crystallized region and a non-crystallized region. Figure 2 shows the relationship between the time from heat treatment to the start of crystallization (latent time) and implantation depth (projected range).As shown in Figure 2, the deeper the implantation depth toward the interface, the more The latent time is extended and crystallization is difficult; (projected range)/(film thickness) = 1, that is, the latent time is maximum (1, . . .) and has a maximum point near the interface where the most damage occurs.

以上のことより注入エネルギーを変化させることによっ
て結晶化温度と、潜伏時間に差異が出ることが明らかに
され、その原因は、界面近傍の不均一核形成の阻害によ
るものと判断される。
From the above, it has been revealed that the crystallization temperature and the latent time differ by changing the implantation energy, and the cause is judged to be the inhibition of heterogeneous nucleation near the interface.

非晶質半導体層の厚みは1.注入深さとそれに必要な注
入エネルギー、並びに半導体層自身のもつ容量を鑑みて
、50nm〜200nm程度が好ましく、より好ましく
は80nm〜150nm、最適には80nm〜120n
mである。
The thickness of the amorphous semiconductor layer is 1. Considering the implantation depth, the necessary implantation energy, and the capacitance of the semiconductor layer itself, it is preferably about 50 nm to 200 nm, more preferably 80 nm to 150 nm, and most preferably 80 nm to 120 nm.
It is m.

以上の現象を利用して核形成位置の制御を行う。The nucleation position is controlled using the above phenomenon.

第3図(A)に示すように、非晶質Si堆積層の表面に
レジスト等のマスクを用いて、核発生させるfII域を
覆い、核発生させない領域にのみSiイオンを非晶質S
1層と下地界面近傍が損傷を受けるように注入エネルギ
ーを選び注入する。
As shown in FIG. 3(A), a mask such as a resist is used on the surface of the amorphous Si deposited layer to cover the fII region where nucleation is to occur, and Si ions are applied to the amorphous S
The implantation energy is selected and implanted so that the vicinity of the interface between the first layer and the underlying layer is damaged.

レジストでマスクしていない部分の主に界面近傍に損傷
が与えられ、その後の熱処理の再核発生が阻害される。
Damage is caused mainly near the interface in areas not masked by the resist, and re-nucleation during subsequent heat treatment is inhibited.

注入損傷の程度が高い領域(以下界面損傷領域という)
が結晶化せず、注入損傷の程度が低いか注入損傷を受け
ていない領域(以下非界面損傷領域という)が結晶化す
る温度および時間を第1図、第2図から求めて、界面に
Siイオンを注入した非晶質Si層を、N2あるいはN
2中で熱処理する。かかる熱処理により局所的に核が発
生する。非晶質Si[に対しては500℃〜700℃で
10時間〜200時間、より好ましくは550℃〜65
0℃で50時間〜ioo時間、最適には580℃P62
0℃で70時間〜100時間程の熱処理が適当である。
Area with high degree of implantation damage (hereinafter referred to as interface damage area)
The temperature and time at which the silicon does not crystallize and the region with a low degree of implantation damage or no implantation damage (hereinafter referred to as non-interface damage region) crystallizes is determined from Figures 1 and 2, and Si The ion-implanted amorphous Si layer is heated with N2 or N
Heat treatment in 2. Nuclei are generated locally by such heat treatment. For amorphous Si [500°C to 700°C for 10 to 200 hours, more preferably 550°C to 65°C
50 hours to ioo hours at 0°C, optimally 580°C P62
Heat treatment at 0°C for about 70 to 100 hours is appropriate.

非界面損傷領域は微少面f[(5pm径以下、望ましく
は2μm(径)以下、最適には1μm(径)以下の面積
)にしておくと、熱処理を開始すると微少領域から早期
に核が発生し、しかも単一の結晶が成長するために好ま
しい(第3図(B))。この単一ドメインをもつ結晶相
は、第3図(C)に示すように熱処理を続けると、周囲
に結晶相と非晶質相界面が外側に向って移動する。即ち
非晶質中のSi原子は、界面をジャンプして、結晶相へ
とり込まれてゆく。このようにして結晶の大量さは増大
しつづけるが、この非晶質化から結晶相への相転移は、
表面エネルギー不利の核形成のためのエネルギーより低
エネルギーで起こる。そのため前記相転移は、界面損傷
領域には核形成が行なわれぬうちに非界面損傷領域から
生じた隼−の結晶相へ界面損傷領域の構成原子の再配列
によりどり込まれてゆき、固相にて結晶成長し、最靴的
には隣接する結晶量」二が衝突して、そこに結晶粒界が
形成される。
If the non-interface damage region is set to a microscopic surface f [(area of 5 pm or less in diameter, preferably 2 μm (diameter) or less, optimally 1 μm (diameter) or less), nuclei will be generated early from the micro region when heat treatment is started. However, this is preferable because a single crystal grows (FIG. 3(B)). As shown in FIG. 3(C), when this crystalline phase having a single domain is continued to undergo heat treatment, the interface between the crystalline phase and the amorphous phase moves outward. That is, Si atoms in the amorphous state jump across the interface and are incorporated into the crystalline phase. In this way, the mass of crystals continues to increase, but this phase transition from amorphous to crystalline phase is
Surface energy occurs at lower energies than those for unfavorable nucleation. Therefore, in the phase transition, before nucleation occurs in the interfacially damaged region, the falcon crystal phase generated from the non-interfacially damaged region is absorbed by the rearrangement of the atoms constituting the interfacially damaged region, and the solid phase transition occurs. Crystals grow, and most importantly, adjacent crystal masses collide, forming grain boundaries there.

