JPS63226958A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPS63226958A
JPS63226958A JP62059962A JP5996287A JPS63226958A JP S63226958 A JPS63226958 A JP S63226958A JP 62059962 A JP62059962 A JP 62059962A JP 5996287 A JP5996287 A JP 5996287A JP S63226958 A JPS63226958 A JP S63226958A
Authority
JP
Japan
Prior art keywords
memory element
layer
metal electrode
film
unit memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62059962A
Other languages
Japanese (ja)
Inventor
Satoshi Saigo
西郷 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62059962A priority Critical patent/JPS63226958A/en
Publication of JPS63226958A publication Critical patent/JPS63226958A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/102Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components
    • H01L27/1021Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components including diodes only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)
  • Bipolar Transistors (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain a highly reliable device whose write yield rate is high by a method wherein an electric conductor film and a metal electrode are made conductive by breaking a high-resistance film and the information is written so that the high integration density of a memory element can be realized by reducing the area occupied by a unit memory element and that the parasitic thyristor effect between memory element can be prevented. CONSTITUTION:A unit memory element is constituted by the following: a buried layer 12, of an opposite conductivity type, formed selectively on a semiconductor substrate 11 of one conductivity type; a semiconductor layer 14 formed on the layer; a silicide region 16 which contains a Schottky junction formed on the surface of the semiconductor layer 14; an electric conductor layer 16, a highresistance film 19 and a metal electrode 20 which are formed in succession on the silicide region 16. For example, said high-resistance film 19 is composed of high-resistance polycrystalline silicon, and the silicide region 16 is composed of platinum silicide. The information is written into this unit memory element in the following sequence: the unit memory element is selected by using the metal electrode 20 and the N<+> buried layer 12; a write electric current is supplied from the metal electrode 20; the high-resistance polycrystalline silicon film 19 is broken by a spike caused by a reaction of the metal electrode 20 with the polycrystalline silicon film 19; the electrical continuity is achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置に関し、特にプログラム可能な
読出し専用記憶素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to semiconductor memory devices, and more particularly to programmable read-only memory elements.

〔従来の技術〕[Conventional technology]

従来、プログラム可能な破壊型続出し専用記憶装置(P
rogran+able Read 0nly Mem
ory :以下PROMと略称する)として、接合破壊
型FROMが提案されている。
Traditionally, programmable destructive storage devices (P
rogran+able Read 0nly Mem
A junction-destructive FROM has been proposed as a PROM (hereinafter abbreviated as PROM).

第3図は従来の接合破壊型FROMの単位記憶素子の断
面図である0例えば、P型半導体基板31上にワード線
としてのN゛埋込層32及び分離用としてのP゛型埋込
層33を夫々選択的に形成し、かつこの上にN0型工ピ
タキシヤルシリコン層34を成長させる。このN型エピ
タキシャル9937層34には、シリコン酸化1ilI
35を選択的に形成して単位記憶素子間を電気的に分離
し、かつこの分離されたN型エピタキシャル9937層
34の領域内に、P9型ベース領域36及びN。
FIG. 3 is a cross-sectional view of a unit memory element of a conventional junction breakdown type FROM. 33 are selectively formed, respectively, and an N0 type epitaxial silicon layer 34 is grown thereon. This N-type epitaxial 9937 layer 34 includes silicon oxide 1ilI
35 is selectively formed to electrically isolate between unit memory elements, and in this isolated region of the N-type epitaxial layer 34, a P9-type base region 36 and an N-type base region 36 are formed.

型エミッタ領域37を順次形成する。このN゛型エミッ
タ領域37はアルミニウム電極38により−列に配線さ
れ、デジット線を形成している。
A mold emitter region 37 is sequentially formed. This N-type emitter region 37 is wired in a negative column by an aluminum electrode 38 to form a digit line.

