JPS6152988B2 - - Google Patents

Info

Publication number
JPS6152988B2
JPS6152988B2 JP54154451A JP15445179A JPS6152988B2 JP S6152988 B2 JPS6152988 B2 JP S6152988B2 JP 54154451 A JP54154451 A JP 54154451A JP 15445179 A JP15445179 A JP 15445179A JP S6152988 B2 JPS6152988 B2 JP S6152988B2
Authority
JP
Japan
Prior art keywords
island
single crystal
insulating layer
boundary
metal wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54154451A
Other languages
Japanese (ja)
Other versions
JPS5678138A (en
Inventor
Tatsuo Shimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15445179A priority Critical patent/JPS5678138A/en
Publication of JPS5678138A publication Critical patent/JPS5678138A/en
Publication of JPS6152988B2 publication Critical patent/JPS6152988B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は、複数の単結晶島を有する集積化半導
体装置の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an integrated semiconductor device having a plurality of single crystal islands.

第1図及び第2図に従来技術の一例を示す。 An example of the prior art is shown in FIGS. 1 and 2.

シリコンより成る多結晶基板1に、例えば二酸
化シリコンより成る絶縁層2により囲まれたN+
埋込層3を有するN型単結晶島(基体)4が形成
される。更に該単結晶島4にはN+型導電層5及
びP型導電層6が形成される。
A polycrystalline substrate 1 made of silicon is surrounded by an insulating layer 2 made of silicon dioxide, for example .
An N-type single crystal island (substrate) 4 having a buried layer 3 is formed. Furthermore, an N + type conductive layer 5 and a P type conductive layer 6 are formed on the single crystal island 4.

これらの導電層5,6には、例えば二酸化シリ
コンより成る絶縁層7を介して、例えばアルミニ
ウムより成る配線金属8及び8′が施される。該
配線金属は島境界10,10′上を通過し、それ
ぞれの配線金属の終端部11,11′は隣の単結
晶島上に位置される。該終端部には、例えば鉛一
錫より成る電極部9,9′が設けられ、外部電極
端子(図示せず)との電気的接続を可能ならしめ
ている。
Wiring metals 8 and 8' made of aluminum, for example, are applied to these conductive layers 5, 6 via an insulating layer 7 made of silicon dioxide, for example. The wiring metal passes over the island boundaries 10, 10', and the terminal ends 11, 11' of each wiring metal are located on the adjacent single crystal islands. Electrode portions 9, 9' made of, for example, lead and tin are provided at the end portions to enable electrical connection with external electrode terminals (not shown).

通常の集積化半導体装置では、外部電極端子と
の電気的結線を容易にする為、半導体基体の周縁
部に電極部を位置させるのが慣例となつている。
一方集積化半導体装置内の各回路素子の位置は、
半導体基体の面積が最少となるように諸特性を考
慮しながら決められる為、最終的に各回路素子と
電極部とを結ぶ配線金属は、半導体基体上の各単
結晶島間をはい回ることになるのが通例である。
In a typical integrated semiconductor device, it is customary to position an electrode portion at the periphery of a semiconductor substrate in order to facilitate electrical connection with an external electrode terminal.
On the other hand, the position of each circuit element in an integrated semiconductor device is
Since the area of the semiconductor substrate is determined while considering various characteristics to minimize the area, the wiring metal that ultimately connects each circuit element and the electrode section will crawl between each single crystal island on the semiconductor substrate. It is customary.

ここで、第1,2図においてP型導電層6側の
配線金属8′に注目する。この配線金属8′は単結
晶島4及びこれに隣接する島の境界10を通過す
るように施されているので、配線金属8′の電位
の影響を受け、配線下においてMOS効果により
空乏層が広がり、これが単結晶島底を周回し、い
わゆるチヤネルが形成され、電気的短絡現象を呈
する。
Here, in FIGS. 1 and 2, attention is paid to the wiring metal 8' on the P-type conductive layer 6 side. Since this wiring metal 8' is applied so as to pass through the single crystal island 4 and the boundary 10 between the adjacent islands, it is affected by the potential of the wiring metal 8', and a depletion layer is formed under the wiring due to the MOS effect. It spreads, goes around the single crystal island bottom, forms a so-called channel, and exhibits an electrical short circuit phenomenon.