この時、結晶粒径は非界面損傷類@(核発生領域)の間
隔にほぼ等しくなり、所望の結晶粒径に決めることがで
きると共にその粒界位置も決定される。核発生領域の間
隔は、好ま1.<は11zm〜10μm、より好ましく
は2μm〜8μm、最適には3μm〜5μmである。
At this time, the crystal grain size becomes approximately equal to the interval between non-interface damage groups (nucleation regions), and the desired crystal grain size can be determined, as well as the grain boundary position. The spacing between the nucleation regions is preferably 1. < is 11zm to 10μm, more preferably 2μm to 8μm, optimally 3μm to 5μm.

なお、未発明における非晶質薄膜は、多結晶薄膜にイオ
ン注入を行なうことにより多結晶薄膜を非晶質化して形
成したものだけに限らず、堆積時にすでに非晶質構造を
有するものでも良い。
Note that the amorphous thin film in the present invention is not limited to one formed by amorphizing a polycrystalline thin film by ion implantation into the polycrystalline thin film, but may also be one that already has an amorphous structure at the time of deposition. .

出発材料が多結晶層である場合には、非晶質化のために
、まず、マスクを設けずに、投影飛程が、多結晶薄膜の
中央近傍にくるように1回目のイオン注入を行う、かか
るイオン注入により、多結晶薄膜と下地材料との界面近
傍には注入損傷を与えることなく多結晶薄膜を非晶質化
できる。堆積時に非晶質構造の薄膜を形成する場合には
、前述した1回目のイオン注入は省略してよい。次いで
、微少領域に対応する部分に例えばレジスト等によるマ
スクを設けた状態で、投影飛程が非晶質薄膜と下地基体
との界面近傍にくるように2回目のイオン注入を行う。
When the starting material is a polycrystalline layer, in order to make it amorphous, the first ion implantation is performed without providing a mask so that the projected range is near the center of the polycrystalline thin film. By such ion implantation, the polycrystalline thin film can be made amorphous without causing implantation damage near the interface between the polycrystalline thin film and the underlying material. When forming a thin film with an amorphous structure during deposition, the first ion implantation described above may be omitted. Next, a second ion implantation is performed with a mask made of, for example, resist provided in a portion corresponding to the minute region so that the projected range is near the interface between the amorphous thin film and the underlying substrate.

かかるイオン注入によりマスクが設けられた部分以外に
おける非晶質薄膜と下地基体との界面近傍には注入損傷
が生じ界面近傍での不均一核形成を防止し得、一方マス
クが設けらt’+注入損傷が生じない部分(非界面損傷
領域)では界面近傍での不均一核形成が起きやすく、こ
の部分が核形成領域となる。
Such ion implantation causes implantation damage near the interface between the amorphous thin film and the underlying substrate in areas other than the portion where the mask is provided, and can prevent heterogeneous nucleation near the interface. In a region where no implantation damage occurs (non-interface damage region), heterogeneous nucleation tends to occur near the interface, and this region becomes the nucleation region.

以上の方法では2回のイオン注入を行うが、マスクの材
料、厚みを適宜選択すわば、微少領域に対応する部分に
おける投影飛程を薄膜中央近傍にくるようにでき、一方
、他の部分における投影飛程は非晶′H,薄膜あるいは
多結晶薄膜と下地基体との界面近傍にくるようにできる
ための注入損傷の程度が小さな微少領域の形成と多結晶
薄膜の非晶質化とを1回のイオン注入で行うことができ
る。
In the above method, ion implantation is performed twice, but by appropriately selecting the material and thickness of the mask, the projection range in the part corresponding to the minute area can be made to be near the center of the thin film, while the projection range in other parts can be The projected range is 1. Formation of a minute region with a small degree of implantation damage and making the polycrystalline thin film amorphous because the projection range is near the interface between the amorphous thin film or polycrystalline thin film and the underlying substrate. This can be done by multiple ion implantations.

このようなマスクどしてはイオン注入するイオンを透過
する材料のマスクであることが望ましく、例えば酸化珪
素やヂッ化硅素等の無機材料があげられる。
It is desirable that such a mask be made of a material that transmits the ions to be implanted, and examples thereof include inorganic materials such as silicon oxide and silicon didide.

(2)欠陥減少化のための熱処理 本発明者は、非晶質Siにランプによるインコヒーレン
ト光を照射する際にその照射前後の結晶構造を透過電子
顕微鏡でたんわんに大量の試料について観察を行った際
に次の重要な知見を得た。
(2) Heat treatment for defect reduction The present inventor observed the crystal structure of a large number of samples using a transmission electron microscope when irradiating amorphous Si with incoherent light from a lamp. During my visit, I obtained the following important findings.