この記憶素子における情報の書込みは、選択された単位
記憶素子のエミッタ・ベース間のPN接合を破壊するこ
とによって行われる。即ち、第4図に示すように、書込
みたい記憶素子Q10をデジット線D0とワード線W1
とで選択した上で、デジット線D0から書込み電流I−
を流してワードvAw +より吸収する。これにより、
書込み電流■8が電流通路Aを通り、単位記憶素子Q、
。のエミッタ・ベース間のPN接合は破壊され、単位記
憶素子Q1゜は書込まれる。
Writing of information in this memory element is performed by destroying the PN junction between the emitter and base of the selected unit memory element. That is, as shown in FIG. 4, the memory element Q10 to be written is connected to the digit line D0 and the word line W1.
and then write current I- from digit line D0.
Flow and absorb from word vAw +. This results in
Write current ■8 passes through current path A, unit storage element Q,
. The PN junction between the emitter and base of is destroyed, and the unit storage element Q1° is written.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の記憶素子構造は、P゛型ベース領域36
の内側にN゛型エミッタ領域37を形成しているため、
単位記憶素子光たりの占有面積がエミッタ領域37に制
限されて記憶素子の高集積化が困難になる。
The conventional memory element structure described above has a P′-type base region 36.
Since the N-type emitter region 37 is formed inside the
The area occupied by a unit memory element light is limited to the emitter region 37, making it difficult to achieve high integration of the memory element.

また、FROMの高速化の要求に伴い、周辺回路の遮断
周波数fア向上のため、N゛型エピタキシャルシリコン
層34の厚さを薄(する必要が生じてきているが、記憶
素子を周辺回路と同様に薄いN”型エピタキシャルシリ
コン層で形成する場合には、記憶素子のP゛型ベース領
域36の幅が比較的狭くなり、次のような2つの問題が
生じる。
In addition, with the demand for faster FROM, it has become necessary to reduce the thickness of the N-type epitaxial silicon layer 34 in order to improve the cutoff frequency f of the peripheral circuit. Similarly, when forming a thin N'' type epitaxial silicon layer, the width of the P'' type base region 36 of the memory element becomes relatively narrow, resulting in the following two problems.

1つはベース領域の幅が狭くなることにより、電流増幅
率hFEが大きくなり、記憶素子間で寄生サイリスタ効
果(寄生PNPN効果)が起こり、書込み不良が発生す
る。この現象は、第4図に示すように、書込みたい記憶
素子Q、。と同一デジット線D0上に書込み済の記憶素
子Q0゜が存在する場合、このベース領域と隣りの未書
込み記憶素子Q01とで寄生サイリスタQ、が生じる。
One is that as the width of the base region becomes narrower, the current amplification factor hFE increases, a parasitic thyristor effect (parasitic PNPN effect) occurs between storage elements, and a write failure occurs. This phenomenon, as shown in FIG. When a written storage element Q0° exists on the same digit line D0, a parasitic thyristor Q is generated between this base region and the adjacent unwritten storage element Q01.

このため、記憶素子の電流増幅率が高いと、この寄生サ
イリスタQ3が動作して電流通路Aに流れるべき書込み
電流■8の一部或いは全部が寄生サイリスタQ。
Therefore, when the current amplification factor of the storage element is high, this parasitic thyristor Q3 operates, and part or all of the write current (8) that should flow through the current path A flows through the parasitic thyristor Q.

を通り、書込み済記憶素子Q、を経て電流通路Bを流れ
ることになる。したがって、情報を書込むべき未書込み
記憶素子Q、。に情報が書込まれなかったり、不充分な
書込みが行われるという問題である。
The current flows through the current path B through the written storage element Q. Therefore, the unwritten storage element Q, into which information is to be written. This is a problem where information is not written or is written insufficiently.

他の1つは、記憶素子のベース領域の幅が比較的狭いた
め、単位記憶素子に情報を書込むためにエミッタ・ベー
ス接合を破壊するときに、ベース・コレクタ接合をも破
壊してしまう危険性があり、書込み歩留の低下を招くと
いう問題である。
Another problem is that the width of the base region of the memory element is relatively narrow, so when destroying the emitter-base junction in order to write information into the unit memory element, there is a risk of also destroying the base-collector junction. This is a problem that causes a decrease in write yield.