この為、配線下の一部にいわゆるチヤネルカツ
トと称するN+埋込層3を設けることにより、前
述の短絡現象を防止するのが通例である。ところ
が、チヤネルカツト用N+埋込層3により空乏層
の広がりを防止することはできたが、これにより
N+埋込層3のN+境界13において電界集中が起
こり、なだれ現象によつて決まる電圧以上に耐圧
を上げることができないという問題が新たに生じ
た。
For this reason, it is customary to prevent the above-mentioned short circuit phenomenon by providing an N + buried layer 3 called a so-called channel cut in a part under the wiring. However, although we were able to prevent the depletion layer from expanding by using the N + buried layer 3 for channel cuts,
Electric field concentration occurs at the N + boundary 13 of the N + buried layer 3, and a new problem has arisen in that the withstand voltage cannot be increased above the voltage determined by the avalanche phenomenon.

前述の電界集中は配線金属8′と単結晶島4と
の電位差による電界強度に依存するところから、
N+埋込層3上の絶縁層7の厚さtを大きくする
ことにより電界集中を緩和し、必要な耐圧を確保
するように留意されている。第5図に絶縁層厚さ
tとN+境界における電界強度の関係を示してい
る。この図から、絶縁層の厚さtを大きくするこ
とにより電界集中が緩和されるのがわかる。
Since the aforementioned electric field concentration depends on the electric field strength due to the potential difference between the wiring metal 8' and the single crystal island 4,
Care is taken to alleviate electric field concentration by increasing the thickness t of the insulating layer 7 on the N + buried layer 3 and to ensure the necessary withstand voltage. FIG. 5 shows the relationship between the insulating layer thickness t and the electric field strength at the N + boundary. From this figure, it can be seen that electric field concentration is alleviated by increasing the thickness t of the insulating layer.

しかし、一般上この絶縁層7としては、二酸化
シリコン、窒化シリコンなどが用いられており、
これらは厚くすると剥離現象を呈し、形成できる
厚さには実際上限界がある。通常4μm以上は困
難と云われている。
However, silicon dioxide, silicon nitride, etc. are generally used as the insulating layer 7.
When these materials become thick, they exhibit a peeling phenomenon, and there is a practical limit to the thickness that can be formed. Normally, it is said that it is difficult to have a thickness of 4 μm or more.

従つて、従来技術ではN+境界部での電界集中
を十分に緩和することはできず、製造上の絶縁層
厚さのバラツキなどを考慮すると、工業的に十分
な耐圧を安定して得ることは到底できなかつた。
Therefore, with conventional technology, it is not possible to sufficiently alleviate the electric field concentration at the N + boundary, and considering the variations in the thickness of the insulating layer during manufacturing, it is difficult to stably obtain an industrially sufficient withstand voltage. There was no way I could do that.

本発明の目的は、金属配線下のチヤネルカツト
用N+埋込層の境界部における電界集中を防止す
ることにより、高耐圧特性を有する集積化半導体
装置を提供するにある。
An object of the present invention is to provide an integrated semiconductor device having high breakdown voltage characteristics by preventing electric field concentration at the boundary of the channel cut N + buried layer under the metal wiring.

本発明は、チヤネルカツト用N+埋込層上に金
属配線が存在することにより、チヤネルカツト部
に電界集中に起きることに着目し、高耐圧特性が
要求される素子において、チヤネルカツト用埋込
層とは逆の導電型を有し、かつ高電圧印加が予定
される導電層に接続された少くとも1つの金属配
線の終端部を、該素子と同一島内に形成すること
により、チヤネルカツト部、すなわち単結晶島境
界を横切らないようにしたものである。
The present invention focuses on the fact that the presence of metal wiring on the N + buried layer for channel cut causes concentration of electric field in the channel cut portion, and in devices requiring high breakdown voltage characteristics, the buried layer for channel cut is By forming the terminal end of at least one metal wiring having an opposite conductivity type and connected to a conductive layer to which high voltage is to be applied in the same island as the element, the channel cut part, that is, the single crystal This prevents them from crossing the island boundary.

第3図及び第4図に本発明の一実施例を示す。
この例では、単結晶島4及びチヤネルカツトであ
るN+埋込層3がN型導電層である為、その反対
の導電型であるP型導電層6に接続された金属配
線8′の終端部11′が、単結晶島4内に位置する
ようにしたものである。この終端部11′上に、
例えば鉛一錫より成る半田ボール電極部9′を形
成し、いわゆるCCB(Controlled―Collapse―
Bonding)技術により、外部電極端子(図示せ
ず)に接続するものである。
An embodiment of the present invention is shown in FIGS. 3 and 4.
In this example, since the single crystal island 4 and the N + buried layer 3, which is a channel cut, are N-type conductive layers, the terminal end of the metal wiring 8' connected to the P-type conductive layer 6, which is the opposite conductivity type. 11' is located within the single crystal island 4. On this terminal part 11',
For example, a solder ball electrode part 9' made of lead and tin is formed, and the so-called CCB (Controlled-Collapse-
It is connected to an external electrode terminal (not shown) using a bonding technique.

