JPH0368537B2 - - Google Patents

Info

Publication number
JPH0368537B2
JPH0368537B2 JP55009061A JP906180A JPH0368537B2 JP H0368537 B2 JPH0368537 B2 JP H0368537B2 JP 55009061 A JP55009061 A JP 55009061A JP 906180 A JP906180 A JP 906180A JP H0368537 B2 JPH0368537 B2 JP H0368537B2
Authority
JP
Japan
Prior art keywords
region
resistance
conductivity type
transistor
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55009061A
Other languages
Japanese (ja)
Other versions
JPS56105661A (en
Inventor
Yoichi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP906180A priority Critical patent/JPS56105661A/en
Publication of JPS56105661A publication Critical patent/JPS56105661A/en
Publication of JPH0368537B2 publication Critical patent/JPH0368537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は半導体集積回路装置、特にこの中に形
成された抵抗素子の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device, and particularly to the structure of a resistive element formed therein.

半導体集積回路装置(以下、ICという)は、
単一の半導体基板上にトランジスタ素子やダイオ
ード素子のような能動素子および抵抗素子やコン
デンサ素子のような受動素子を作り込み、これら
を互いに接続してある回路機能を実現したもので
ある。そして、製造工程の観点から前述の能動お
よび受動素子は、特にトランジスタ素子を形成す
る時と同一製造工程で形成される。
A semiconductor integrated circuit device (hereinafter referred to as IC) is
Active elements such as transistor elements and diode elements, and passive elements such as resistive elements and capacitor elements are built on a single semiconductor substrate, and these are interconnected to realize a circuit function. From the viewpoint of the manufacturing process, the active and passive elements described above are formed in the same manufacturing process as the transistor element.

すなわち、第1図乃至第3図にNPNトランジ
スタのエミツタの抵抗素子が接続される場合の製
造工程を示すように、まずP型シリコン基板1を
用意し、この表面に高濃度のN+拡散領域2を選
択的に形成し、上記シリコン基板1上にN型エピ
タキシヤルシリコン層3を成長させる(第1図)。
この領域2はNPNトランジスタ2のコレクタ直
列抵抗を低減するためのものである。
That is, as shown in FIGS. 1 to 3 showing the manufacturing process when the emitter resistor element of an NPN transistor is connected, first a P-type silicon substrate 1 is prepared, and a highly concentrated N + diffusion region is formed on the surface of the P-type silicon substrate 1. 2 is selectively formed, and an N-type epitaxial silicon layer 3 is grown on the silicon substrate 1 (FIG. 1).
This region 2 is for reducing the collector series resistance of the NPN transistor 2.

次に、第2図に示すようにエピタキシヤル層3
の表面から基板1に達するように、トランジスタ
素子と抵抗素子とを電気的に絶縁する高濃度P+
型の絶縁分離拡散領域4を形成し、エピタキシヤ
ル層3を低抵抗率の抵抗を形成する領域3aと
NPNトランジスタを形成する領域3bに電気的
に分離する。次に、領域3bのエピタキシヤル層
の表面上にNPNトランジスタのベース領域とな
るP型拡散領域5bを形成し、同時に領域3aの
エピタキシヤル層の表面に抵抗領域として働く領
域を領域3a上の他の抵抗素子と電気的に分離す
るためのP型拡散領域5aを形成する。そして、
P型拡散領域5bの表面上にNPNトランジスタ
のエミツタ領域となる高濃度N+拡散領域6bを
形成し、同時に領域3bのエピタキシヤル層の表
面上にNPNトランジスタのコレクタコンタクト
領域となる高濃度N+拡散領域6c及び上記P型
拡散層5aの表面上に低抵抗率の抵抗領域となる
高濃度N+拡散領域6aをそれそれ形成する。
Next, as shown in FIG.
A high concentration of P + that electrically insulates the transistor element and the resistance element reaches the substrate 1 from the surface of
A type of insulation isolation diffusion region 4 is formed and the epitaxial layer 3 is formed with a region 3a forming a low resistivity resistor.
It is electrically isolated into a region 3b where an NPN transistor is formed. Next, a P-type diffusion region 5b, which will become the base region of the NPN transistor, is formed on the surface of the epitaxial layer in region 3b, and at the same time, a region functioning as a resistance region is formed on the surface of the epitaxial layer in region 3a. A P-type diffusion region 5a is formed for electrical isolation from the resistor element. and,
A high concentration N + diffusion region 6b is formed on the surface of the P-type diffusion region 5b to become the emitter region of the NPN transistor, and at the same time a high concentration N + diffusion region 6b is formed on the surface of the epitaxial layer of the region 3b to become the collector contact region of the NPN transistor . On the surfaces of the diffusion region 6c and the P-type diffusion layer 5a, high-concentration N + diffusion regions 6a, which serve as resistance regions with low resistivity, are formed.