■非晶質Siに直接タングステンハロゲンランプ光(波
長0.5=3.5μm)を照射し、昇温時間10秒〜6
0秒で1100℃以上融点以下に1〜3分間加熱すると
、結晶化が起こり、ザブミイクロン(〈1μm)の粒径
をもつ多結晶薄膜となり、粒内には良好な結晶性を有す
る薄膜に歪ミカ加わった時のみ透過電子顕微鏡で観察さ
れる干渉縞【Bendcontours)が観察される
程に欠陥が少ないことがわかった。
■ Directly irradiate amorphous Si with tungsten halogen lamp light (wavelength 0.5 = 3.5 μm), heat up time 10 seconds to 6
When heated for 1 to 3 minutes at temperatures above 1100°C and below the melting point for 0 seconds, crystallization occurs, forming a polycrystalline thin film with a grain size of submicron (<1 μm). It was found that there were so few defects that interference fringes (bend contours) observed using a transmission electron microscope were observed only when the bending was applied.

■非晶質Siを電気炉により600’eで10時間以上
100時間熱処理することにより固相成長させミクロン
サイズ(〉1μm)の大粒径樹枝状結晶を成長させた後
に1100℃以上融点以下の温度でランプによるインコ
ヒーレント光の照射を行うと粒内の結晶欠陥(積層欠陥
、マイクロ双晶、転位)が■と同様に激減することが確
かめられた。
■Amorphous Si is heat-treated in an electric furnace at 600'e for 10 to 100 hours to grow solid-phase growth, to grow micron-sized (>1 μm) large-grain dendrites, and then It was confirmed that crystal defects (stacking faults, microtwins, dislocations) within grains were drastically reduced when irradiated with incoherent light from a lamp at a certain temperature, similar to the case (2).

さらに、この場合には粒界の移動が観察されていないこ
とが特徴であった。
Furthermore, this case was characterized in that no movement of grain boundaries was observed.

■、■共に1300℃、1400℃(いずれも加熱時間
3m1n)と温度を上昇させるに従い、その欠陥の量が
減少することもわかった。
It was also found that as the temperature was increased to 1300° C. and 1400° C. (heating time 3 mln in each case) for both (1) and (2), the amount of defects decreased.

これらの現象は次のように理解される。These phenomena can be understood as follows.

■の場合には非晶買りt層が10秒で一気に1100℃
以上に加熱された結果、固相内の核形成温度が■の場合
より高く、成長径粒同士の衝突によって形成される粒界
によって決定される粒径は微少な1μm以下のものとな
り、さらに欠陥の自由energyの減少を駆動力とし
た欠陥の移動消滅がおきたものと判断される。なお、こ
の時粒界エネルギー減少を駆動力とした粒成長も合わせ
て起きている。
In the case of ■, the temperature of the amorphous t-layer suddenly reaches 1100℃ in 10 seconds.
As a result of the above heating, the nucleation temperature in the solid phase is higher than in case (2), and the grain size determined by the grain boundaries formed by collisions between growth-sized grains becomes minute, less than 1 μm, and defects It is determined that the defect moves and disappears using the reduction in free energy as the driving force. Incidentally, at this time, grain growth also occurs due to the driving force of grain boundary energy decrease.

■の場合、前述したように固相内での核形成速度が低温
アニールのために低く制限され(例えば700℃以下1
0時間以上の熱処理で1ミクロン以上の粒径となる)大
粒径の樹枝状多結晶が成長し、その後にランプ光照射し
て1100℃以上融点以下の温度の加熱により欠陥エネ
ルギー減少を駆動力として欠陥群が移動、消滅する。
In case (2), as mentioned above, the nucleation rate in the solid phase is limited to a low level due to low-temperature annealing (for example, below 700°C).
After heat treatment for 0 hours or more, large-grain dendritic polycrystals grow (with a grain size of 1 micron or more), and then irradiated with lamp light and heated to a temperature of 1100°C or more and below the melting point, which drives the defect energy reduction. As a result, the defect group moves and disappears.

ただし、粒径が1μm以上と大きいため、粒界エネルギ
ーの状態は■の場合より低く、粒界の移動を伴った粒成
長は起こらない。
However, since the grain size is as large as 1 μm or more, the grain boundary energy state is lower than in case (2), and grain growth accompanied by movement of grain boundaries does not occur.

本発明に使用されるインコヒーレント光の照射強度とし
ては、前述した範囲の昇温速度で半導体薄膜を昇温し得
る強度であり、好ましくは0. 1W/cm2以上が望
ましい。
The irradiation intensity of the incoherent light used in the present invention is an intensity that can raise the temperature of the semiconductor thin film at a heating rate within the above-mentioned range, preferably 0. 1 W/cm2 or more is desirable.

このようにして作製した大面積均一な結晶構造に変化せ
しめたSi薄膜にトランジスタ(Pチャンネル電界効果
トランジスタ)を作製した。正孔キャリア易動度とサブ
スレッシュホールド特性のランプ加熱温度に対する関係
を第4図に示す。
A transistor (P-channel field effect transistor) was fabricated on the Si thin film produced in this manner and changed to have a large area uniform crystal structure. FIG. 4 shows the relationship between hole carrier mobility and subthreshold characteristics with respect to lamp heating temperature.

まず、■の試料、即ち非晶質Siに直接ランプ加熱によ
り高温処理したものにMOS Transistorヲ
作製した結果を、黒丸(・)のプロットで示す。
First, the results of fabricating a MOS transistor in the sample (2), that is, amorphous Si subjected to high-temperature treatment by direct lamp heating, are plotted with black circles (.).