本発明は、単位記憶素子の占有面積を低減して記憶素子
の高密度化を可能にするとともに、記憶素子間における
寄生サイリスタ効果を防止して書き込み歩留の高い高信
頌性の半導体記憶装置を提供することを目的としている
The present invention reduces the area occupied by a unit memory element to enable higher density of memory elements, and prevents parasitic thyristor effects between memory elements, thereby achieving a high reliability semiconductor memory device with high write yield. is intended to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体記憶装置は、一導電型の半導体基板に選
択的に形成した逆導電型の埋込層及びこの上の半導体層
と、この半導体層表面に形成したショットキ接合を有す
るシリサイド領域と、このシリサイド領域上に順次形成
した導電体層、高抵抗膜及び金属電極とで単位記憶素子
を構成し、この高抵抗膜を破壊することにより導電体膜
と金属電極とを導通して情報の書き込みを行い得る構成
としている。
A semiconductor memory device of the present invention includes: a buried layer of an opposite conductivity type selectively formed on a semiconductor substrate of one conductivity type; a semiconductor layer thereon; a silicide region having a Schottky junction formed on the surface of the semiconductor layer; A conductor layer, a high-resistance film, and a metal electrode formed sequentially on this silicide region constitute a unit memory element, and by breaking this high-resistance film, the conductor film and the metal electrode are electrically connected to write information. The structure is such that it is possible to do this.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例であるFROMの記憶素子の
断面図である。
FIG. 1 is a sectional view of a FROM memory element which is an embodiment of the present invention.

ここでは、P型半導体基板11上にワード線としてのN
゛型埋込層12と、素子分離用のP゛型埋込1113を
夫々選択的に形成し、かっこのP型半導体基板11上に
N型エピタキシャル9932層14を成長させる。この
N型エピタキシャル9932層14には、シリコン酸化
膜15を選択的に形成しており、これを前記P゛型埋込
層13に到達させることにより単位記憶素子間を電気的
に分離する。
Here, N is placed on the P-type semiconductor substrate 11 as a word line.
A '-type buried layer 12 and a P'-type buried layer 1113 for element isolation are selectively formed, respectively, and an N-type epitaxial 9932 layer 14 is grown on the P-type semiconductor substrate 11 in the parentheses. A silicon oxide film 15 is selectively formed on this N-type epitaxial 9932 layer 14, and by reaching the P''-type buried layer 13, unit storage elements are electrically isolated.

このシリコン酸化[15で分離されたN型エピタキシャ
ル9932層14の表面にはシリコン酸化膜17を形成
し、かつこのシリコン酸化膜17を選択的にエツチング
して開孔部を形成する。この開孔部分に露出したN型エ
ピタキシャル9932層14の表面には、例えば白金シ
リサイド領域16を形成する。また、この開孔部を覆う
ように、例えばチタン或いはチタンタングステン等の金
属からなる導電体層18を形成し、更に、この導電体層
18を覆うように、高抵抗多結晶シリコン層19を形成
する。この高抵抗多結晶シリコン層19上にはディジッ
ト線としてのアルミニウム等の金属電極20を形成して
いる。
A silicon oxide film 17 is formed on the surface of the N-type epitaxial 9932 layer 14 separated by the silicon oxide film 15, and an opening is formed by selectively etching the silicon oxide film 17. For example, a platinum silicide region 16 is formed on the surface of the N-type epitaxial 9932 layer 14 exposed in this opening. Further, a conductive layer 18 made of a metal such as titanium or titanium tungsten is formed to cover this opening, and a high-resistance polycrystalline silicon layer 19 is further formed to cover this conductive layer 18. do. On this high-resistance polycrystalline silicon layer 19, a metal electrode 20 made of aluminum or the like is formed as a digit line.

したがって、この構成のFROMでは、N型エピタキシ
ャル9937層14の表面に白金シリサイド領域16を
形成している゛ため、単位記憶素子はショットキバリア
ダイオード(S B D)構造ととして構成される。
Therefore, in the FROM having this configuration, since the platinum silicide region 16 is formed on the surface of the N-type epitaxial 9937 layer 14, the unit memory element is configured as a Schottky barrier diode (SBD) structure.