次に、第3図に示すようにアルミニウム配線絶
縁のために全面にシリコン酸化膜7形成し、この
シリコン酸化膜7の電極形成個所にエツチングに
よる穴あけを行ない、全面アルミニウム蒸着を行
なつた後選択エツチングにより電極8a,8b,
8c,8dを形成する。電極8bは抵抗領域6a
の一端とNPNトランジスタのエミツタ領域6b
とを接続している。すなわち抵抗領域6aはトラ
ンジスタのエミツタ抵抗として用いられている。
この領域(N型)6aはP型の領域5a内にこれ
と接触して形成されているため領域6aと領域5
aとはそれらの間でPN接合、すなわち、寄生ダ
イオードを形成している。
Next, as shown in FIG. 3, a silicon oxide film 7 is formed on the entire surface to insulate the aluminum wiring, holes are formed in the silicon oxide film 7 at locations where electrodes will be formed, and aluminum is deposited on the entire surface, and then selected. By etching the electrodes 8a, 8b,
8c and 8d are formed. Electrode 8b is resistance region 6a
one end and the emitter region 6b of the NPN transistor
is connected to. That is, the resistance region 6a is used as an emitter resistance of the transistor.
Since this region (N-type) 6a is formed in and in contact with the P-type region 5a, the region 6a and the region 5
A and a form a PN junction, that is, a parasitic diode.

このように、抵抗素子はトランジスタの拡散工
程を利用して同時に形成したものであり、抵抗素
子を形成するための格別な製造工程は不必要であ
る。しかしながら、その反面、例えば電極8aに
外部より静電気などによるサージ、スパイク等の
突発的異常電圧が印加された場合、NPNトラン
ジスタのベース領域5b及びエミツタ領域6bに
よつて形成されるPN接合と、低抵抗率の抵抗に
おいてP型拡散領域5aと高濃度N+拡散領域6
aによつて形成されるPN接合との双方の逆方向
降伏電圧は、各領域が同一工程で形成されている
ためにほぼ等しい。このため、低抵抗率の抵抗に
後続するNPNトランジスタのベースエミツタ間
のPN接合が劣化又は破壊される欠点があつた。
In this way, the resistive element is simultaneously formed using the transistor diffusion process, and no special manufacturing process is required to form the resistive element. However, on the other hand, if a sudden abnormal voltage such as a surge or spike due to static electricity is applied from the outside to the electrode 8a, the PN junction formed by the base region 5b and emitter region 6b of the NPN transistor In terms of resistivity, P-type diffusion region 5a and high concentration N + diffusion region 6
The reverse breakdown voltages of both regions with respect to the PN junction formed by a are approximately equal because each region is formed in the same process. For this reason, there was a drawback that the PN junction between the base and emitter of the NPN transistor following the low resistivity resistor deteriorated or was destroyed.

よつて本発明の目的は、静電気などによる外部
からのサージ、スパイス等の突発的異常電位が入
力されても、低抵抗率の抵抗に後続するトランジ
スタのベース・エミツタ間のPN接合の劣化又は
破壊を生じることのない半導体集積回路装置を提
供するものである。
Therefore, it is an object of the present invention to prevent the deterioration or destruction of the PN junction between the base and emitter of the transistor following the low resistivity resistor even if an external surge caused by static electricity or a sudden abnormal potential such as spice is input. An object of the present invention is to provide a semiconductor integrated circuit device that does not cause this problem.

本発明は、一導電型の半導体基板上に成長させ
た逆導電型の半導体基体層に、表面不純物濃度が
トランジスタ素子のベース領域の表面不純物濃度
よりも高い一導電型の不純物領域を形成し、この
高表面不純物濃度領域にトランジスタ素子のエミ
ツタ領域と同時に形成した逆導電型領域を形成
し、この逆導電型領域で構成した抵抗領域を前記
エミツタ領域に接続した構成としている。
The present invention forms an impurity region of one conductivity type in a semiconductor base layer of an opposite conductivity type grown on a semiconductor substrate of one conductivity type, the surface impurity concentration of which is higher than the surface impurity concentration of the base region of a transistor element, An opposite conductivity type region is formed in this high surface impurity concentration region at the same time as the emitter region of the transistor element, and a resistance region formed of this opposite conductivity type region is connected to the emitter region.