第3,4図においてN+層5はN+埋込層3と同
じ導電型であるので、そこに接続されている金属
配線8がN+埋込層3および島境界10を横切つ
ても、N+境界における電界集中は生ぜず、耐圧
低下の原因とはならない。したがつて、この実施
例では、金属配線8の絶縁部は従来と同様に、隣
接する島まで延長されている。
In FIGS. 3 and 4, the N + layer 5 has the same conductivity type as the N + buried layer 3, so even if the metal wiring 8 connected thereto crosses the N + buried layer 3 and the island boundary 10, , no electric field concentration occurs at the N + boundary and does not cause a drop in breakdown voltage. Therefore, in this embodiment, the insulating portion of the metal wiring 8 is extended to the adjacent island, as in the conventional case.

また、金属配線が接続されている島内の領域が
埋込層と反対導電型であつても、埋込層と当該領
域との間の電位差が小さければ、埋込層の境界に
おける電界強度もさして大きくならず、耐圧の向
上が阻害されることもないので、金属配線がチヤ
ネルカツト部すなわち単結晶島境界を横切つても
支障は生じない。本発明者らの実験によれば、金
属配線と単結晶島の基層との間の電位差が約50V
以上になると、埋込層の境界における電界集中が
著しくなり、本発明による対策が必要となる。
Furthermore, even if the region within the island to which the metal wiring is connected is of the opposite conductivity type to the buried layer, if the potential difference between the buried layer and the region is small, the electric field strength at the boundary of the buried layer is not significant. Since the metal wiring does not become large and the improvement in breakdown voltage is not inhibited, there is no problem even if the metal wiring crosses the channel cut portion, that is, the single crystal island boundary. According to experiments conducted by the inventors, the potential difference between the metal wiring and the base layer of the single crystal island is approximately 50V.
In this case, electric field concentration at the boundary of the buried layer becomes significant, and a countermeasure according to the present invention is required.

本発明の実施により、N+境界13における電
界強度は第5図に点線で示したように約1KV/cm
またはそれ以下に抑えられた。
By implementing the present invention, the electric field strength at the N + boundary 13 is approximately 1 KV/cm as shown by the dotted line in FIG.
or less.

なお、金属配線8′の終端部に設ける電線部と
しては、前に図示説明した鉛―錫の半田ボール電
極の代りに、アルミニウム又は金よりなる細線を
用いて外部電極端子と接続することも可能であ
る。
As for the electric wire section provided at the end of the metal wiring 8', instead of the lead-tin solder ball electrode shown and explained earlier, it is also possible to use a thin wire made of aluminum or gold to connect to the external electrode terminal. It is.

第6図に、絶縁層7の厚みを3.5μmとした場
合の、従来例によつて得られる集積化半導体装置
の耐圧と、本発明によるそれとの比較を示す。白
地の棒グラフは従来例によるもの、斜線付きの棒
グラフは本発明によるものである。この図から明
らかなように、従来例では約400Vの耐圧しか得
られなかつたものが、本発明によれば約500V
と、約25%の耐圧向上が達成されている。また、
本発明を実施した場合の耐圧は、絶縁層の厚さに
ほとんど影響されないことが確認された。
FIG. 6 shows a comparison between the breakdown voltage of an integrated semiconductor device obtained by the conventional example and that according to the present invention when the thickness of the insulating layer 7 is 3.5 μm. The bar graphs with white background are based on the conventional example, and the bar graphs with diagonal lines are based on the present invention. As is clear from this figure, in the conventional example, only about 400V of withstand voltage could be obtained, but according to the present invention, about 500V can be obtained.
An improvement in voltage resistance of approximately 25% has been achieved. Also,
It was confirmed that the withstand voltage when implementing the present invention is hardly affected by the thickness of the insulating layer.