そして、この単位記憶素子への情報の書込みは、金属電
極20とN゛埋込層12とで単位記憶素子を選択した上
で、金属電極20から書込み電流を流し、金属電極20
と多結晶シリコン19との反応によって形成されるスパ
イクにより、高抵抗多結晶シリコン19を破壊、導通さ
せて書込みが行われる。
To write information to this unit memory element, a unit memory element is selected using the metal electrode 20 and the N buried layer 12, and then a write current is applied from the metal electrode 20 to the metal electrode 20.
A spike formed by the reaction between the high-resistance polycrystalline silicon 19 and the polycrystalline silicon 19 breaks down the high-resistance polycrystalline silicon 19 and makes it conductive, thereby performing writing.

このため、本実施例と第3図の従来構造を比較すると、
従来では、P゛型ベース領域及びN3エミッタ領域とも
拡散層で構成するため、単位記憶素子当たりの占有面積
は10μm口を必要としたが、本実施例ではN型エピタ
キシャル9937層14の表面にSBD構造を作るため
、単位記憶素子当たりの占有面積を4μmQと、従来に
比べ大幅に小さくすることができ、記憶素子の高密度化
が図られる。
Therefore, when comparing this embodiment with the conventional structure shown in FIG.
Conventionally, since both the P'-type base region and the N3 emitter region are composed of diffusion layers, the occupied area per unit memory element needs to be 10 μm, but in this embodiment, an SBD is formed on the surface of the N-type epitaxial 9937 layer 14. Because of this structure, the area occupied by each unit memory element can be reduced to 4 μmQ, which is significantly smaller than in the past, and the density of the memory elements can be increased.

また、本実施例では、記憶素子が従来の接合トランジス
タ構造とは異なり、接合としてはSBD構造を1つ有す
るのみであるため、記憶素子間には寄生サイリスタ効果
が発生せず、正常な書込みが可能となり、信頼性の高い
記憶素子を得ることができる。
Furthermore, in this embodiment, unlike the conventional junction transistor structure, the memory element has only one SBD structure as a junction, so a parasitic thyristor effect does not occur between the memory elements, and normal writing is possible. This makes it possible to obtain a highly reliable memory element.

一方、情報書き込み時に多結晶シリコン19に生じるス
パイクは、多結晶シリコン19の下に設けた導電体層1
8によって白金シリサイド領域16に到達するのが防止
される。このため、SBD接合の破壊も防げ、書込み歩
留の低下を生じることはない。
On the other hand, spikes that occur in the polycrystalline silicon 19 when writing information are caused by the conductor layer 1 provided under the polycrystalline silicon 19.
8 prevents the metal from reaching the platinum silicide region 16. Therefore, destruction of the SBD junction can be prevented, and there is no reduction in write yield.

更に、本発明によれば、N型エピタキシャル9937層
14上に形成した白金シリサイド領域16は極めて薄く
 (約300人)、そのため、周辺回路の構造による薄
いN型エピタキシャルシリコン層の要求にも充分耐え得
る。例えば、従来の単位記憶素子においては、エピタキ
シャルシリコン層の膜厚は3.0μm以上必要であった
が、本発明によれば1.0μm以下でも充分機能する。
Furthermore, according to the present invention, the platinum silicide region 16 formed on the N-type epitaxial 9937 layer 14 is extremely thin (approximately 300 layers), and therefore can sufficiently withstand the demands for a thin N-type epitaxial silicon layer due to the structure of peripheral circuits. obtain. For example, in conventional unit memory elements, the epitaxial silicon layer needs to have a thickness of 3.0 μm or more, but according to the present invention, it functions satisfactorily even with a thickness of 1.0 μm or less.

このため、記憶素子がエピタキシャルシリコン層の膜厚
に全く影響を与えることはなく、高速化の要求に充分耐
え得ることも可能である。
Therefore, the memory element does not affect the thickness of the epitaxial silicon layer at all, and it is possible to sufficiently withstand demands for higher speeds.

