JP2695466B2 - Crystal growth method - Google Patents

Crystal growth method

Info

Publication number
JP2695466B2
JP2695466B2 JP1110386A JP11038689A JP2695466B2 JP 2695466 B2 JP2695466 B2 JP 2695466B2 JP 1110386 A JP1110386 A JP 1110386A JP 11038689 A JP11038689 A JP 11038689A JP 2695466 B2 JP2695466 B2 JP 2695466B2
Authority
JP
Japan
Prior art keywords
thin film
amorphous
crystal
interface
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1110386A
Other languages
Japanese (ja)
Other versions
JPH02288328A (en
Inventor
隆夫 米原
日出也 雲見
信彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1110386A priority Critical patent/JP2695466B2/en
Priority to EP90303479A priority patent/EP0390607B1/en
Priority to DE69031880T priority patent/DE69031880T2/en
Publication of JPH02288328A publication Critical patent/JPH02288328A/en
Priority to US07/790,083 priority patent/US5290712A/en
Application granted granted Critical
Publication of JP2695466B2 publication Critical patent/JP2695466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体薄膜の形成方法に係り、より詳細に
は、たとえばTFT(薄膜トランジスタ)等の半導体装置
を高性能に作り得る、大粒径かつ粒界位置の制御された
半導体薄膜の形成方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for forming a semiconductor thin film, and more specifically, to a semiconductor device such as a TFT (thin film transistor) having a high grain size capable of being manufactured with high performance. The present invention also relates to a method for forming a semiconductor thin film having controlled grain boundary positions.

[従来の技術及び発明が解決しようとする課題] 非晶質基板等の基体上に結晶薄膜を成長させる結晶形
成技術の分野におけるひとつの方法として、基体上に予
め形成された非晶質薄膜を融点以下の低温におけるアニ
ールによって固相成長させる方法が提案されている。例
えば、非晶質のSiO2表面上に形成された膜厚約100nm程
の非晶質Si薄膜を、N2雰囲気中において、600℃でアニ
ールすることにより、前記非晶質Si薄膜を結晶化する
と、大粒径が5μm程度の多結晶薄膜になるという結晶
形成方法が報告された(T.Noguchi,H.Hayashi and H.Oh
shima,1987,Mat.Res.Soc.Symp.Proc.,106,Polysilicon
and Interfaces,293,(Elsevier Science Publishing,N
ew York 1988))。この方法により得られる多結晶薄膜
の表面は平坦なままであるので、そのままMOSトランジ
スタやダイオードのような電子素子を形成することが可
能である。また、それらの素子は、多結晶の平均粒径が
LPCVD法によって堆積した通常の多結晶Si等に比べてず
っと大きいために、比較的高性能のものが得られる。
[Prior Art and Problems to be Solved by the Invention] As one method in the field of crystal formation technology for growing a crystal thin film on a substrate such as an amorphous substrate, an amorphous thin film previously formed on a substrate is used. A method of performing solid phase growth by annealing at a low temperature equal to or lower than the melting point has been proposed. For example, an amorphous Si thin film having a thickness of about 100 nm formed on an amorphous SiO 2 surface is annealed at 600 ° C. in an N 2 atmosphere to crystallize the amorphous Si thin film. Then, a crystal forming method was reported in which a large-grain-size polycrystalline thin film with a size of about 5 μm was formed (T. Noguchi, H. Hayashi and H. Oh.
shima, 1987, Mat.Res.Soc.Symp.Proc., 106, Polysilicon
and Interfaces, 293, (Elsevier Science Publishing, N
ew York 1988)). Since the surface of the polycrystalline thin film obtained by this method remains flat, it is possible to form electronic devices such as MOS transistors and diodes as they are. In addition, those elements have a polycrystalline average grain size of
Since it is much larger than ordinary polycrystalline Si deposited by the LPCVD method, a relatively high-performance one can be obtained.

しかしながら、この結晶形成方法においては、結晶粒
径こそ大きいものの、その分布と結晶粒界の位置が制御
されていない。なぜなら、この場合、非晶質Si薄膜の結
晶化は、アニールによって非晶質中にランダムに発生し
た結晶核の固相成長に基づいているため、粒界の位置も
またランダムに形成され、その結果、粒径が広い範囲に
わたって分布してしまうからである。したがって、単に
結晶粒の平均粒径が大きいだけでは以下のような問題点
が生じる。
However, in this crystal forming method, although the crystal grain size is large, the distribution and the position of the crystal grain boundary are not controlled. Because, in this case, the crystallization of the amorphous Si thin film is based on solid-phase growth of crystal nuclei randomly generated in the amorphous material by annealing, and therefore grain boundary positions are also randomly formed. As a result, the particle size is distributed over a wide range. Therefore, if the average grain size of the crystal grains is simply large, the following problems occur.

例えば、MOSトランジスタにおいては、ゲートの大き
さが平均結晶粒径と同程度、あるいはそれ以下になるた
めに、ゲート部分には、粒界が含まれない部分のと数個
含まれる部分とが生ずる。粒界が含まれない部分と数個
含まれる部分とでは電気特性が大きく変化する。そのた
めに複数の素子間の特性に大きなバラツキが生じ、集積
回路等を形成する場合、結晶粒径のバラツキは集積回路
上著しい障害となっていた。
For example, in a MOS transistor, the size of the gate is about the same as or smaller than the average crystal grain size, so that the gate part includes a part that does not include grain boundaries and a part that includes several grain boundaries. . The electrical characteristics greatly change between the part that does not include grain boundaries and the part that includes several grain boundaries. For this reason, a large variation occurs in the characteristics between a plurality of elements, and when forming an integrated circuit or the like, the variation in crystal grain size has been a significant obstacle in the integrated circuit.

上記の固相結晶化による大粒径多結晶薄膜における問
題点のうち、粒径のバラツキを抑制する方法については
特開昭58−56406号公報で提案されている。その方法を
第4図を用いて説明する。まず、第4図(a)に示すよ
うに非晶質基板41上に形成した非晶質Si薄膜42の表面
に、他の材料からなる薄膜小片43を周期的に設けて、こ
の基板全体を通常の加熱炉でアニールする。すると非晶
質Si薄膜42中で薄膜小片43の周辺と接する箇所から優先
的に結晶核44の核形成が生ずる。そこでこの結晶核をさ
らに成長させると、非晶質Si薄膜42は全域にわたって結
晶化し、第4図(b)に示すような大粒径の結晶粒群45
からなる多結晶薄膜が得られる。特開昭58−56406号公
報によれば、この方法では先に示した従来法と比較して
粒径のバラツキを1/3程度まで低減できるという。
Among the problems in the large grain size polycrystalline thin film due to the above solid phase crystallization, a method for suppressing the variation in grain size is proposed in Japanese Patent Laid-Open No. 58-56406. The method will be described with reference to FIG. First, as shown in FIG. 4 (a), thin film pieces 43 made of another material are periodically provided on the surface of an amorphous Si thin film 42 formed on an amorphous substrate 41, and the entire substrate is Anneal in a normal heating furnace. Then, nucleation of crystal nuclei 44 occurs preferentially from a portion of the amorphous Si thin film 42 that is in contact with the periphery of the thin film piece 43. Then, when the crystal nuclei are further grown, the amorphous Si thin film 42 is crystallized over the entire area, and a large crystal grain group 45 as shown in FIG.
To obtain a polycrystalline thin film. According to Japanese Patent Laid-Open No. 58-56406, this method can reduce the variation in particle size by about 1/3 as compared with the conventional method described above.