この場合、高表面不純物濃度領域は、トランジ
スタ素子を他のトランジスタ素子あるいは他の素
子と分離するために設けた一導電型の絶縁分離領
域であることが好ましい。
In this case, the high surface impurity concentration region is preferably an insulating isolation region of one conductivity type provided to isolate the transistor element from another transistor element or another element.

以下、本発明の実施例につき図面を参照してよ
り詳細に説明する。
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.

第4図乃至第6図は本発明の一実施例の低抵抗
率の励行及びそれに接続するNPNトランジスタ
の製造工程断面図である。
4 to 6 are cross-sectional views showing the manufacturing process of a low resistivity transistor and an NPN transistor connected thereto according to an embodiment of the present invention.

まず第4図に示すように、P型シリコン基板9
の表面に公知のフオトレジスタ処理及び拡散処理
を施してNPNトランジスタを形成する部分に高
濃度N+型拡散領域10を形成する。これはトラ
ンジスタのコレクタ直列抵抗を低減するためのも
のである。しかる後に、上記シリコン基板9上に
N型シリコンエピタキシヤル層11を成長させ
る。
First, as shown in FIG.
A well-known photoresistor process and a diffusion process are performed on the surface of the substrate to form a high concentration N + -type diffusion region 10 in a portion where an NPN transistor is to be formed. This is to reduce the collector series resistance of the transistor. Thereafter, an N-type silicon epitaxial layer 11 is grown on the silicon substrate 9.

次に第5図に示すように、エピタキシヤル層1
1において低抵抗率の抵抗を形成する領域全面に
各素子間を電気的に分離するための高濃度P+
絶縁分離拡散領域12aをシリコン基板9に達す
るまで形成し、同時に上記シリコン基板9に達す
る高濃度P+型絶縁分離拡散領域12bを形成し
て、NPNトランジスタを形成すつ領域のエピタ
キシヤル層11aを他素子より分離する。そし
て、エピタキシヤル層11aの表面上にNPNト
ランジスタのベース領域となるP型拡散層13b
を形成し同時に上記絶縁分離拡散領域12aの表
面上に後述により詳細に説明するが抵抗領域の
PN接合の逆方向降伏特性を急峻にするためのP
型拡散層13aを形成する。
Next, as shown in FIG.
In step 1, a high concentration P + type insulation isolation diffusion region 12a for electrically isolating each element is formed on the entire region where a low resistivity resistor is to be formed until reaching the silicon substrate 9, and at the same time, a high concentration P + type insulation isolation diffusion region 12a is formed on the silicon substrate 9. A high concentration P + -type insulation isolation diffusion region 12b is formed to isolate the epitaxial layer 11a in the region where the NPN transistor is to be formed from other elements. Then, on the surface of the epitaxial layer 11a, a P-type diffusion layer 13b is formed which becomes the base region of the NPN transistor.
At the same time, a resistive region is formed on the surface of the insulation isolation diffusion region 12a, which will be explained in detail later.
P to make the reverse yield characteristic of PN junction steep
A type diffusion layer 13a is formed.

以降第6図に示すように、周知の拡散工程に従
つて高濃度N+拡散層によるエミツタ領域14b、
コレクタコンタクト領域14c及び低抵抗率抵抗
領域14aをそれぞれ形成し、全面にシリコン酸
化膜15を形成して所定部開孔した後、アルミニ
ウム等の金属を蒸着して選択的にエツチング除去
して電極及びアルミニウム配線16を形成する。
Thereafter, as shown in FIG. 6, an emitter region 14b formed by a high concentration N + diffusion layer is formed according to a well-known diffusion process.
After forming a collector contact region 14c and a low resistivity resistance region 14a, forming a silicon oxide film 15 on the entire surface and opening a hole in a predetermined portion, a metal such as aluminum is deposited and selectively etched away to form an electrode. Aluminum wiring 16 is formed.