第2図は本発明の他の実施例の断面図であり、前記実施
例と同一部分には同一符号を附して詳細な説明は省略す
る。
FIG. 2 is a cross-sectional view of another embodiment of the present invention, and the same parts as in the previous embodiment are given the same reference numerals and detailed explanations will be omitted.

この実施例では、白金シリサイド領域1Gと、シリコン
酸化膜17との境界部分の下にP゛型拡散領域21を設
けている点が前記実施例と相違している。この構成によ
れば、前記実施例と同じ効果を得ることができるのは勿
論のこと、このP4型拡散領域21を設けたことにより
、前記実施例の構造に比較してSBD接合の電気的特性
が安定するという効果も得ることができる。
This embodiment differs from the previous embodiment in that a P' type diffusion region 21 is provided under the boundary between the platinum silicide region 1G and the silicon oxide film 17. According to this structure, it is possible to obtain the same effect as in the embodiment described above, and by providing the P4 type diffusion region 21, the electrical characteristics of the SBD junction are improved compared to the structure in the embodiment described above. It is also possible to obtain the effect of stabilizing.

なお、前記導電体層18は、スパイクに対してバリア性
のあるもの、例えばチタンタングステン。
The conductive layer 18 is made of a material having barrier properties against spikes, such as titanium tungsten.

窒化チタン等の高融点金属が望ましい。また、高抵抗多
結晶シリコン層19は絶縁膜で構成してもよい。
A high melting point metal such as titanium nitride is preferred. Further, the high-resistance polycrystalline silicon layer 19 may be composed of an insulating film.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体基板に選択的にシ
ョットキ接合のシリサイド領域を形成し、このシリサイ
ド領域上に順次導電体層、高抵抗膜及び金属電極を形成
して単位記憶素子を構成しているので、この高抵抗膜を
破壊することにより導電体膜と金属電極とを導通して情
報の書き込みを行うことができる。このため、単位記憶
素子当たりの占有面積が低減し、記憶素の高密度化が可
能となる。また、記憶素子間に働く寄生サイリスタ効果
が生じず、しかも情報の書込み時における素子の破壊、
劣化のない記憶素子が得られるため、書込み歩留のよい
信鯨性の高い記憶装置が得られる。
As explained above, the present invention selectively forms a Schottky junction silicide region on a semiconductor substrate, and forms a unit memory element by sequentially forming a conductor layer, a high resistance film, and a metal electrode on this silicide region. Therefore, by destroying this high-resistance film, the conductor film and the metal electrode can be electrically connected and information can be written. Therefore, the occupied area per unit memory element is reduced, and it becomes possible to increase the density of memory elements. In addition, there is no parasitic thyristor effect between the memory elements, and there is no risk of element destruction when writing information.
Since a memory element without deterioration can be obtained, a memory device with high write yield and high reliability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体記憶装置の一実施例の断面図、
第2図は本発明の他の実施例の断面図、第3図は従来構
造の断面図、第4図は従来の問題点を説明するための等
価回路図である。 11・・・P型半導体基板、12・・・N゛型埋込層、
13・・・P゛埋込層、14・・・N型エピタキシャル
シリコン層、15・・・シリコン酸化膜、16・・・白
金シリサイド領域、エフ・・・シリコン酸化膜、18・
・・導電体層、19・・・高抵抗多結晶シリコン層、2
0・・・アルミニウム電極、21・・・PI型拡散領域
、31・・・P型半導体基板、32・・・N°型埋込層
、33・・・P゛埋込層、34・・・N型エピタキシャ
ルシリコン層、35・・・シリコン酸化膜、36・・・
P3型ベース領域、37・・・N°型エミッタ領域、3
8・・・アルミニウム電極。 第1図 第2図
FIG. 1 is a sectional view of an embodiment of the semiconductor memory device of the present invention;
FIG. 2 is a sectional view of another embodiment of the present invention, FIG. 3 is a sectional view of a conventional structure, and FIG. 4 is an equivalent circuit diagram for explaining the problems of the conventional structure. 11...P type semiconductor substrate, 12...N'' type buried layer,
13... P buried layer, 14... N-type epitaxial silicon layer, 15... silicon oxide film, 16... platinum silicide region, F... silicon oxide film, 18...
...Conductor layer, 19...High resistance polycrystalline silicon layer, 2
0... Aluminum electrode, 21... PI type diffusion region, 31... P type semiconductor substrate, 32... N° type buried layer, 33... P' buried layer, 34... N-type epitaxial silicon layer, 35... silicon oxide film, 36...
P3 type base region, 37...N° type emitter region, 3
8...Aluminum electrode. Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)一導電型の半導体基板に選択的に形成した逆導電
型の埋込層及びこの上に形成した半導体層と、この半導
体層表面に形成したショットキ接合を有するシリサイド
領域と、このシリサイド領域上に順次形成した導電体層
、高抵抗膜及び金属電極とで単位記憶素子を構成したこ
とを特徴とする半導体記憶装置。
(1) A buried layer of an opposite conductivity type selectively formed on a semiconductor substrate of one conductivity type, a semiconductor layer formed thereon, a silicide region having a Schottky junction formed on the surface of this semiconductor layer, and this silicide region A semiconductor memory device characterized in that a unit memory element is constituted by a conductor layer, a high resistance film, and a metal electrode that are sequentially formed on the top.
(2)高抵抗膜は高抵抗多結晶シリコン又は絶縁膜であ
る特許請求の範囲第1項記載の半導体記憶装置。
(2) The semiconductor memory device according to claim 1, wherein the high resistance film is high resistance polycrystalline silicon or an insulating film.
(3)シリサイド領域は白金シリサイドからなる特許請
求の範囲第1項記載の半導体記憶装置。
(3) The semiconductor memory device according to claim 1, wherein the silicide region is made of platinum silicide.
(4)導電体層はチタンタングステン又は窒化チタンか
らなる特許請求の範囲第1項記載の半導体記憶装置。
(4) The semiconductor memory device according to claim 1, wherein the conductive layer is made of titanium tungsten or titanium nitride.
JP62059962A 1987-03-17 1987-03-17 Semiconductor storage device Pending JPS63226958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62059962A JPS63226958A (en) 1987-03-17 1987-03-17 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62059962A JPS63226958A (en) 1987-03-17 1987-03-17 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPS63226958A true JPS63226958A (en) 1988-09-21