正孔キャリア易動度は、1100℃の熱処理まではほと
んど変化なく10cm”/V−sec以下であるが12
00℃以上の熱処理したものでは、急に易動度が向上に
10cm27V−seeを越える。サブスレッシュホー
ルド係数は、1000 m V /decade以上で
あり、このグラフにものらない程劣悪である。
The hole carrier mobility hardly changes until heat treatment at 1100°C and remains below 10 cm"/V-sec, but 12
When heat treated at 00°C or higher, the mobility suddenly increases to exceed 10cm27V-see. The subthreshold coefficient is 1000 mV/decade or more, which is so poor that it is not even shown in this graph.

■の試料、即ち非晶isiを一担低温で固相成長させ、
1μm以上の大粒径化を行った後にランプを照射したも
のに電界効果トランジスタ(IIIO5FET)を作製
したもの結果の正孔キャリア易動度の変化を白丸(O)
、サブスレッシュホールド係数の変化を三角(Δ)で示
す。
Sample (2), that is, amorphous isi, is grown in solid phase at a low temperature,
A field effect transistor (IIIO5FET) was fabricated using a lamp irradiated after increasing the grain size to 1 μm or more. The resulting changes in hole carrier mobility are shown in white circles (O).
, the change in the subthreshold coefficient is indicated by a triangle (Δ).

低温固相成長したままのランプ照射を施す前のトランジ
スタでさえ、既にキャリア易動度が40cm2/V−s
ecを越えており、1100℃まではゆるやかな向上が
あり58cm2/■・secとなった。
Even in a transistor grown in a low-temperature solid phase before lamp irradiation, the carrier mobility is already 40 cm2/V-s.
It exceeded ec, and there was a gradual improvement up to 1100°C, and it became 58cm2/■·sec.

さらに1100℃以上の光照射加熱により急激にその特
性は向上し、1300℃では140cm2/V−sec
となり、その特性は飛躍的に改善される。この向上は1
200℃以上で特に著しいことも判明した。同時にサブ
スレッシュホールド特性は1100℃までは700 m
 V / decade以上であり1100℃以上の熱
処理により減少がはじまり1200℃以上で特に著しい
向上が観測される。
Furthermore, its properties were rapidly improved by light irradiation heating above 1100℃, and at 1300℃ it was 140cm2/V-sec.
As a result, its characteristics are dramatically improved. This improvement is 1
It has also been found that this phenomenon is particularly significant at temperatures above 200°C. At the same time, the subthreshold characteristic is 700 m up to 1100°C.
V/decade or higher, and a decrease begins with heat treatment at 1100°C or higher, and a particularly remarkable improvement is observed at 1200°C or higher.

以上まとめるとランプ光照射の前に固相で熱処理を低温
度で行い、粒径拡大した後に1100℃以上さらにのぞ
ましくは1200℃以上のランプによる熱処理がDev
ice特性向上のために有効であることが判明した。
To summarize the above, heat treatment is performed in the solid phase at low temperature before lamp light irradiation, and after grain size expansion, heat treatment with a lamp at 1100°C or more, preferably 1200°C or more, is carried out in Dev.
It was found to be effective for improving ice characteristics.

また、ランプ加熱では、昇温速度が速いため非常に短時
間(数秒)で1100℃以上の温度に達し、下降も極め
て迅速に行われる。さらに波長を選択することム二より
、Si層のみの選択的加熱も可能である。Slの吸収波
長を300nmから11t mまで変化さゼ゛るどその
吸収深さは10nmか61007、+ mまで変化する
。表面層のみを加熱するためには800nm〜900n
mの間に発光波長スペクトルビークをもつXe(キセノ
ン)ランプを用いることがで咎る。この2つの点におい
て般に用いうわている電気炉に対して有利である。どり
わけ、通常の電気炉では数秒で1100℃以上の昇温速
度の加熱は困難である。また、本発明によれば所望の位
置で核発生し、粒径、粒界の位置を制御した半導体薄膜
を形成し得るためデバイス特性を低下させる原因である
粒界を避けて、デバイスの能動領域を形成することがで
きるため、単結晶半導体基体上に作成したデバイスと同
等の特性を有するデバイスを得ることができる。
Furthermore, in lamp heating, the rate of temperature increase is fast, so the temperature reaches 1100° C. or higher in a very short time (several seconds), and the temperature decreases extremely quickly. Furthermore, selective heating of only the Si layer is also possible by selecting the wavelength. When the absorption wavelength of Sl is changed from 300 nm to 11 tm, the absorption depth changes to 10 nm or 61007,+ m. 800nm to 900n to heat only the surface layer
It is recommended to use a Xe (xenon) lamp with an emission wavelength spectral peak between m. In these two respects, it is advantageous over commonly used electric furnaces. In particular, it is difficult to heat at a temperature increase rate of 1100° C. or more in a few seconds using a normal electric furnace. Furthermore, according to the present invention, it is possible to form a semiconductor thin film in which nuclei are generated at desired positions and the grain size and position of grain boundaries are controlled. Therefore, it is possible to obtain a device having characteristics equivalent to those of a device fabricated on a single crystal semiconductor substrate.