かかる本実施例の半導体集積回路装置では、抵
抗領域14aは絶縁分離領域12a内に形成され
ている。この絶縁分離領域12aはトランジスタ
素子や抵抗素子等を確実に電気的に絶縁するため
その不純物濃度は極めて高い。一方、ベース領域
13bの不純物濃度は絶縁分離領域12aのそれ
よりもかなり低い。知られているように、PN接
合のブレークダウン電圧はP領域およびN領域の
不純物濃度によつて決定され、その濃度が高いほ
どブレークダウン電圧は低くなる。このため、抵
抗素子に形成されたPN接合の降伏電圧は、トラ
ンジスタ素子のベース・エミツタ間PN接合のそ
れに比して小さい電圧である。よつて、抵抗素子
の電極16に外部から静電気等の異常電圧が入力
されても、抵抗素子のPN接合がトランジスタ素
子のベース・エミツタ間PN接合よりも早く降伏
して抵抗領域14aに印加された異常電荷を領域
13aへと流す。この場合領域13aと領域12
aは順方向となつているため、抵抗領域14aの
異常電荷は領域13a,12aを介して基板9へ
と放電される。一例として、領域14aと13a
で形成されるPN接合を降伏電圧は5.9V、領域1
4b、領域13bで形成されるPN接合の降伏電
圧は6.5Vである。このため、抵抗素子の一端と
エミツタ領域14bとを結ぶアルミニウム配線1
6の電位は、抵抗素子のPN接合の降伏電圧に維
持され、従来のようにベース・エミツタ間接合の
劣化や破壊は全くなくなる。
In the semiconductor integrated circuit device of this embodiment, the resistance region 14a is formed within the insulation isolation region 12a. This insulating isolation region 12a has an extremely high impurity concentration in order to reliably electrically insulate transistor elements, resistance elements, and the like. On the other hand, the impurity concentration of base region 13b is considerably lower than that of insulating isolation region 12a. As is known, the breakdown voltage of a PN junction is determined by the impurity concentration of the P region and the N region, and the higher the concentration, the lower the breakdown voltage. Therefore, the breakdown voltage of the PN junction formed in the resistance element is smaller than that of the base-emitter PN junction of the transistor element. Therefore, even if an abnormal voltage such as static electricity is input from the outside to the electrode 16 of the resistance element, the PN junction of the resistance element breaks down earlier than the base-emitter PN junction of the transistor element, and the voltage is applied to the resistance region 14a. The abnormal charge is caused to flow to the region 13a. In this case, area 13a and area 12
Since a is in the forward direction, the abnormal charge in the resistance region 14a is discharged to the substrate 9 via the regions 13a and 12a. As an example, regions 14a and 13a
The breakdown voltage of the PN junction formed by is 5.9V, region 1
4b, the breakdown voltage of the PN junction formed in region 13b is 6.5V. Therefore, the aluminum wiring 1 connecting one end of the resistance element and the emitter region 14b
The potential of No. 6 is maintained at the breakdown voltage of the PN junction of the resistive element, and there is no deterioration or destruction of the base-emitter junction as in the conventional case.

このように、かかる半導体集積回路装置は外部
から印加された静電気等に対してトランジスタを
保護することが出来、非常に信頼度の高い静電耐
圧が得られる。トランジスタ領域はブレークダウ
ンするとトランジスタのHFEが低下するが、抵
抗では大電流が流れないかぎり特性劣下は生じな
いので、エネルギーの小さいサージ電圧程度では
抵抗の破壊は生じない。ただし抵抗が破壊するほ
ど大きなエネルギーが加えられた場合はトランジ
スタにも影響が及ぶと考えられる。
In this way, such a semiconductor integrated circuit device can protect the transistors from static electricity applied from the outside, and can provide extremely reliable static electricity withstand voltage. When a transistor region breaks down, the HFE of the transistor decreases, but in a resistor, characteristics do not deteriorate unless a large current flows, so a small-energy surge voltage will not cause the resistor to break down. However, if enough energy is applied to destroy the resistor, it is thought that the transistor will also be affected.