Family

ID=13128297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62059962A Pending JPS63226958A (en) 1987-03-17 1987-03-17 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPS63226958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017008A1 (en) * 1993-12-17 1995-06-22 Tadahiro Ohmi Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017008A1 (en) * 1993-12-17 1995-06-22 Tadahiro Ohmi Semiconductor device

Similar Documents

Publication Publication Date Title
JPH02275675A (en) Mos type semiconductor device
JPH11251574A (en) Static electricity protective circuit
JPH10163433A (en) Static electricity protecting circuit in semiconductor device
JP3302275B2 (en) Semiconductor devices
JPS63226958A (en) Semiconductor storage device
JP2004207702A (en) Power transistor and semiconductor integrated circuit using it
KR100190352B1 (en) Monolithic vertical-type semiconductor power device with a protection against parasitic currents
JPS6359262B2 (en)
JPH02283070A (en) Semiconductor integrated circuit device using input protecting circuit
KR20010050164A (en) Semiconductor device protection circuit whose operation is stabilized
JP2546179B2 (en) Semiconductor device
JPH0644608B2 (en) Semiconductor integrated circuit device
JP2901275B2 (en) Semiconductor integrated circuit device
JP2003204069A (en) Semiconductor device
JPS601843A (en) Semiconductor integrated circuit
JPH0368537B2 (en)
JPS59132159A (en) Junction breakdown writing type semiconductor memory device
JPS6152988B2 (en)
JPS6231154A (en) Semiconductor device
JPS629663A (en) Semiconductor device
JPS6367785A (en) Semiconductor device
JPH08316421A (en) Semiconductor integrated circuit device
JPH11274519A (en) Surge protecting element
JPH11145154A (en) Bipolar transistor
JPS6149461A (en) Semiconductor device