以下に、μmサイズに固相成長させた後1350℃のハ
ロゲンランプ加熱を加えた後に作製したPチャンネル電
界効果トランジスタ(サンプルA)の4インチウェハー
内に作製した50個の素子のしきい値(vth)の分散
を第1表に示す、まりこ下IRにトランジスタの動作性
能の指標であるキャリア移動度(μ)を示す。
Below, the threshold values ( The dispersion of Vth) is shown in Table 1, and the IR below shows the carrier mobility (μ), which is an index of the operational performance of the transistor.

第1表 サンプルBは、粒界位置制御した後、1350℃のラン
プ加熱を施し、トランジスタを作製したもの、サンプル
Cは、バルクSiウェハーに作製したものを示す。チャ
ンネル長(L)は10μmと3μmであフな。粒界間隔
は5μmに設計した(サンプルB)。
Sample B in Table 1 shows a transistor manufactured by performing lamp heating at 1350° C. after grain boundary position control, and sample C shows a transistor manufactured on a bulk Si wafer. Channel lengths (L) of 10 μm and 3 μm are appropriate. The grain boundary spacing was designed to be 5 μm (sample B).

粒界位置制御されていないサンプルBでは、分散σは短
チャンネルの方が大きく、粒界位置制御ざわ丁いるサン
プルBでは、短チャンネルの方が小さく、しかもキャリ
ア移動度は増加している。
In sample B, in which the grain boundary position is not controlled, the dispersion σ is larger in the short channel, and in sample B, in which the grain boundary position is controlled, the dispersion σ is smaller in the short channel, and the carrier mobility is increased.

以上のように粒界位置制御されている大粒径樹枝状多結
晶に高温熱!A埋を施し欠陥低減を行うと均一性が向上
し、高性能化が達成される。この効果は集積回路を組む
際極めて重要である。
As described above, high-temperature heat is applied to large-grain dendritic polycrystals with controlled grain boundary positions! By performing A filling to reduce defects, uniformity improves and high performance is achieved. This effect is extremely important when building integrated circuits.

[実施例] (実施例1) 4インチSiウェハー上に熱酸化s i 02 mを0
.1μm形成し5その上に、通常の減圧CVD法で非晶
質S1膜を1100nの厚みに堆積したい この時ソースガスはSiH4を使用し、550℃圧力0
.3Torrで形成した。
[Example] (Example 1) 0 thermally oxidized s i 02 m on a 4-inch Si wafer
.. 1 μm thick and then deposited an amorphous S1 film with a thickness of 1100 nm on top of it using the normal low pressure CVD method.At this time, SiH4 was used as the source gas, and the temperature was 550°C and the pressure was 0.
.. It was formed at 3 Torr.

その後、レジストを塗布lノ、通常のリソグラフィー技
術で1μm径のレジストを5μm間隔に格子点状に残し
た。
Thereafter, a resist was applied, and resist with a diameter of 1 μm was left in the form of lattice points at intervals of 5 μm using a normal lithography technique.

このレジストをマスクにしてSi”イオンを70keV
で全面に注入した。注入量は3X1015c m””と
1ノだ。70keVの注入エネルギーにおいてその投影
飛程はioonmのSiど下地材料の3102ガラス界
面近傍に来る。これで1μm径のレジスト以外の領域は
全てその界面(Si/5iO2)に損傷が与えられた。
Using this resist as a mask, Si” ions were applied at 70 keV.
It was injected all over. The injection amount is 3 x 1015 cm"" and 1 no. At an implantation energy of 70 keV, its projected range comes close to the 3102 glass interface of the underlying material such as ionm Si. This caused damage to the interface (Si/5iO2) in all areas other than the 1 μm diameter resist.

1ノジストを!!J離した後、N2雰囲気中テロ 30
t:、80時間の電気炉を用いた熱処理を行い、固相で
結晶成長させた。その後、透過電子顕微鏡で観察した結
果、結晶粒界がほぼ初めのパターン間隔に相当する5μ
m間隔に整列し、粒径の分布は各々平均5μmに対して
±1μm以内であった。
1 Nozist! ! Terrorism in N2 atmosphere after releasing J 30
t: Heat treatment was performed using an electric furnace for 80 hours to grow crystals in a solid phase. After that, as a result of observation with a transmission electron microscope, the grain boundaries were found to be 5 μm, which corresponds to the initial pattern spacing.
The particles were arranged at m intervals, and the particle size distribution was within ±1 μm with respect to an average of 5 μm.

また、雰囲気はN2とした。また、照射中の表面荒れを
防止するためSi薄膜表面に50nmの5iO2層をス
パッターによりキャップ屡として形成した。
Further, the atmosphere was N2. Further, in order to prevent surface roughening during irradiation, a 50 nm thick 5iO2 layer was formed as a cap on the surface of the Si thin film by sputtering.

さらに、タングステンハロゲンランプを両面より110
0℃、1350℃、1400℃で3分照射した6つのサ
ンプルを形成した。なお、昇温速度ば200℃/ s 
e cとした。その後ICプロセスを用いてポリシリコ
ンゲートのPチャンネル電界効果トランジスタを4イン
チウェハーに作製した。チャンネル長は10μmと3μ
mであった。
Furthermore, a tungsten halogen lamp was installed at 110°C from both sides.
Six samples were formed that were irradiated for 3 minutes at 0°C, 1350°C, and 1400°C. In addition, the heating rate is 200℃/s
It was set as ec. Thereafter, a polysilicon gate P-channel field effect transistor was fabricated on a 4-inch wafer using an IC process. Channel length is 10μm and 3μm
It was m.