しかしながら、それでもまだ不充分である。例えば、
薄膜小片43を10μm間隔の格子点状に配した場合、粒径
のバラツキは3〜8μmの範囲に収められるに過ぎな
い。更に結晶粒界位置の制御にいたっては、ほとんど制
御されていないのが実情である。その理由は、非晶質Si
薄膜42と薄膜小片43の周辺部が接する部分における弾性
エネルギーの局在効果によって、薄膜小片43の周辺に優
先的な核形成が生じる為に、周辺に沿って複数個の核が
発生し、かつその数を制御することが困難であるからで
ある。
However, it is still insufficient. For example,
When the thin film pieces 43 are arranged in the form of lattice points at intervals of 10 μm, the variation in particle size is contained within the range of 3 to 8 μm. In addition, the control of the grain boundary position is almost not controlled. The reason is amorphous Si
Due to the localized effect of elastic energy in the portion where the thin film 42 and the peripheral portion of the thin film piece 43 are in contact with each other, preferential nucleation occurs around the thin film piece 43, so that a plurality of nuclei are generated along the periphery, and This is because it is difficult to control the number.

非晶質Si薄膜の固相成長における核形成位置の制御方
法に関しては、他にも特開昭63−253616号公報等で提案
されている。これらは、第5図に示すように、非晶質Si
薄膜52に局所的にSi以外の物質53をイオン注入した領域
54を設けて、そこに優先的に結晶核を発生させようとす
る方法である。Si以外の物質53としてはNやBなどが提
案されているが、その場合、現実にはイオン注入された
領域54とそれ以外の領域の間で核形成に関する選択性が
不足しており、実際にこれを実現した報告はない。
Another method of controlling the nucleation position in solid phase growth of an amorphous Si thin film has been proposed in Japanese Patent Laid-Open No. 63-253616. These are amorphous Si as shown in FIG.
Region in which thin film 52 is locally ion-implanted with substance 53 other than Si
This is a method in which 54 is provided and crystal nuclei are preferentially generated there. N, B, etc. have been proposed as the substance 53 other than Si, but in that case, in reality, the selectivity for nucleation between the ion-implanted region 54 and the other regions is insufficient, There is no report that realized this.

本発明は、上記従来例の有する課題を解決するもので
あり、本発明の目的は、固相中における核形成位置を制
御し、粒界位置が決定された結晶を形成することができ
る結晶の成長方法を提供することにある。
The present invention is to solve the problems that the above-mentioned conventional examples have, and an object of the present invention is to control the nucleation position in the solid phase and to form a crystal in which the grain boundary position is determined. To provide a growth method.

[課題を解決するための手段] 本発明の結晶成長方法は、非晶質薄膜を固相成長によ
って結晶化させて薄膜結晶とする結晶成長方法におい
て、下地材料上に設けた前記非晶質薄膜内に、他の領域
よりもイオン注入による損傷の程度が小さく、且つ5μ
m径以下の面積を有する複数の微小領域が、前記非晶質
薄膜と前記下地材料との界面近傍に所定の間隔で形成さ
れるように、前記非晶質薄膜を構成する材料と同一材料
のイオンを注入し、次いで、前記非晶質薄膜の融点以下
の温度において熱処理を行うことにより、前記微小領域
から優先的に単一の核より成長した結晶を形成させるこ
とを特徴とする。
[Means for Solving the Problems] The crystal growth method of the present invention is a crystal growth method of crystallizing an amorphous thin film by solid phase growth to form a thin film crystal, wherein the amorphous thin film provided on a base material. The degree of damage due to ion implantation is less than that of other regions, and
The same material as that of the amorphous thin film is formed so that a plurality of minute regions having an area of m diameter or less are formed at a predetermined interval in the vicinity of the interface between the amorphous thin film and the base material. It is characterized in that ions are implanted, and then heat treatment is performed at a temperature equal to or lower than the melting point of the amorphous thin film to preferentially form crystals grown from a single nucleus from the minute region.

[作用] 以下に本発明の作用・構成の詳細を本発明をなすに際
し得た知見とともに説明する。
[Operation] The details of the operation and configuration of the present invention will be described below together with the findings obtained in the present invention.

本発明のポイントは如何に固相中で結晶体の成長する
位置を制御するかにある。すなわち、非晶質薄膜におい
て、核を特定位置に優先的に発生させ、他の領域の核発
生を抑制するかにある。
The point of the present invention is how to control the growing position of the crystal in the solid phase. That is, in the amorphous thin film, nuclei are preferentially generated at specific positions to suppress nucleation in other regions.

本発明者は、例えばSiO2からなる下地材料上に多結晶
Si膜を堆積させ、その後Siイオンを注入し多結晶Si層を
非晶質化した後、熱処理する際に、その結晶核発生温度
(結晶化温度)がそのイオン注入エネルギーに強く依存
するという現象を発見した。
The present inventors have, for example, polycrystalline on the base material made of SiO 2
Phenomenon that the crystal nucleus generation temperature (crystallization temperature) strongly depends on the ion implantation energy when heat-treating after depositing a Si film and then implanting Si ions to amorphize the polycrystalline Si layer I have found

そこで、結晶核発生温度が何故にイオン注入エネルギ
ーに依存するかの解明を行ったところ次の事項が判明し
た。以下にその詳細を述べる。
Therefore, when the reason why the crystal nucleus generation temperature depends on the ion implantation energy was clarified, the following matters were found. The details will be described below.

注入エネルギーを変化させると、非晶質化した後のSi
層(非晶質Si層)中において、注入されたSiイオンの分
布は変化し、その結果、生成される空孔子の分布、即ち
注入損傷の存在する領域の分布が注入エネルギーによっ
て膜厚方向に変化する。
When the implantation energy is changed, the Si after amorphization is changed.
In the layer (amorphous Si layer), the distribution of the implanted Si ions changes, and as a result, the distribution of the generated vacancy, that is, the distribution of the region where the implantation damage is present, changes in the film thickness direction due to the implantation energy. Change.

また、非晶質物質内では、表面エネルギー不利を克服
した核が生成し、その後、Si原子の非晶質相から結晶相
への相転移が生ずる。
Further, in the amorphous material, nuclei that overcome the disadvantage of surface energy are generated, and then a phase transition of Si atoms from an amorphous phase to a crystalline phase occurs.

ところで、核形成には均一核形成と不均一核形成とが
あり、前者は、均一物質中(例えば非晶質Si膜内部)の
核形成であり、かかる核形成が生じるか否かは主に表面
エネルギー不利を克服して大きくなれるか否かにかかっ
ている。一方、後者の不均一核形成では、異物との接触
によって核発生がうながされるものであり、その活性化
エネルギーは、後者の方が前者より低い。即ち、不均一
核形成が均一核形成より起こりやすい。実際、非晶質Si
薄膜における核形成は主に下地界面近傍の不均一核形成
に律速されている。
By the way, nucleation includes uniform nucleation and heterogeneous nucleation. The former is nucleation in a uniform substance (for example, inside an amorphous Si film), and it is mainly determined whether such nucleation occurs. It depends on whether or not it is possible to grow by overcoming the disadvantage of surface energy. On the other hand, in the latter heterogeneous nucleation, nucleation is prompted by contact with a foreign substance, and the activation energy of the latter is lower than that of the former. That is, heterogeneous nucleation is more likely than homogeneous nucleation. In fact, amorphous Si
Nucleation in a thin film is mainly controlled by non-uniform nucleation near the interface of the underlying layer.