以上に詳述したように、本発明によれば製造工
程のバラツキによる絶縁層厚さの揺れに関係な
く、安定した高耐圧特性を有する半導体装置が得
られる。
As described in detail above, according to the present invention, a semiconductor device having stable high breakdown voltage characteristics can be obtained regardless of fluctuations in the thickness of the insulating layer due to variations in the manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は集積化半導体装置の従来例を示す平面
図、第2図は第1図のA―A′断面図、第3図は
本発明になる集積化半導体装置を示す平面図、第
4図は第3図のA―A′断面図、第5図は絶縁層
の厚さと電界強度の関係を示す図、第6図は従来
例と本発明による半導体装置における耐圧分布の
一例を示す度数分布図である。 1……多結晶基板、2……絶縁層、3……N+
埋込層、4……単結晶島、7……絶縁層、8,
8′……金属配線、9,9′……電極部、10,1
0′……島境界、11,11′……終端部、12…
…半導体基体、13……N+境界。
FIG. 1 is a plan view showing a conventional example of an integrated semiconductor device, FIG. 2 is a sectional view taken along line A-A' in FIG. The figure is a cross-sectional view taken along line A-A' in Figure 3, Figure 5 is a diagram showing the relationship between the thickness of the insulating layer and electric field strength, and Figure 6 is a diagram showing an example of breakdown voltage distribution in semiconductor devices according to the conventional example and the present invention. It is a distribution map. 1... Polycrystalline substrate, 2... Insulating layer, 3... N +
Buried layer, 4... Single crystal island, 7... Insulating layer, 8,
8'...metal wiring, 9,9'...electrode part, 10,1
0'...Island boundary, 11,11'...Terminal part, 12...
...Semiconductor substrate, 13...N + boundary.

Claims (1)

【特許請求の範囲】 1 その内部に所定のPN接合を有する複数の半
導体単結晶島が、絶縁層によつて、互いに電気的
に絶縁分離されて同一基板上に形成され、かつ、
前記絶縁層の内側にそつて、前記半導体単結晶島
の基体と同導電型の高濃度領域が形成されている
集積化半導体装置において、 ある半導体単結晶島内の、基体とは反体導電型
の少くとも1つの領域に接続されている金属配線
が、当該島の境界を横切らず、その終端部が当該
島内に存在するように構成されたことを特徴とす
る集積化半導体装置。
[Claims] 1. A plurality of semiconductor single crystal islands each having a predetermined PN junction therein are electrically isolated from each other by an insulating layer and formed on the same substrate, and
In an integrated semiconductor device in which a high concentration region of the same conductivity type as the base of the semiconductor single crystal island is formed along the inside of the insulating layer, a high concentration region of the opposite conductivity type from the base within a certain semiconductor single crystal island An integrated semiconductor device characterized in that a metal wiring connected to at least one region is configured such that the metal wiring does not cross the boundary of the island but has its terminal end within the island.
JP15445179A 1979-11-30 1979-11-30 Integrated semiconductor device Granted JPS5678138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15445179A JPS5678138A (en) 1979-11-30 1979-11-30 Integrated semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15445179A JPS5678138A (en) 1979-11-30 1979-11-30 Integrated semiconductor device

Publications (2)

Publication Number Publication Date
JPS5678138A JPS5678138A (en) 1981-06-26
JPS6152988B2 true JPS6152988B2 (en) 1986-11-15

Family

ID=15584498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15445179A Granted JPS5678138A (en) 1979-11-30 1979-11-30 Integrated semiconductor device

Country Status (1)

Country Link
JP (1) JPS5678138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0136462Y2 (en) * 1985-10-04 1989-11-06
JPH0421359Y2 (en) * 1986-08-01 1992-05-15

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840839A (en) * 1971-09-27 1973-06-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840839A (en) * 1971-09-27 1973-06-15

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0136462Y2 (en) * 1985-10-04 1989-11-06
JPH0421359Y2 (en) * 1986-08-01 1992-05-15

Also Published As

Publication number Publication date
JPS5678138A (en) 1981-06-26

Similar Documents

Publication Publication Date Title
EP0161983B1 (en) Input protection arrangement for vlsi integrated circuit devices
JPS60192359A (en) Semiconductor memory
US4161740A (en) High frequency power transistor having reduced interconnection inductance and thermal resistance
JPS63501112A (en) Protection of IGFET integrated circuits from electrostatic discharge
US4233618A (en) Integrated circuit with power transistor
JPS6152988B2 (en)
US5148249A (en) Semiconductor protection device
US5113230A (en) Semiconductor device having a conductive layer for preventing insulation layer destruction
JP2525558Y2 (en) Semiconductor device
JPS58188159A (en) Semiconductor device
JP2629426B2 (en) Semiconductor device having double diffusion type MISFET and method of manufacturing the same
JP3000809B2 (en) Semiconductor device
JP2664911B2 (en) Semiconductor device
JP2774220B2 (en) Semiconductor device
JPS60225467A (en) Vertical mos gate input semiconductor device
JP2730174B2 (en) Input protection device
JPS62111474A (en) Semiconductor integrated circuit device
JPS587870A (en) Semiconductor integrated circuit device
JPS58186959A (en) Semiconductor device
JPS6223459B2 (en)
JP3594725B2 (en) Semiconductor device protection circuit
JPS5867041A (en) Semicondutor integrated circuit
JPS60211864A (en) Input circuit for semiconductor device
JPS63143836A (en) Semiconductor device
JPH03236281A (en) Power semiconductor device