その結果、キャリア移動度が大きく、しきい値の分散の
少ない優れたトランジスタが得られた。
As a result, an excellent transistor with high carrier mobility and low threshold dispersion was obtained.

また、N2雰囲気中の熱処理をN2雰囲気中の熱処理に
しても同様の効果が得られた。
Furthermore, similar effects were obtained even when the heat treatment in the N2 atmosphere was changed to the heat treatment in the N2 atmosphere.

(実施例2) 板状のガラスからなる下地材料上に、減圧化学気相法に
よフてSiH4を熱分解し、多結晶Si薄膜を1100
n堆積した。形成温度は620℃、圧力0.3Torr
であり、その粒径は微細であり50nm程度であった。
(Example 2) A polycrystalline Si thin film with a density of 1100 nm was deposited on a base material made of plate-shaped glass by thermally decomposing SiH4 using a low pressure chemical vapor phase method.
n deposited. Formation temperature is 620℃, pressure 0.3Torr
The particle size was fine, about 50 nm.

Si注入は2回行った。まず、最初にレジストマスクな
しに全面に40keVの注入エネルギーで3X10”c
m−’の注入量でSiイオンを該多結晶Si層へ注入し
、イオン注入によるノックオン原子に起因する空格子点
が連続となり、非晶質化した。ただし、40kevの投
影飛程は1100nの膜厚中央近傍に位置し、その結果
、Si/5in2下地界面近傍の損傷はほとんどない。
Si injection was performed twice. First, we first implanted a 3×10”c film with an energy of 40 keV on the entire surface without a resist mask.
Si ions were implanted into the polycrystalline Si layer at an implantation dose of m-', and the vacancies caused by knock-on atoms caused by the ion implantation became continuous and became amorphous. However, the projected range of 40keV is located near the center of the film thickness of 1100n, and as a result, there is almost no damage near the Si/5in2 base interface.

その後、実施例1と同様にレジストマスクを1μm径で
5μm間隔で格子点状に設け、2回目のSt”イオン注
入を今度は70keVで行い、界面近傍に損傷を導入し
た。注入量は1回目の注入と同一とした。レジスト剥離
後N、中で620℃、100時間熱処理した。その結果
、実施例1と同様に粒径が5μm±1μmとなり、しか
も、粒界が格子状に整列していた。
Thereafter, as in Example 1, a resist mask was provided in the form of lattice points with a diameter of 1 μm and an interval of 5 μm, and a second St'' ion implantation was performed, this time at 70 keV, to introduce damage near the interface. After the resist was removed, it was heat-treated in N at 620°C for 100 hours. As a result, the grain size was 5 μm ± 1 μm as in Example 1, and the grain boundaries were aligned in a lattice pattern. Ta.

さらに、上記粒界位置制御されたSi薄膜を50nmの
スパッター5ift膜を被覆した後、その上部にSiウ
ェハーを光吸収物として接触させタングステンハロゲン
ランプ光を照射して1100℃、1200℃、1300
℃、1350℃、1400℃で3分間行った5つのサン
プルを形成した。なお、昇温速度は200℃/ s e
 c トした。また、雰囲気はN、とした。
Furthermore, after coating the Si thin film with grain boundary position control with a sputtered 5ift film of 50 nm, a Si wafer was brought into contact with the top of the film as a light absorber, and tungsten halogen lamp light was irradiated at 1100°C, 1200°C, 1300°C.
Five samples were formed at 1350°C and 1400°C for 3 minutes. In addition, the temperature increase rate is 200℃/s
c I did it. In addition, the atmosphere was N.

キャップSin、を除去して後、実施例1と同様に電界
効果トランジスタを作製したところ良好な特性を有する
トランジスタが得られた。
After removing the cap Sin, a field effect transistor was manufactured in the same manner as in Example 1, and a transistor with good characteristics was obtained.

(実施例3) 下地材料としての石英基板上に、超高真空中における電
子ビーム蒸着法によって以下に示す条件の下に、非晶質
Si[を1100nの膜厚で堆積した。
(Example 3) Amorphous Si was deposited to a thickness of 1100 nm on a quartz substrate as a base material by electron beam evaporation in an ultra-high vacuum under the conditions shown below.

到達真空度   lXl0−”Torr蒸着中真空度 
 5X10−”Torr基板温度    150℃ 堆積速度    〜100 n m / h rこの非
晶質Si薄膜上に、レジストを通常のフォトリソフラフ
ィー工程によって、1μm角の領域を5μm間隔の格子
点状に残るようにバターニングした。
Ultimate vacuum level lXl0-”Torr Vacuum level during deposition
5×10-”Torr Substrate temperature: 150°C Deposition rate: ~100 nm/hr On this amorphous Si thin film, resist was applied using a normal photolithography process so that 1 μm square areas remained in the form of lattice points with 5 μm intervals. I buttered it.