イオン注入の注入量が最大となる深さ(投影飛程)
は、注入量一定の条件下でも、前述した界面に於ける不
均一核形成に重大な影響を与えることを本発明者は発見
した。
Depth that maximizes the amount of ion implantation (projection range)
The present inventor has found that, even under the condition where the injection amount is constant, it has a significant influence on the above-mentioned heterogeneous nucleation at the interface.

第1図に、注入エネルギーと結晶化温度の相関を示
す。
FIG. 1 shows the correlation between the implantation energy and the crystallization temperature.

この時の条件は以下の通りである。注入層は、SiO2
板上に620℃でSiH4の分解による減圧CVDにて堆積した厚
さ100nmの多晶質Si層であり、注入イオンはSi+である。
注入量は臨界注入量(約1015cm-2)を越えて一定(この
場合5×1015cm-2)であった。注入エネルギーを、40ke
Vから80keVまで変化させ、注入層は、イオン衝突により
Si原子は格子位置よりノックオン(knock on)され臨界
注入量以上の注入で損傷領域は連続となり、非晶質化さ
れる。この非晶質Si層をN2雰囲気中で、各温度に於いて
20時間熱処理し、固相に於ける再結晶化過程を主に透過
電子顕微鏡を用いて観察し、上記条件下に於ける結晶化
温度を調べた。
The conditions at this time are as follows. The implantation layer is a 100-nm-thick polycrystalline Si layer deposited by low pressure CVD by decomposition of SiH 4 at 620 ° C. on a SiO 2 substrate, and implantation ions are Si + .
The injection amount was constant (in this case, 5 × 10 15 cm -2 ) beyond the critical injection amount (about 10 15 cm -2 ). Injection energy is 40ke
V to 80keV, the injection layer is
Si atoms are knocked on from the lattice position, and the damaged region becomes continuous and becomes amorphized by the injection of more than the critical injection amount. This amorphous Si layer was exposed to N 2 atmosphere at various temperatures.
After heat treatment for 20 hours, the recrystallization process in the solid phase was observed mainly by using a transmission electron microscope, and the crystallization temperature under the above conditions was investigated.

例えば40keVの注入エネルギーと、70keVのものに注目
する。40keVと70keVの注入深さ(投影飛程)は各々55.2
nmと99.7nmであり、これらは、100nmの層内で、膜厚中
央近傍と、下地材料との界面近傍に相応する。そして、
これらの結晶化温度には50℃以上の差異があり、下地界
面近傍に注入したものの方が結晶化温度が高く結晶化し
にくいことを示しており、これは、損傷領域が界面にま
でより大きくおよびその結果不均一核形成が阻害された
ものと考えられる。更に、加うるに、膜厚中央近傍に投
影飛程が来る様に40keVで注入して非晶質化した層や、C
VDで堆積した非晶層が1時間以内で結晶化する温度(即
ち600℃)において、70keVで界面近傍に注入深さが来る
様にして非晶質化した層を熱処理したところ、この層は
100時間以上経過しても結晶化しないことが透過電子顕
微鏡に確認された。その様子、即ち、熱処理開始から結
晶化開始までの時間(潜伏時間)と注入深さの関係を第
2図に示す。第2図に示す様に、注入深さが界面に向っ
て深くなればなるほど潜伏時間は伸長し、結晶化しにく
い。(投影飛程)/(膜厚)=1即ち界面近傍が最も損
傷を受ける所で潜伏時間は最大となり極大点をもつ。
For example, pay attention to the implantation energy of 40keV and that of 70keV. The implantation depth (projection range) of 40keV and 70keV is 55.2 each.
nm and 99.7 nm, which correspond to the vicinity of the center of the film thickness and the vicinity of the interface with the underlying material in the 100 nm layer. And
There is a difference of 50 ° C or more in these crystallization temperatures, indicating that the one injected near the interface of the base has a higher crystallization temperature and is hard to crystallize, which means that the damaged region is larger than the interface. As a result, it is considered that the heterogeneous nucleation was inhibited. In addition, a layer amorphized by injecting at 40 keV so that the projection range comes near the center of the film thickness, and C
At the temperature at which the amorphous layer deposited by VD crystallizes within 1 hour (that is, 600 ° C), the amorphous layer was heat treated at 70 keV so that the implantation depth was near the interface.
It was confirmed by a transmission electron microscope that it did not crystallize even after 100 hours or more. The state, that is, the relationship between the time from the start of heat treatment to the start of crystallization (latency time) and the implantation depth is shown in FIG. As shown in FIG. 2, the longer the implantation depth toward the interface, the longer the incubation time and the less likely it is to crystallize. (Projection range) / (film thickness) = 1, that is, the latency is maximized and the maximum point is obtained where the vicinity of the interface is most damaged.

以上のことより注入エネルギーを変化させることによ
って結晶化温度と、潜伏時間に差異が出ることが明らか
にされ、その原因は、界面近傍の不均一核形成の阻害に
よるものと判断される。
From the above, it is clarified that the crystallization temperature and the incubation time differ by changing the implantation energy, and it is considered that the cause is the inhibition of heterogeneous nucleation near the interface.

以上の現象を利用して核形成位置の制御を行う。 The nucleation position is controlled by utilizing the above phenomenon.

第3図に示す様に非晶質Si堆積層の表面にレジスト等
のマスクを用いて、核発生させる領域を覆い、核発生さ
せない領域にのみSiイオンを非晶質Si層と下地界面近傍
が損傷を受ける様に注入エネルギーを選び注入する。
As shown in FIG. 3, a mask such as a resist is used on the surface of the amorphous Si deposited layer to cover the region where nucleation occurs, and Si ions are applied only to the region where nucleation does not occur near the amorphous Si layer and the underlying interface. Select the injection energy so that it will be damaged.