ところで、本実施例では抵抗素子を形成すべき
部分の絶縁分離領域12aにトランジスタ素子の
ベース領域13b形成時に領域13aを形成し
た。しかしながら、この領域13aは抵抗素子の
PN接合の降伏電圧をトランジスタ素子のベー
ス・エミツタ間PN接合のそれより小さくする観
点から言えば必ずしも必要でない。又、同様の観
点から抵抗領域14aを絶縁分離領域12aに形
成せずベース領域13bの表面不純物濃度よりも
高い領域を形成してこの中に抵抗領域14aを形
成してもよい。
Incidentally, in this embodiment, the region 13a was formed in the insulation isolation region 12a of the portion where the resistance element was to be formed when the base region 13b of the transistor element was formed. However, this region 13a is a resistive element.
This is not necessarily necessary from the viewpoint of making the breakdown voltage of the PN junction smaller than that of the PN junction between the base and emitter of the transistor element. Further, from the same viewpoint, the resistance region 14a may be formed in a region having a higher surface impurity concentration than the base region 13b, instead of forming the resistance region 14a in the insulating isolation region 12a.

しかし、後者の場合それだけ製造工程が余分に
必要となり、原価低減に支障をきたしてしまう。
さらに、抵抗素子を他の素子と絶縁するための分
離領域が必要となり、素子密度の低下もきたす。
よつて、本実施例では絶縁分離領域12aでもつ
て、降伏電圧の低下ならびに素子間分離の役目を
させて原価低減ならびに素子密度の向上を達して
いる。
However, in the latter case, an extra manufacturing process is required, which hinders cost reduction.
Furthermore, an isolation region is required to insulate the resistance element from other elements, which also reduces element density.
Therefore, in this embodiment, the insulation isolation region 12a also serves to lower the breakdown voltage and isolate the elements, thereby reducing the cost and increasing the element density.

そして前者の場合には、前述の如く絶縁分離領
域12aはその不純物濃度は極めて高く、又、抵
抗領域14aもエミツタ領域14bと同時に形成
されるのでその不純物濃度も高い。このため、抵
抗素子の表面近傍は極めて高い不純物濃度を示す
ので、表面リース電流が増大する等特性劣化をき
たす。このため、絶縁分離領域12aの中にベー
ス領域形成時に同時に領域13aを形成する。す
なわち、領域13aの形成後、領域14aを形成
するために必要な絶縁物を形成しなければならな
い。この絶縁物として通常、酸化雰囲気中での熱
処理によつて表面のシリコンを二酸化シリコンに
変化させる方法が用いられる。このため領域13
aの表面が酸化し、領域14aと接合をなす領域
近傍の表面不純物濃度が低下し、このためリーク
電流の増大はなくなり、しかもPN接合の降伏が
急峻になり、トランジスタの保護がより確実にな
される。さらにまた、領域14aを形成するため
の拡散マクスの形成時間が、領域13a上の酸化
膜を除去すればよいので非常に短かくなる。
In the former case, as described above, the impurity concentration of the insulating isolation region 12a is extremely high, and since the resistance region 14a is also formed at the same time as the emitter region 14b, its impurity concentration is also high. Therefore, the impurity concentration near the surface of the resistance element is extremely high, resulting in deterioration of characteristics such as an increase in surface lease current. For this reason, a region 13a is formed in the insulating isolation region 12a at the same time as the base region is formed. That is, after forming region 13a, an insulator required to form region 14a must be formed. For this insulator, a method is usually used in which silicon on the surface is converted to silicon dioxide by heat treatment in an oxidizing atmosphere. Therefore, area 13
The surface of a is oxidized, and the surface impurity concentration in the vicinity of the region that forms a junction with region 14a is reduced, so that the leakage current no longer increases, and the breakdown of the PN junction becomes steeper, so that the transistor is more reliably protected. Ru. Furthermore, the time required to form the diffusion mask for forming the region 14a is significantly shortened because the oxide film on the region 13a only needs to be removed.

この絶縁分離領域12aの表面不純物濃度を低
下させる手段として、本実施例ではベース形成工
程を用いたが、新たに酸化膜形成のための熱処理
工程を増せは同じように達成できる。しかし、前
述の如く製造工程の増加を考えると、ベース形成
時のマスク形状を変化させるだけでよい本実施例
の方がはるかに勝る。
Although the base forming step is used in this embodiment as a means for reducing the surface impurity concentration of the insulation isolation region 12a, the same effect can be achieved by adding a new heat treatment step for forming an oxide film. However, considering the increase in manufacturing steps as described above, this embodiment is far superior as it only requires changing the shape of the mask when forming the base.