さらに、この基板全体に、70keVのエネルギーに加
速されたSi+イオンを1×101101s”の注入量
でイオン注入した。この場合、Si中でのSiイオンの
投影飛程は99.7nmであるから、レジストで覆われ
ていない領域の非晶質Si薄膜と石英基板との界面近傍
に最も多くのSiイオンが分布し、界面に多(の損傷が
導入される。
Furthermore, Si + ions accelerated to an energy of 70 keV were implanted into the entire substrate at an implantation dose of 1×101101 s. In this case, since the projected range of Si ions in Si is 99.7 nm, The largest number of Si ions are distributed near the interface between the amorphous Si thin film and the quartz substrate in a region not covered by the resist, and a large amount of damage is introduced at the interface.

レジストを除去した後、N2雰囲気中で基板温度を59
0℃に保って熱処理した。熱処理開始後15時間はどで
、1μm角の2回目のSfイオンの注入されていない領
域で、結晶核が発生し始めた。この時点で、レジストで
覆われずにSiイオンを注入された領域では何ら核形成
は生じていないので、さらにアニールを続けると、1μ
m角の領域で既に形成されていた結晶核はその領域を越
えて横方向に成長し、樹枝状の大粒径薄膜結晶となった
。そして120時間はどアニールすると、5μm程離れ
た隣接する領域から成長してきた結晶粒と成長端面を接
して粒界をなすに至り、非晶質S1薄膜はほぼ全域にわ
たって結晶化した。結果として、結晶粒界をほぼ5μm
間隔の格子状に配しながら、平均粒径5μmの結晶粒群
からなる薄膜状の結晶が得られた。
After removing the resist, the substrate temperature was increased to 59°C in an N2 atmosphere.
Heat treatment was performed while maintaining the temperature at 0°C. Fifteen hours after the start of the heat treatment, crystal nuclei began to be generated in a 1 μm square area where the second Sf ions were not implanted. At this point, no nucleation has occurred in the region not covered with resist and implanted with Si ions, so if annealing is continued further, 1μ
The crystal nuclei that had already been formed in the m-square region grew laterally beyond that region, forming dendritic large-grain thin film crystals. After annealing for 120 hours, the growth end face came into contact with a crystal grain grown from an adjacent region about 5 μm apart to form a grain boundary, and the amorphous S1 thin film was crystallized over almost the entire area. As a result, the grain boundaries were reduced to approximately 5 μm.
A thin film-like crystal consisting of a group of crystal grains having an average grain size of 5 μm was obtained while being arranged in a lattice shape with intervals.

実施例1,2と同様にハロゲンランプにより光加熱し、
次いで電界効果トランジスタを作製した。
Lightly heated with a halogen lamp as in Examples 1 and 2,
Next, a field effect transistor was fabricated.

全ての実施例において、固相成長により粒界位置制御さ
れたSi薄膜を光により高温熱処理した後に透A電子顕
微鏡によりその粒界位胃を再確認した結果、粒界移動は
無かった。
In all Examples, after the Si thin film whose grain boundary position was controlled by solid phase growth was heat treated at high temperature with light, the grain boundary position was reconfirmed using a transmission A electron microscope, and as a result, there was no grain boundary movement.

実施例1.2.3により粒界位置制御されたSi薄膜に
光照射を施し、結晶性を向上させた後、トランジスタを
作製したところ、第4図に示すように光加熱温度により
トランジスタの諸物件は向上し、さらに第1表に示すよ
うに[第1表(B)]、そのバラツキが減少し集積回路
を組む上で非常に有利となフだ。
The Si thin film whose grain boundary position was controlled according to Example 1.2.3 was irradiated with light to improve its crystallinity, and then a transistor was fabricated. As shown in FIG. The property quality is improved, and as shown in Table 1 [Table 1 (B)], the variation is reduced, which is very advantageous when building integrated circuits.

[発明の効果] 本発明によれば、粒界位置制御された固相成長大粒径樹
枝状結晶Si薄膜にインコーヒーレント光照射により粒
界移動を伴わずに結晶粒内の結晶欠陥を低減せしめ、そ
こに作製された素子の高性能化と高均一化を同時に達成
される。
[Effects of the Invention] According to the present invention, crystal defects within crystal grains can be reduced without grain boundary movement by incoherent light irradiation on a solid-phase grown large-grain dendritic crystal Si thin film with grain boundary position control. As a result, high performance and high uniformity of the device fabricated therein can be achieved at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、注入エネルギーと結晶化温度との関係を示す
グラフ、第2図は、投影飛程と潜伏時間との関係を示す
グラフ、第3図は非晶質層から結晶質層へ成長工程を示
す工程図、第4図は、熱処理温度と結晶欠陥どの関係を
示すグラフである。 第 1 図 第3図 Si″′ イオン注入 結晶S1 第2図
Figure 1 is a graph showing the relationship between implantation energy and crystallization temperature, Figure 2 is a graph showing the relationship between projected range and latent time, and Figure 3 is a graph showing the relationship between an amorphous layer and a crystalline layer. FIG. 4, a process diagram showing the process, is a graph showing the relationship between heat treatment temperature and crystal defects. Fig. 1 Fig. 3 Si''' Ion-implanted crystal S1 Fig. 2

Claims (4)

【特許請求の範囲】[Claims] (1)非晶質薄膜を固相成長によって結晶化させて薄膜
結晶とする結晶成長方法において、非晶質薄膜の予め定
められた位置に、優先的に核発生点となる複数個の微小
領域を形成し、次いで加熱処理を行うことにより、該微
小領域から優先的に単一の核より固相成長せしめて粒界
の位置が指定された結晶半導体薄膜を形成させ、次いで
該結晶半導体薄膜を1100℃以上の熱処理によって粒
内欠陥を減少させることを特徴とする半導体薄膜の形成
方法。
(1) In a crystal growth method in which an amorphous thin film is crystallized by solid-phase growth to form a thin film crystal, a plurality of micro regions that serve as preferential nucleation points are formed at predetermined positions in the amorphous thin film. is formed, and then heat treatment is performed to cause solid phase growth from a single nucleus preferentially from the micro region to form a crystalline semiconductor thin film in which the position of the grain boundary is specified, and then the crystalline semiconductor thin film is A method for forming a semiconductor thin film, characterized by reducing intragranular defects by heat treatment at 1100° C. or higher.
(2)前記非晶質薄膜は、堆積されたままで非晶質構造
となるもの、堆積非晶質層あるいは多結晶薄膜をイオン
注入を行うことにより非晶質構造となる薄膜である請求
項1記載の半導体薄膜の形成方法。
(2) The amorphous thin film is a thin film that becomes an amorphous structure as it is deposited, or a thin film that becomes an amorphous structure by performing ion implantation into the deposited amorphous layer or polycrystalline thin film. The method for forming the semiconductor thin film described above.
(3)前記微小領域の形成は、該領域以外の部分の下地
界面近傍が注入損傷を受けるような注入エネルギーでの
イオン注入により行うことを特徴とする請求項1又は2
記載の半導体薄膜の形成方法。
(3) The formation of the minute region is performed by ion implantation with an implantation energy that causes implantation damage to the vicinity of the base interface in a portion other than the region.
The method for forming the semiconductor thin film described above.
(4)前記1100℃以上の熱処理はインコヒーレント
光の照射を用いる請求項1乃至3記載の半導体薄膜の形
成方法。
(4) The method for forming a semiconductor thin film according to any one of claims 1 to 3, wherein the heat treatment at 1100° C. or higher uses incoherent light irradiation.
JP14786390A 1990-04-10 1990-06-06 Formation of semiconductor thin film Pending JPH0442918A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14786390A JPH0442918A (en) 1990-06-06 1990-06-06 Formation of semiconductor thin film
DE69116202T DE69116202T2 (en) 1990-04-10 1991-04-09 Process for the production of a semiconductor thin film
AT91105613T ATE132919T1 (en) 1990-04-10 1991-04-09 METHOD FOR PRODUCING A SEMICONDUCTOR THIN FILM
EP91105613A EP0451789B1 (en) 1990-04-10 1991-04-09 Method of forming semiconductor thin film
US08/352,113 US5495824A (en) 1990-04-10 1994-12-01 Method for forming semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14786390A JPH0442918A (en) 1990-06-06 1990-06-06 Formation of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH0442918A true JPH0442918A (en) 1992-02-13

Family

ID=15439953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14786390A Pending JPH0442918A (en) 1990-04-10 1990-06-06 Formation of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH0442918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326020A (en) * 1993-05-14 1994-11-25 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
US5514880A (en) * 1992-10-28 1996-05-07 Mitsubishi Denki Kabushiki Kaisha Field effect thin-film transistor for an SRAM with reduced standby current

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514880A (en) * 1992-10-28 1996-05-07 Mitsubishi Denki Kabushiki Kaisha Field effect thin-film transistor for an SRAM with reduced standby current
US5736438A (en) * 1992-10-28 1998-04-07 Mitsubishi Denki Kabushiki Kaisha Field effect thin-film transistor and method of manufacturing the same as well as semiconductor device provided with the same
JPH06326020A (en) * 1993-05-14 1994-11-25 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
JP2695488B2 (en) Crystal growth method
EP0390608B1 (en) Method for forming semiconductor thin-film and resulting semiconductor thin-film
US5290712A (en) Process for forming crystalline semiconductor film
EP0472970B1 (en) Process for growing crystalline thin film
US5624873A (en) Enhanced crystallization of amorphous films
US6664147B2 (en) Method of forming thin film transistors on predominantly &lt;100&gt; polycrystalline silicon films
US5495824A (en) Method for forming semiconductor thin film
TWI290768B (en) Method for manufacturing polysilicon film
JPH0442918A (en) Formation of semiconductor thin film
JPH03290924A (en) Manufacture of crystalline silicon film, crystalline silicon semiconductor utilizing the same and its manufacture
JPH02260524A (en) Crystalline semiconductor film and formation thereof
JP2695466B2 (en) Crystal growth method
JP2662058B2 (en) Method for manufacturing semiconductor film
JPH0329316A (en) Formation of semiconductor thin film
JPH03250621A (en) Manufacture of semiconductor film
JPH059099A (en) Method for growing crystal
JP2680114B2 (en) Method for forming crystalline semiconductor thin film
JP2749945B2 (en) Solid phase crystal growth method
JPH02258690A (en) Method for forming semiconductor thin film
EP0420516B1 (en) Method for forming semiconductor thin film
JP2767833B2 (en) Method of manufacturing polysilicon thin film transistor
JPH03120715A (en) Method of crystal growth and crystal
JPH04286111A (en) Manufacture of polycrystal silicon thin film
JPH05195231A (en) Formation of crystal film
JPH04180218A (en) Crystal product and crystal growing method