レジストでマスクしていない部分の主に界面近傍に損
傷が与えられ、その後の熱処理の際核発生が阻害され
る。注入損傷の程度が高い領域(以下界面損傷領域とい
う)が結晶化せず、注入損傷の程度が低いか注入損傷を
受けていない領域(以下非界面損傷領域という)が結晶
化する温度および時間を第1図、第2図から求めて、界
面にSiイオンを注入した非晶質Si層を、N2或いはH2中で
熱処理する。かかる熱処理により局所的に核が発生す
る。非晶質Si層に対しては典型的には、630℃近辺で100
時間程の熱処理が適当である。非界面損傷領域は微小面
積(5μm径以下、望ましくは2μm(径)以下、最適
には1μm(径)以下の面積)にしておくと、熱処理を
開始すると微小領域から早期に核が発生し、単一の結晶
が成長する(第3図(B))。この単一ドメインをもつ
結晶相は、第3図(C)に示す様に熱処理を続けると、
周囲に結晶相と非晶質相界面が外側に向って移動する。
即ち非晶質中のSi原子は、界面をジヤンプして、結晶相
へとり込まれてゆく。この様にして結晶の大きさは増大
しつづけるが、この非晶質相から結晶相への相転移は、
表面エネルギー不利の核形成のためのエネルギーより低
エネルギーで起こるため、界面損傷領域には核形成が行
なわれぬうちに非界面損傷領域から生じた単一の結晶相
へとり込まれてゆき、最終的には隣接する結晶同士が衝
突して、そこに結晶粒界が形成される。
Damage is mainly given to the vicinity of the interface in the portion not masked by the resist, and nucleation is inhibited during the subsequent heat treatment. The temperature and time to crystallize the region where the degree of implantation damage is high (hereinafter referred to as interfacial damage region) does not crystallize, and the region where the degree of implantation damage is low or where no implantation damage is caused (hereinafter referred to as non-interface damage region) Obtained from FIGS. 1 and 2, the amorphous Si layer having Si ions implanted at the interface is heat-treated in N 2 or H 2 . The heat treatment locally generates nuclei. For amorphous Si layers, typically 100 at around 630 ° C.
A heat treatment for a time is appropriate. If the non-interfacial damage region is made to have a very small area (5 μm diameter or less, desirably 2 μm (diameter) or less, optimally 1 μm (diameter) or less), nuclei will be generated early from the minute region when the heat treatment is started, A single crystal grows (Fig. 3 (B)). When the crystal phase having this single domain is subjected to heat treatment as shown in FIG. 3 (C),
The boundary between the crystalline phase and the amorphous phase moves to the outside.
That is, Si atoms in the amorphous material are jumped into the interface and taken into the crystalline phase. In this way, the crystal size continues to increase, but the phase transition from this amorphous phase to the crystalline phase is
Since it occurs at a lower energy than the energy for nucleation, which is unfavorable to the surface energy, the interfacial damage region is taken up into a single crystal phase generated from the non-interfacial damage region before nucleation, and the final Specifically, adjacent crystals collide with each other to form a crystal grain boundary there.

この時、結晶粒径は非界面損傷領域の間隔にほぼ等し
くなり、所望の結晶粒径に決めることができると共にそ
の粒界位置も決定される。
At this time, the crystal grain size becomes almost equal to the distance between the non-interfacial damage regions, so that the desired crystal grain size can be determined and the grain boundary position thereof is also determined.

なお、本発明における非晶質薄膜は、多結晶薄膜にイ
オン注入を行うことにより多結晶薄膜を非晶質化して形
成したものだけに限らず、堆積時に非晶質構造を有する
ものでも良い。
The amorphous thin film according to the present invention is not limited to the amorphous thin film formed by implanting ions into the polycrystalline thin film, and may have an amorphous structure during deposition.

出発材料が多結晶層である場合には、まず、マスクを
設けずに、投影飛程が、多結晶薄膜の中央近傍にくるよ
うに1回目のイオン注入を行う。かかるイオン注入によ
り、多結晶薄膜と下地材料との界面近傍には注入損傷を
与えることなく多結晶薄膜を非晶質化できる。次いで、
微小領域に対応する部分に例えばレジスト等によるマス
クを設けた状態で、投影飛程が非晶質薄膜と下地基体と
の界面近傍にくるように2回目のイオン注入を行う。か
かるイオン注入によりマスクが設けられた部分以外にお
ける非晶質薄膜と下地基体との界面近傍には注入損傷が
生じ、一方マスクが設けられた部分には注入損傷が生じ
ないのでこの部分が核形成領域となる。
When the starting material is a polycrystalline layer, first, the first ion implantation is performed without providing a mask so that the projection range is near the center of the polycrystalline thin film. By such ion implantation, the polycrystalline thin film can be made amorphous without causing implantation damage in the vicinity of the interface between the polycrystalline thin film and the underlying material. Then
The second ion implantation is performed so that the projection range is near the interface between the amorphous thin film and the base substrate, with a mask made of resist or the like provided on the portion corresponding to the minute region. Due to such ion implantation, implantation damage occurs near the interface between the amorphous thin film and the base substrate except for the portion where the mask is provided, while implantation damage does not occur at the portion where the mask is provided. It becomes an area.

堆積時に非晶質構造の薄膜を形成する場合には、前述
した1回目のイオン注入は省略してよい。
When forming a thin film having an amorphous structure during deposition, the above-described first ion implantation may be omitted.

以上の方法では2回のイオン注入を行ったが、マスク
の材質、厚みを適宜選択すれば、微小領域に対応する部
分における投影飛程を薄膜中央近傍にくるようにでき、
一方、他の部分における投影飛程は非晶質薄膜あるいは
多結晶薄膜と下地基体との界面近傍にくるようにできる
ため注入損傷の程度が小さな微小領域の形成と多結晶薄
膜の非晶質化とを1回のイオン注入で行うことができ
る。
In the above method, the ion implantation was performed twice. However, by appropriately selecting the material and thickness of the mask, the projection range in the portion corresponding to the minute region can be made to be close to the center of the thin film.
On the other hand, the projection range in the other portion can be set near the interface between the amorphous thin film or the polycrystalline thin film and the base substrate, so that the formation of a minute region with a small degree of implantation damage and the amorphization of the polycrystalline thin film. And can be performed by one-time ion implantation.

このようなマスクとしてはイオン注入するイオンを透
過する材質のマスクであることが望ましく、例えば酸化
珪素等の無機材料が挙げられる。
Such a mask is preferably a mask made of a material that allows the implanted ions to pass therethrough, and examples thereof include an inorganic material such as silicon oxide.

[実施例] (実施例1) SiO2を主成分とするガラス基板上に、減圧CVD法で非
晶質Siを100nmの厚みに堆積した。
[Examples] (Example 1) Amorphous Si was deposited to a thickness of 100 nm on a glass substrate containing SiO 2 as a main component by a low pressure CVD method.

ソースガスはSiH4を使用し、形成温度は550℃、圧力
0.3Torrで形成した。
SiH 4 is used as source gas, formation temperature is 550 ℃, pressure
Formed at 0.3 Torr.

その後、レジストを塗布し、通常のリソグラフィー技
術で1μm径のレジストを5μmと10μm間隔に2種類
の格子点状に残した。
After that, a resist was applied, and a resist having a diameter of 1 μm was left in the form of two kinds of lattice points at intervals of 5 μm and 10 μm by a usual lithography technique.

このレジストをマスクにしてSi+イオンを70keVで全面
に注入した。注入量は3×1015cm-2とした。70keVの注
入エネルギーによってその投影飛程は100nmのSiと下地
材料のSiO2ガラス界面近傍に来る。これで1μm径のレ
ジスト以外の領域は全てその界面(Si/SiO2)に損傷が
与えられた。レジストを剥離した後、N2雰囲気中で630
℃、80時間の熱処理を行った。その後、透過電子顕微鏡
で観察した結果、結晶粒界がほぼ初めのパターン間隔に
相当する5μm,10μm間隔に整列し、粒径の分布は各々
平均5μm,10μmに対して±1μm以内であった。
Using this resist as a mask, Si + ions were implanted over the entire surface at 70 keV. The injection amount was 3 × 10 15 cm -2 . Due to the implantation energy of 70 keV, the projected range comes close to the interface between 100 nm Si and the underlying SiO 2 glass. As a result, the interface (Si / SiO 2 ) was damaged in all regions except the resist having a diameter of 1 μm. After stripping the resist, 630 in an N 2 atmosphere.
Heat treatment was performed at 80 ° C. for 80 hours. Then, as a result of observation with a transmission electron microscope, the crystal grain boundaries were aligned at intervals of 5 μm and 10 μm, which corresponded to almost the initial pattern intervals, and the grain size distribution was within ± 1 μm with respect to 5 μm and 10 μm on average, respectively.