さらに本実施例の半導体集積回路装置は、低抵
領域14a上の絶縁層15上にアルミニウム配線
16bが形成されている。これは、この抵抗素子
を、交差するアルミニウ配線において多層配線技
術を用いて双方ともアルミニウム配線を形成する
のではなく、一方のアルミニウム配線を低抵抗率
の半導体領域を用いてその交差する部分を半導体
基体(エピタキシヤル層11)内に形成した所謂
トンネル抵抗として使用したものである。即ち電
極16aとアルミニウム配線16cとは本来は連
続しており、この配線16a,16cと配線16
bとは交差する。このため、双方の配線を多層配
線技術で交差させるのではなく、電極16aと配
線16cとを低抵抗領域14aをトンネル抵抗と
して接続し、多層配線と同し機能を果たしてい
る。しかしながら、通常の抵抗素子にも適応して
よいこと無論である。
Further, in the semiconductor integrated circuit device of this embodiment, an aluminum wiring 16b is formed on the insulating layer 15 on the low resistance region 14a. Rather than using multilayer wiring technology to form aluminum wiring on both sides of the intersecting aluminum wiring, this resistor element uses a low-resistivity semiconductor region for one aluminum wiring, and the crossing portion is made of semiconductor. This is used as a so-called tunnel resistor formed within the base (epitaxial layer 11). That is, the electrode 16a and the aluminum wiring 16c are originally continuous, and the wiring 16a, 16c and the wiring 16
It intersects with b. Therefore, instead of crossing both wirings using multilayer wiring technology, the electrode 16a and the wiring 16c are connected using the low resistance region 14a as a tunnel resistance, thereby achieving the same function as the multilayer wiring. However, it goes without saying that the invention may also be applied to ordinary resistance elements.

以上のように、本実施例の半導体集積回路装置
は何ら製造工程を増加させることなく、又特性劣
化もきたすことなく外部静電気等からトランジス
タの破壊を防止できる。
As described above, the semiconductor integrated circuit device of this embodiment can prevent destruction of transistors due to external static electricity, etc., without increasing the number of manufacturing steps or causing characteristic deterioration.

尚、本発明の上記実施例に限定されず、導電型
をすべて入れ換えてもよい。又、絶縁膜15を各
電極形成前に新に形成したが、これを各領域を形
成するときに用いた絶縁膜をそのまま残しておい
てもよい。さらにまた、絶縁膜や金属配線の材質
もこれに限定されないこと無論である。そしてさ
らに、絶縁領域12a,12bを基板9に達する
まで形成したが、これを基板9に新かじめP+
埋込み層を形成しておき、これを領域12a,1
2bと連続させて絶縁領域としてもよい。
Note that the present invention is not limited to the above embodiments, and all conductive types may be replaced. Further, although the insulating film 15 is newly formed before forming each electrode, the insulating film used when forming each region may be left as is. Furthermore, it goes without saying that the materials of the insulating film and the metal wiring are not limited to these. Further, the insulating regions 12a and 12b were formed until they reached the substrate 9, but a new P + type buried layer was previously formed on the substrate 9, and the insulating regions 12a and 12b were
It may be made continuous with 2b to form an insulating region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は従来の半導体集積回路装置
の製造工程断面図、第4図乃至第6図は本発明の
一実施例を示す半導体集積回路装置の製造工程断
面図である。 1,9……P型シリコン基板、2,10……
N+型埋込み層、3,11……N型エピタキシヤ
ル層、4,12a,12b……P+型絶縁分離領
域、5b,13b……P型ベース領域、5a,1
3a……抵抗領域絶縁のためのP型領域、6b,
14b……N+型エミツタ領域、6a,14a…
…抵抗領域、7,15……絶縁層、8a乃至8
d,16a乃至16e……金属配線層。
1 to 3 are cross-sectional views of the manufacturing process of a conventional semiconductor integrated circuit device, and FIGS. 4 to 6 are cross-sectional views of the manufacturing process of a semiconductor integrated circuit device showing an embodiment of the present invention. 1, 9... P-type silicon substrate, 2, 10...
N + type buried layer, 3, 11...N type epitaxial layer, 4, 12a, 12b...P + type insulation isolation region, 5b, 13b...P type base region, 5a, 1
3a...P-type region for insulating resistance region, 6b,
14b...N + type emitter region, 6a, 14a...
...Resistance region, 7, 15...Insulating layer, 8a to 8
d, 16a to 16e...metal wiring layers.

Claims (1)

【特許請求の範囲】 1 一導電型の半導体基板上に逆導電型の半導体
基体層を有し、この半導体基体層に一導電型のベ
ース領域および逆導電型のエミツタ領域を有する
トランジスタ素子を構成してなる半導体集積回路
装置において、前記半導体基体層には表面不純物
濃度が前記ベース領域の表面不純物濃度よりも高
い一導電型の不純物領域を有し、この高表面不純
物濃度領域に前記エミツタ領域と同じ不純物濃度
の逆導電型領域を有し、この逆導電型領域で構成
される抵抗領域が前記エミツタ領域に電気接続さ
れてなることを特徴とする半導体集積回路装置。 2 前記高表面不純物濃度領域は絶縁分離領域で
ある特許請求の範囲第1項記載の半導体集積回路
装置。
[Claims] 1. A transistor element having a semiconductor base layer of an opposite conductivity type on a semiconductor substrate of one conductivity type, and having a base region of one conductivity type and an emitter region of the opposite conductivity type on this semiconductor base layer. In the semiconductor integrated circuit device, the semiconductor base layer has an impurity region of one conductivity type whose surface impurity concentration is higher than that of the base region, and the emitter region and the high surface impurity concentration region are provided. 1. A semiconductor integrated circuit device comprising regions of opposite conductivity type having the same impurity concentration, and a resistance region formed of the regions of opposite conductivity type being electrically connected to the emitter region. 2. The semiconductor integrated circuit device according to claim 1, wherein the high surface impurity concentration region is an insulating isolation region.
JP906180A 1980-01-29 1980-01-29 Semiconductor integrated circuit device Granted JPS56105661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP906180A JPS56105661A (en) 1980-01-29 1980-01-29 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP906180A JPS56105661A (en) 1980-01-29 1980-01-29 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS56105661A JPS56105661A (en) 1981-08-22
JPH0368537B2 true JPH0368537B2 (en) 1991-10-28

Family

ID=11710093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP906180A Granted JPS56105661A (en) 1980-01-29 1980-01-29 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS56105661A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086857A (en) * 1983-10-19 1985-05-16 Matsushita Electronics Corp Semiconductor integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013076A (en) * 1973-06-04 1975-02-10
JPS53140981A (en) * 1977-04-27 1978-12-08 Rca Corp Ic protector
JPS5496382A (en) * 1978-01-17 1979-07-30 Toshiba Corp Semiconductor integrated circuit device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013076A (en) * 1973-06-04 1975-02-10
JPS53140981A (en) * 1977-04-27 1978-12-08 Rca Corp Ic protector
JPS5496382A (en) * 1978-01-17 1979-07-30 Toshiba Corp Semiconductor integrated circuit device

Also Published As

Publication number Publication date
JPS56105661A (en) 1981-08-22

Similar Documents

Publication Publication Date Title
US5652689A (en) ESD protection circuit located under protected bonding pad
US6236087B1 (en) SCR cell for electrical overstress protection of electronic circuits
JP4959140B2 (en) Semiconductor device
US7495265B2 (en) ESD protection circuit with SCR structure for semiconductor device
JP2009060117A (en) Method and circuit structure for improving the effectiveness of esd protection on semiconductor circuit structure
EP0703621B1 (en) Electrostatic discharge protection device for MOS integrated circuits
JPH11251574A (en) Static electricity protective circuit
JPH10189756A (en) Semiconductor device
JPH1065020A (en) Semiconductor device
EP0385450B1 (en) Semiconductor device with MIS capacitor
JPH1084098A (en) Esd protection of high-density dram using triple well tehchnology
JP6838504B2 (en) Semiconductor devices and semiconductor circuit devices
JP3275850B2 (en) High breakdown voltage diode and its manufacturing method
JPH0368537B2 (en)
JP2611639B2 (en) Semiconductor device
JP3314760B2 (en) Electrostatic protection element, electrostatic protection circuit, and semiconductor device
JP4136372B2 (en) Semiconductor device
JP2001036006A (en) Input/output protective device for semiconductor integrated circuit
JPS63301555A (en) Semiconductor device
JPH0441499B2 (en)
KR20010050164A (en) Semiconductor device protection circuit whose operation is stabilized
JPH02283070A (en) Semiconductor integrated circuit device using input protecting circuit
JPS5879749A (en) Semiconductor integrated circuit
JP2546179B2 (en) Semiconductor device
JPH07321307A (en) Semiconductor device