N2雰囲気中の熱処理をH2雰囲気中の熱処理にしても同
様の効果が得られた。
Similar effects were obtained even when the heat treatment in the N 2 atmosphere was performed in the H 2 atmosphere.

(実施例2) 板状のガラスからなる下地材料上に、減圧化学気相法
によってSiH4を熱分解し、多結晶Si薄膜を100nm堆積し
た。形成温度は620℃、圧力0.3Torrであり、その粒径は
微細であり50nm程度であった。Si注入は2回行った。ま
ず、最初にレジストマスクなしに全面に40keVの注入エ
ネルギーで3×1015cm-2の注入量でSiイオンを該多結晶
Si層へ注入し、前述したように、損傷は連続となり、非
晶質化された。ただし、40keVの投影飛程は100nmの膜厚
中央近傍に位置し、その結果、Si/SiO2下地界面近傍の
損傷はほとんどない。
Example 2 SiH 4 was thermally decomposed by a low pressure chemical vapor deposition method on a base material made of a plate-like glass, and a polycrystalline Si thin film was deposited to a thickness of 100 nm. The formation temperature was 620 ° C., the pressure was 0.3 Torr, and the particle size was fine, about 50 nm. Si implantation was performed twice. First, without using a resist mask, Si ions are implanted into the entire surface with an implantation energy of 40 keV and a dose of 3 × 10 15 cm -2.
By implanting into the Si layer, the damage became continuous and amorphized, as described above. However, the projection range of 40 keV is located near the center of the film thickness of 100 nm, and as a result, there is almost no damage near the Si / SiO 2 underlayer interface.

その後、実施例1と同様にレジストマスクを1μm径
で5μm,10μm間隔で格子点状に2種類設け、2回目の
Si+イオン注入を今度は70keVで行い、界面近傍に損傷を
導入した。注入量は1回目の注入と同一とした。レジス
ト剥離後N2中で620℃、100時間熱処理した。その結果、
実施例1と同様に粒径が5μm±1μm、10μm±1μ
mとなり、しかも、粒界が格子状に整列していた。
After that, as in Example 1, two kinds of resist masks having a diameter of 1 μm and intervals of 5 μm and 10 μm were provided in a grid pattern, and the second time was used.
Si + ion implantation was performed at 70 keV this time to introduce damage near the interface. The injection amount was the same as the first injection. After stripping the resist, it was heat-treated in N 2 at 620 ° C. for 100 hours. as a result,
As in Example 1, the particle size is 5 μm ± 1 μm, 10 μm ± 1 μm
m, and the grain boundaries were aligned in a lattice.

実施例1および実施例2で得た膜厚100nmのSi層に通
常のICプロセスを用いて多数個のチャネル長3μmの電
界効果トランジスタを試作したところ、電子移動度は20
0±5cm/V・sec、しきい値のバラツキは±0.2Vであっ
た。トランジスタのチャネル部分には粒界が存在しない
ように配置することが可能なため素子特性の高性能化、
素子特性の分布の狭小化が可能となった。
When a large number of field effect transistors with a channel length of 3 μm were made on the Si layer having a thickness of 100 nm obtained in Example 1 and Example 2 by using an ordinary IC process, the electron mobility was 20.
0 ± 5 cm / V · sec, and threshold variation was ± 0.2 V. Since it is possible to arrange so that there is no grain boundary in the channel part of the transistor, high performance of device characteristics,
It has become possible to narrow the distribution of device characteristics.

(実施例3) 非晶質Ge薄膜を50nmの厚さで、SiO2からなる下地材料
上に電子ビームによって真空蒸着する。真空度は1×10
-6Torr、室温で堆積した。レジストによって1.5μm
径、間隔10μmの領域をマスクし、全域をGe+イオンを1
30keVで注入する。注入量は2×1015cm-2であった。Ge+
イオンの注入深さは表面より約50nmであり、主に下地基
板界面近傍に集中的に注入され、界面部分に損傷が与え
られる。マスクを除去した後、N2雰囲気中、或いはH2
囲気中で380℃50時間熱処理したところ、マスクで覆わ
れてGe+イオンが注入されず界面に損傷が無い微小領域
のみから単一の結晶が成長し、Ge+イオンにより界面に
損傷が導入された非晶質Ge領域へ結晶が伸長し、隣接す
る結晶核発生地点の中間で両結晶か衝突し、そこに結晶
粒界が形成された。透過電子顕微鏡で結晶構造を調べた
結果、各単一ドメインの結晶の径は10μm±1μmとな
っていた。
Thick (Example 3) 50 nm amorphous Ge thin film, vacuum deposition by the electron beam on the underlying material formed of SiO 2. The degree of vacuum is 1 × 10
Deposited at -6 Torr, room temperature. 1.5μm depending on resist
Mask the area with a diameter of 10 μm and use 1 Ge + ion for the entire area.
Inject at 30 keV. The injection volume was 2 × 10 15 cm -2 . Ge +
The ion implantation depth is about 50 nm from the surface, and the ions are mainly concentrated near the interface of the underlying substrate, causing damage to the interface. After removing the mask, heat treatment at 380 ° C for 50 hours in N 2 atmosphere or H 2 atmosphere showed that a single crystal was formed only from the micro area covered with the mask and Ge + ions were not implanted and the interface was not damaged. Grow and grow into the amorphous Ge region where the interface is damaged by Ge + ions, and both crystals collide in the middle of adjacent crystal nucleation points, forming a grain boundary there. . As a result of examining the crystal structure with a transmission electron microscope, the diameter of the crystal of each single domain was 10 μm ± 1 μm.

(実施例4) 多結晶Ge薄膜を減圧CVD法でGeH4熱分解により堆積温
度400℃で50nmの厚さにSiO2からなる下地材料上に形成
した。この堆積したままの多結晶Geは約100nmの粒径を
もつことが透過電子顕微鏡によって確認した。次にGe+
イオンを60keVの注入エネルギーで2×1015cm-2の注入
量で注入し、膜全体を非晶質化する。60keVの注入エネ
ルギーによる注入深さは表面より約25nmであり、この時
には、Ge膜/SiO2下地材料界面にはほとんど損傷は導入
されない。
(Example 4) A polycrystalline Ge thin film was formed on a base material made of SiO 2 to a thickness of 50 nm at a deposition temperature of 400 ° C. by thermal decomposition of GeH 4 by a low pressure CVD method. It was confirmed by a transmission electron microscope that the as-deposited polycrystalline Ge had a grain size of about 100 nm. Then Ge +
Ions are implanted with an implantation energy of 60 keV and a dose of 2 × 10 15 cm -2 to amorphize the entire film. The implantation depth by the implantation energy of 60 keV is about 25 nm from the surface, and at this time, almost no damage is introduced at the Ge film / SiO 2 base material interface.

更に、レジストによって、1.2μm径の部分を15μm
間隔にマスクし、Ge+イオンを130keVで注入量2×1015c
m-2注入した。この時、注入領域の主に界面(Ge/SiO2
に損傷が導入される。レジストマスクを除去した後、N2
雰囲気中で390℃で60時間熱処理を施した。
Furthermore, depending on the resist, the area of 1.2 μm is
Masked at intervals and Ge + ions were implanted at 130 keV 2 × 10 15 c
m -2 injected. At this time, mainly the interface (Ge / SiO 2 ) of the implantation region
Damage is introduced. After removing the resist mask, N 2
Heat treatment was performed at 390 ° C. for 60 hours in the atmosphere.

Ge膜の界面に損傷を受けていない微小領域のみ結晶化
し、単一のドメインをもつ結晶が生長する。更に、結晶
はその結晶構造を維持して、界面に損傷が導入された領
域にまで結晶が伸長してゆき、最終的には隣接する結晶
と衝突し、隣接する微小界面非損傷領域の中間に粒界が
形成される。
Only the microscopic regions that are not damaged at the interface of the Ge film are crystallized, and a crystal having a single domain grows. Furthermore, the crystal maintains its crystal structure and extends to the region where damage is introduced into the interface, and finally collides with the adjacent crystal, and it is formed in the middle of the adjacent micro interface non-damaged region. Grain boundaries are formed.

透過電子顕微鏡で調べた結果、粒径は15μm±2μm
であり、粒径のそろった多結晶膜を形成できた。
As a result of examination with a transmission electron microscope, the particle size is 15 μm ± 2 μm
Thus, a polycrystalline film with a uniform grain size could be formed.

(実施例5) 下地材料としての溶融石英基盤上に低圧CVD法によっ
て下記の条件の下に、今度は多結晶Si薄膜を100nmの膜
厚で堆積した。
Example 5 A polycrystalline Si thin film having a thickness of 100 nm was deposited on a fused silica substrate as a base material under the following conditions by the low pressure CVD method.

使用ガス SiH4 ガス流量比 50sccm 圧力 0.3Torr 基板温度 620℃ 次に、この非晶質Si薄膜上に常圧CVD法によって非晶
質のSiO2膜を30nmほど堆積し、これを通常のフォトリソ
グラフィー工程によって、1μm角のSiO2領域10μm間
隔の格子点状に残るようにパターニングした。
Working gas SiH 4 gas flow rate ratio 50sccm Pressure 0.3Torr Substrate temperature 620 ° C Next, an amorphous SiO 2 film is deposited on this amorphous Si thin film by atmospheric pressure CVD to a thickness of about 30 nm, which is then subjected to normal photolithography. By the process, patterning was performed so that 1 μm square SiO 2 regions were left in the form of lattice points at 10 μm intervals.

そしてこの基板全面に、70keVのエネルギーに加速さ
れたSi+イオンを5×1015cm-2のドーズで注入した。こ
のイオン注入によってSiO2薄膜で表面が覆われている領
域も含めて、多結晶Si薄膜は全域に渡って非晶質化され
た。そしてこの場合、Si中でのSiイオンの投影飛程は9
9.7nmであるから、Si薄膜の表面にSiO2薄膜が残されて
いない領域では、溶融石英基板との界面近傍に最も多く
の注入したSiイオンが分布していることになり、非核形
成領域が形成される。その一方で、表面にSiO2薄膜が残
されている1μm角の領域では、注入されたSiイオンの
分布の極大(投影飛程)がSi薄膜の膜中に留っているば
かりでなく、その絶対量も少ないので、核形成領域とな
る。
Then, Si + ions accelerated to an energy of 70 keV were implanted into the entire surface of this substrate at a dose of 5 × 10 15 cm -2 . By this ion implantation, the polycrystalline Si thin film was amorphized over the entire region, including the region whose surface was covered with the SiO 2 thin film. And in this case, the projected range of Si ions in Si is 9
Since it is 9.7 nm, in the region where the SiO 2 thin film is not left on the surface of the Si thin film, the most implanted Si ions are distributed near the interface with the fused silica substrate, and the non-nucleation region is It is formed. On the other hand, in the 1 μm square area where the SiO 2 thin film remains on the surface, not only the maximum of the distribution of the implanted Si ions (projection range) remains in the Si thin film, Since the absolute amount is small, it becomes a nucleation region.

そこで、表面に点在するSiO2薄膜を、水で希釈された
HFによるエッチングで除去した後に、N2雰囲気中で基板
温度を600℃に保ってこれをアニールした。すると、ア
ニールを開始してから10時間ほどで、SiO2薄膜で覆われ
たままSiイオンを注入された1μm角の領域で、結晶核
が発生し始めた。この時点で、SiO2薄膜で覆われずにSi
イオンを注入された領域では何ら核形成は生じていない
ので、更にアニールを続けると、1μm角の領域で既に
形成されていた結晶核はその領域を超えて横方向に成長
し、大粒径薄膜結晶となった。そして100時間ほどアニ
ールすると、10μm程離れた隣接する領域から成長して
きた結晶粒と成長端面を接して粒界をなすに至り、非晶
質Si薄膜はほぼ全域に亘って結晶化した。結果として、
結晶粒界をほぼ10μm間隔の格子状に配しながら、平均
粒径10μmの結晶粒群からなる薄膜結晶が得られた。
Therefore, the SiO 2 thin film scattered on the surface was diluted with water.
After removing by etching with HF, this was annealed while keeping the substrate temperature at 600 ° C. in an N 2 atmosphere. Then, about 10 hours after the start of annealing, crystal nuclei started to be generated in the 1 μm square region into which Si ions were implanted while being covered with the SiO 2 thin film. At this point, Si not covered with SiO 2 thin film
No nucleation occurs in the ion-implanted region, so if annealing is further continued, the crystal nuclei already formed in the 1 μm square region grow laterally beyond the region, and the large-grain thin film is formed. It became a crystal. Then, after annealing for about 100 hours, crystal grains grown from adjacent regions separated by about 10 μm contacted the growth end faces to form grain boundaries, and the amorphous Si thin film was crystallized over almost the entire area. as a result,
While arranging the crystal grain boundaries in a lattice pattern at intervals of about 10 μm, a thin film crystal composed of a crystal grain group having an average grain size of 10 μm was obtained.

(実施例6) 下地材料としての石英基板上に、超高真空中における
電子ビーム蒸着法によって下記の条件の下に、非晶質Si
を100nmの膜厚で堆積した。
(Example 6) Amorphous Si was formed on a quartz substrate as a base material by an electron beam evaporation method in an ultrahigh vacuum under the following conditions.
Was deposited to a film thickness of 100 nm.

到達真空度 1×10-10Torr 蒸着中真空度 5×10-10Torr 基板温度 150℃ 堆積速度 〜100nm/hr この非晶質Si薄膜上に、レジストを通常のフォトリソ
グラフィー工程によって、1μm角の領域を10μm間隔
の格子点状に残るようにパターニングした。
Ultimate vacuum 1 × 10 -10 Torr Vacuum degree during vapor deposition 5 × 10 -10 Torr Substrate temperature 150 ° C. Deposition rate 〜 100 nm / hr On this amorphous Si thin film, a resist of 1 μm square was formed by ordinary photolithography process. The regions were patterned so as to remain in the form of lattice points at intervals of 10 μm.

更に、この基板全体に、70keVのエネルギーに加速さ
れたSi+イオンを1×1015cm-2の注入量でイオン注入し
た。この場合、Si中でのSiイオンの投影飛程は99.7nmで
あるから、レジストで覆われていない領域の非晶質Si薄
膜と石英基板との界面近傍に最も多くのSiイオンが分布
し、界面に多くの損傷が導入される。
Further, Si + ions accelerated to an energy of 70 keV were ion-implanted into the entire substrate at an implantation amount of 1 × 10 15 cm -2 . In this case, since the projected range of Si ions in Si is 99.7 nm, most Si ions are distributed in the vicinity of the interface between the amorphous Si thin film and the quartz substrate in the region not covered with the resist, Many damages are introduced at the interface.

レジストを除去した後に、N2雰囲気中で基板温度を59
0℃に保って熱処理した。熱処理開始後15時間ほどで、
1μm角のSiイオンの注入されていない領域で、結晶核
が発生し始めた。この時点で、レジストで覆われずにSi
イオンを注入された領域では何ら核形成は生じていない
ので、更にアニールを続けると、1μm角の領域で既に
形成されていた結晶核はその領域を超えて横方向に成長
し、樹枝状の大粒径薄膜結晶となった。そして120時間
ほどアニールすると、10μm程離れた隣接する領域から
成長してきた結晶粒と成長端面を接して粒界をなすに至
り、非晶質Si薄膜はほぼ全域にわたって結晶化した。結
果として、結晶粒界をほぼ10μm間隔の格子状に配しな
がら、平均粒径10μmの結晶粒群からなる薄膜結晶が得
られた。
After removing the resist, the substrate temperature was set to 59 in N 2 atmosphere.
It was kept at 0 ° C. and heat-treated. About 15 hours after the start of heat treatment,
Crystal nuclei started to be generated in the 1 μm square area where Si ions were not implanted. At this point, the Si
Nucleation did not occur in the ion-implanted region, so if annealing is continued, the crystal nuclei already formed in the 1 μm square region grow laterally beyond that region, resulting in a dendritic large region. It became a grain size thin film crystal. Then, after annealing for about 120 hours, the crystal grain grown from the adjacent region separated by about 10 μm comes into contact with the growth end face to form a grain boundary, and the amorphous Si thin film is crystallized over almost the entire area. As a result, a thin film crystal comprising a group of crystal grains having an average particle diameter of 10 μm was obtained while arranging the crystal grain boundaries in a lattice pattern at intervals of about 10 μm.

(実施例7) 下地材料としてガラス基板を用い、その表面にDCマグ
ネトロンスパッタ法によって下記の条件の下に、非晶質
Siを100nmの膜厚で堆積した。
(Example 7) A glass substrate was used as a base material, and its surface was amorphous by DC magnetron sputtering under the following conditions.
Si was deposited to a film thickness of 100 nm.

到達真空度 5×10-7Torr 蒸着中真空度 2×10-3Torr 基板温度 20℃ 堆積速度 〜200nm/hr 次に、この非晶質Si薄膜上にレジストを塗布し、これ
を通常のフォトリソグラフィー工程によって、2μm角
に10μm間隔に格子点状に残るようにパターニングし
た。
Ultimate vacuum 5 × 10 -7 Torr Vacuum degree during vapor deposition 2 × 10 -3 Torr Substrate temperature 20 ° C. Deposition rate 〜200 nm / hr Next, a resist is coated on this amorphous Si thin film, and this is coated with ordinary photo resist. By a lithography process, patterning was performed so that 2 μm squares were left at intervals of 10 μm in the form of lattice points.

そして、この基板全面に、60keVのエネルギーに加速
されたSi+イオンを5×1015cm-2のドーズで注入した。
この場合、Si中でのSiイオンの投影飛程は84.5nmである
から、非晶質Si薄膜の表面にレジストが残されていない
領域では、溶融石英基板との界面近傍に最も多くのSiイ
オンが分布していることになり、非核形成領域が形成さ
れる。その一方で、表面にレジストが残されている1μ
m角の領域では、注入されたSiイオンは非晶質Si薄膜に
とどかず、核形成領域となる。
Then, Si + ions accelerated to an energy of 60 keV were implanted into the entire surface of this substrate at a dose of 5 × 10 15 cm -2 .
In this case, since the projected range of Si ions in Si is 84.5 nm, in the region where the resist is not left on the surface of the amorphous Si thin film, most Si ions are present near the interface with the fused silica substrate. Are distributed, and non-nucleation regions are formed. On the other hand, the resist left on the surface is 1μ.
In the m-square region, the implanted Si ions do not reach the amorphous Si thin film but become a nucleation region.

そこで、表面に点在するレジストを除去した後に、N2
雰囲気中で基板温度を620℃に保ってこれをアニールし
た。すると、アニールを開始してから15時間ほどで、レ
ジストで覆われてSiイオンを注入されなかった2μm角
の領域で、結晶核が発生し始めた。この時点で、レジス
トで覆われずにSiイオンを注入された領域では何ら核形
成は生じていないので、更にアニールを続けると、2μ
m角の領域で既に形成されていた結晶核はその領域を超
えて横方向に成長し、樹枝状の大粒径薄膜結晶となっ
た。そして120時間ほどアニールすると、10μm程離れ
た隣接する領域から成長してきた結晶粒と成長端面を接
して粒界をなすに至り、非晶質Si薄膜はほぼ全域にわた
って結晶化した。結果として、結晶粒界をほぼ10μm間
隔の格子状に配しながら、平均粒径10μmの結晶粒群か
らなる薄膜結晶が得られた。
Therefore, after removing the resist scattered on the surface, N 2
This was annealed by keeping the substrate temperature at 620 ° C. in the atmosphere. Then, about 15 hours after starting the annealing, crystal nuclei started to be generated in a 2 μm square region covered with the resist and in which Si ions were not implanted. At this point, no nucleation occurred in the region where Si ions were implanted without being covered with the resist, so if annealing was continued, 2 μm
The crystal nuclei that had already formed in the m-square region grew laterally beyond that region to become a dendritic large-grain thin-film crystal. Then, after annealing for about 120 hours, the crystal grain grown from the adjacent region separated by about 10 μm comes into contact with the growth end face to form a grain boundary, and the amorphous Si thin film is crystallized over almost the entire area. As a result, a thin film crystal comprising a group of crystal grains having an average particle diameter of 10 μm was obtained while arranging the crystal grain boundaries in a lattice pattern at intervals of about 10 μm.

[発明の効果] 本発明によれば、研磨等の工程を要せずに平坦でかつ
大粒径の薄膜を形成することができる。
[Effects of the Invention] According to the present invention, a flat thin film having a large grain size can be formed without requiring a step such as polishing.

また、本発明によれば、隣接する結晶粒同士が形成す
る結晶粒界の位置を、また、粒径を任意に制御すること
ができる。
Further, according to the present invention, the position of the crystal grain boundary formed between adjacent crystal grains and the grain size can be arbitrarily controlled.

従って、バラツキの少ない各種素子を大面積にわたっ
て形成することができる。
Therefore, various elements with less variation can be formed over a large area.

【図面の簡単な説明】[Brief description of the drawings]

第1図は注入エネルギーと結晶化温度との関係を示すグ
ラフである。第2図は投影飛程と潜伏時間との関係を示
すグラフである。第3図は本発明の1実施例を説明する
ための側断面図、第4図および第5図は従来技術を示す
側断面図である。
FIG. 1 is a graph showing the relationship between implantation energy and crystallization temperature. FIG. 2 is a graph showing the relationship between the projected range and the latency. FIG. 3 is a side sectional view for explaining one embodiment of the present invention, and FIGS. 4 and 5 are side sectional views showing a conventional technique.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−196032(JP,A) 特開 昭62−108516(JP,A) 特開 昭63−253616(JP,A) 特開 平2−52419(JP,A) 特開 平1−302812(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-63-196032 (JP, A) JP-A-62-108516 (JP, A) JP-A-63-253616 (JP, A) JP-A-2- 52419 (JP, A) JP-A-1-302812 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非晶質薄膜を固相成長によって結晶化させ
て薄膜結晶とする結晶成長方法において、下地材料上に
設けた前記非晶質薄膜内に、他の領域よりもイオン注入
による損傷の程度が小さく、且つ5μm径以下の面積を
有する複数の微小領域が、前記非晶質薄膜と前記下地材
料との界面近傍に所定の間隔で形成されるように、前記
非晶質薄膜を構成する材料と同一材料のイオンを注入
し、次いで、前記非晶質薄膜の融点以下の温度において
熱処理を行うことにより、前記微小領域から優先的に単
一の核より成長した結晶を形成させることを特徴とする
結晶成長方法。
1. A crystal growth method in which an amorphous thin film is crystallized by solid phase growth to form a thin film crystal, and the amorphous thin film provided on a base material is more damaged by ion implantation than other regions. The amorphous thin film is configured such that a plurality of minute regions having a small degree and having an area of 5 μm diameter or less are formed near the interface between the amorphous thin film and the base material at a predetermined interval. By implanting ions of the same material as the material to be formed, and then performing heat treatment at a temperature equal to or lower than the melting point of the amorphous thin film, thereby forming crystals preferentially grown from a single nucleus from the minute region. Characteristic crystal growth method.
【請求項2】前記非晶質薄膜は、イオン注入による投影
飛程が、多結晶薄膜の中央部近傍にくるようにイオン注
入を行い多結晶薄膜を非晶質化した薄膜である請求項1
記載の結晶成長方法。
2. The amorphous thin film is a thin film obtained by ion-implanting the polycrystalline thin film by ion implantation so that the projected range by the ion implantation is near the center of the polycrystalline thin film.
The crystal growth method according to the above.
【請求項3】前記微小領域は、前記非晶質薄膜に設ける
前記微小領域に対応する部分にレジストによるマスクを
設けた状態で、イオン注入による投影飛程が非晶質薄膜
と下地基体との界面近傍にくるようにイオン注入を行い
他の領域よりも注入損傷の程度が小さな微小領域を形成
する請求項1記載の結晶成長方法。
3. A projection range between the amorphous thin film and the underlying substrate is projected by ion implantation in a state where a mask made of a resist is provided in a portion of the minute region corresponding to the minute region provided in the amorphous thin film. 2. The crystal growth method according to claim 1, wherein ion implantation is performed so as to come close to the interface to form a minute region having a smaller degree of implantation damage than other regions.
JP1110386A 1989-03-31 1989-04-28 Crystal growth method Expired - Fee Related JP2695466B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1110386A JP2695466B2 (en) 1989-04-28 1989-04-28 Crystal growth method
EP90303479A EP0390607B1 (en) 1989-03-31 1990-03-30 Process for forming crystalline semiconductor film
DE69031880T DE69031880T2 (en) 1989-03-31 1990-03-30 Process for the production of a semiconducting crystalline film
US07/790,083 US5290712A (en) 1989-03-31 1991-11-13 Process for forming crystalline semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1110386A JP2695466B2 (en) 1989-04-28 1989-04-28 Crystal growth method

Publications (2)

Publication Number Publication Date
JPH02288328A JPH02288328A (en) 1990-11-28
JP2695466B2 true JP2695466B2 (en) 1997-12-24

Family

ID=14534493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1110386A Expired - Fee Related JP2695466B2 (en) 1989-03-31 1989-04-28 Crystal growth method

Country Status (1)

Country Link
JP (1) JP2695466B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662058B2 (en) * 1989-11-14 1997-10-08 日本板硝子株式会社 Method for manufacturing semiconductor film
JP3141909B2 (en) * 1993-05-14 2001-03-07 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
JP2826982B2 (en) * 1994-07-07 1998-11-18 エルジイ・セミコン・カンパニイ・リミテッド Crystallization method and method of manufacturing thin film transistor using the same
US6723621B1 (en) 1997-06-30 2004-04-20 International Business Machines Corporation Abrupt delta-like doping in Si and SiGe films by UHV-CVD

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536472B2 (en) * 1985-11-06 1996-09-18 ソニー株式会社 Solid phase growth method for polycrystalline semiconductor film
JP2550968B2 (en) * 1987-02-10 1996-11-06 ソニー株式会社 Crystallization method of semiconductor thin film

Also Published As

Publication number Publication date
JPH02288328A (en) 1990-11-28

Similar Documents

Publication Publication Date Title
JP2695488B2 (en) Crystal growth method
US5290712A (en) Process for forming crystalline semiconductor film
US5531182A (en) Method of making a semiconductor thin-film
EP0472970B1 (en) Process for growing crystalline thin film
JP2695466B2 (en) Crystal growth method
JPH08102543A (en) Crystallization method and manufacture of thin film transistor using its method
JPH03290924A (en) Manufacture of crystalline silicon film, crystalline silicon semiconductor utilizing the same and its manufacture
US5495824A (en) Method for forming semiconductor thin film
JPH02260524A (en) Crystalline semiconductor film and formation thereof
US5207863A (en) Crystal growth method and crystalline article obtained by said method
JPH0329316A (en) Formation of semiconductor thin film
JPH03104210A (en) Manufacture of semiconductor device
EP0390607B1 (en) Process for forming crystalline semiconductor film
JP2603351B2 (en) Crystal growth method and crystal article obtained by the method
JPH06132218A (en) Method for growing semiconductor crystal and manufacture of mos-type transistor
JPH0442918A (en) Formation of semiconductor thin film
JPH02258690A (en) Method for forming semiconductor thin film
JP2749945B2 (en) Solid phase crystal growth method
JPH03120715A (en) Method of crystal growth and crystal
JPH0732123B2 (en) Method for manufacturing substrate for semiconductor device
JP2833878B2 (en) Method of forming semiconductor thin film
JPH0547660A (en) Solid growth method for semiconductor thin film
CA2071192C (en) Method for forming a seed and a semiconductor film using said seed
JPH03142920A (en) Formation of crystal thin film
JPH04180218A (en) Crystal product and crystal growing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees