JPS63224370A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS63224370A
JPS63224370A JP5800687A JP5800687A JPS63224370A JP S63224370 A JPS63224370 A JP S63224370A JP 5800687 A JP5800687 A JP 5800687A JP 5800687 A JP5800687 A JP 5800687A JP S63224370 A JPS63224370 A JP S63224370A
Authority
JP
Japan
Prior art keywords
layer
insulating film
metal layer
substrate
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5800687A
Other languages
Japanese (ja)
Inventor
Yoshiaki Matsumae
松前 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5800687A priority Critical patent/JPS63224370A/en
Publication of JPS63224370A publication Critical patent/JPS63224370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enhance the reproducibility and to improve the reliability of size by leaving only a metal layer laminated on the sidewall of an insulating film layer stand in contact with an active layer. CONSTITUTION:An insulating film layer 4 selectively remains on a main surface which includes the active layer 3 of a substrate 2, and a metal layer for obtaining a Schottky junction is formed on the layers 3, 4. Then, the metal layer is etched by an anisotropic dry etching from a direction perpendicular to the substrate 2 to allow only the metal layer laminated on the sidewall of the layer 4 to remain in a contact with the layer 3. Since the size of the Schottky junction of a gate electrode 1' contacting the layer 3 at this time is determined by a ratio of thicknesses of a parallel part to a substrate face on the layers 3, 4 to the sidewall of the film 4, the dimensional accuracy and the reproducibility are easily managed by a photoetching technique. Thus, the gate electrode of a high yield MESFET can be formed with an inexpensive facility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体素子の製造方法に係り、特にシロ、トキ
ー接合型電界効果トランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a white-to-key junction field effect transistor.

〔従来の技術〕[Conventional technology]

従来、この檀のシ嘗ットキー接合型電界効果トランジス
タ(以下、MESFETと呼ぶ)は、シロ、トキー接合
部となるゲート電極を形成する場合に、写真蝕刻技術を
用いておシ、シ冒ットキー接合部の寸法を決定してい友
Conventionally, when forming the gate electrode which becomes the front and back junction, this short-cut key junction field effect transistor (hereinafter referred to as MESFET) has been manufactured using photolithography technology. A friend who has decided on the dimensions of the section.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述した従来のMESFETのゲート形成方法では、形
成されるゲート電極の寸法が、用いる写真蝕刻技術の転
写精度に依存しているので、微細な寸法が要求される場
合でもこの寸法に対する信頼度は低く、さらに再現性も
低く、素子の歩留に大きく影響するという欠点があった
In the conventional MESFET gate formation method described above, the dimensions of the formed gate electrode depend on the transfer accuracy of the photolithography technique used, so even if minute dimensions are required, the reliability of these dimensions is low. Furthermore, the reproducibility was low, which greatly affected the yield of devices.

堆近では、素子の特性を向上するなめに、ゲート電極の
寸法は、0.5μm以下となシ、0.2μmから0.3
μmといった寸法が要求され、電子ビームや、イオンビ
ーム、X線等を用いた写・真触刻法が開発されているが
、その転写精度において、ゲート1極の加工技術からの
依存性が大きく、再現性や寸法に対する信頼度は低く、
素子の歩留が向上しない最大の原因となっている。
In order to improve the characteristics of the device, the gate electrode size should be 0.5 μm or less, and should be 0.2 μm to 0.3 μm.
Dimensions such as μm are required, and photo-engraving methods using electron beams, ion beams, X-rays, etc. have been developed, but the transfer accuracy is highly dependent on the single-gate processing technology. , reliability in reproducibility and dimensions is low;
This is the biggest reason why the yield of devices does not improve.

本発明の目的は、前記欠点が解決され、再現性が高く、
寸法に対する信頼度を高めるようにした半導体素子の製
造方法を提供することKある。
The purpose of the present invention is to solve the above-mentioned drawbacks, to achieve high reproducibility,
It is an object of the present invention to provide a method for manufacturing a semiconductor device that increases reliability regarding dimensions.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体素子の製造方法の構成は、基板の能動層
を含む主表面上に選択的に絶縁膜層を残置する工程と、
前記能動層上と前記絶縁膜層上とに、シvayトキー接
合を得るための金属層を形成する工程と、前記基板に垂
直な方向からの異方性ドライエツチング方法を用いて前
記金属層をエツチングすることにより、前記絶縁膜層の
側壁に積層した金属層のみを前記能動層に接した状態で
残置する工程とを含むことを特徴とする。
The structure of the method for manufacturing a semiconductor device of the present invention includes a step of selectively leaving an insulating film layer on the main surface including the active layer of the substrate;
A step of forming a metal layer on the active layer and the insulating film layer to obtain a Sivayt key junction, and an anisotropic dry etching method from a direction perpendicular to the substrate to remove the metal layer. The method is characterized by including a step of leaving only the metal layer laminated on the side wall of the insulating film layer in contact with the active layer by etching.

〔実施例〕〔Example〕

第1図(a)乃至第1図(C)は本発明の一実施例の半
導体素子の製造方法を工程順に示す断面図である。
FIGS. 1(a) to 1(C) are cross-sectional views showing a method for manufacturing a semiconductor device according to an embodiment of the present invention in the order of steps.

まず第1図(a)に示すように、半絶縁性基板2に81
+イオン注入法により能動層3を設けた基板上に、絶縁
膜4、例えばsio、を厚み0.5μmだけを形成する
。次に、絶縁膜4を写真蝕刻技術によシ、第1図(b)
のように選択的に加工し、後に、基板全面にシ曹、トキ
ー接合となるゲート電極1例えばVSt(3000λ)
をスパッタリング法等により形成する。
First, as shown in FIG. 1(a), 81
An insulating film 4, for example SIO, is formed to a thickness of 0.5 μm on the substrate provided with the active layer 3 by ion implantation. Next, the insulating film 4 is etched by photolithography, as shown in FIG. 1(b).
The gate electrode 1, for example, VSt (3000λ), is selectively processed as shown in FIG.
is formed by a sputtering method or the like.

次に、SF6ガスを用いた異方性のドライエツチング技
術によプゲー)を極1をエツチングする。
Next, the electrode 1 is etched by an anisotropic dry etching technique using SF6 gas.

この際第1図(C)に示すように、絶縁膜4上と能動層
3上にあるゲート′也極1のエツチングとが終了した時
点では、絶縁膜4の側壁に接するゲート電極1′は残置
される。この時のゲート長は被着金属膜厚とはソ等しく
0.3μmとなる。以上により、ゲート′FIL極の形
成が終了する。
At this time, as shown in FIG. 1(C), when the etching of the gate electrode 1 on the insulating film 4 and the active layer 3 is completed, the gate electrode 1' in contact with the side wall of the insulating film 4 is completely removed. will be left behind. The gate length at this time is equal to the thickness of the deposited metal film, which is 0.3 μm. With the above steps, the formation of the gate 'FIL pole is completed.

次にオーミック電極を形成すると、第2図のとトキオー
ミックコンタクト層5を有するMESF’ETが得られ
る。すなわち、第2図は本実施例によシ製造され九ME
8FETの断面図である。同図において、ゲート電極1
′は、シ璽ットキー接合を得るための金属層で、半絶縁
性基板2に設けられた能動層3と接し、また半絶縁基板
上に形成された絶縁膜4の側壁にも接している。
Next, by forming an ohmic electrode, a MESF'ET having a tokiohmic contact layer 5 as shown in FIG. 2 is obtained. That is, FIG. 2 shows the 9ME manufactured according to this embodiment.
It is a sectional view of 8FET. In the figure, gate electrode 1
' is a metal layer for obtaining a shut-key junction, and is in contact with the active layer 3 provided on the semi-insulating substrate 2, and also in contact with the side wall of the insulating film 4 formed on the semi-insulating substrate.

第3図は本発明の他の実施例の半導体素子の製造方法に
よって製造された半導体素子を示す断面図である。IW
J図において、ゲート電極1′はシ、。
FIG. 3 is a sectional view showing a semiconductor device manufactured by a method for manufacturing a semiconductor device according to another embodiment of the present invention. IW
In figure J, the gate electrode 1' is .

トキー接合を得るための金属層で、半絶縁性基板2に設
けられた能動層3と接し、また、半絶縁性基板2上に形
成され九絶縁膜4の側壁にも接している。本実施例は、
絶縁膜パターンの外側の@櫂に金属層を残した例である
が、第2図(a)(b)(C)に汗した製造方法と同様
にして形成できることは明らかである。
This is a metal layer for obtaining a toky junction, and is in contact with the active layer 3 provided on the semi-insulating substrate 2, and also in contact with the side wall of the insulating film 4 formed on the semi-insulating substrate 2. In this example,
Although this is an example in which a metal layer is left on the outside of the insulating film pattern, it is clear that it can be formed in the same manner as the manufacturing method shown in FIGS. 2(a), 2(b), and 2(c).

従来の写真蝕刻技術を用いたシ讐、トキー接冶部のゲー
)11E極形成に対し、本発明では、写X彫刻技術を使
用しなくと4、クーットキー接合部Cゲート電極寸法を
サブミクロ/で形成し、低コクトで再現性の良いMIF
ETを提供することが1きる。
In contrast to the conventional photo-etching technique used to form the 11E electrode at the contact point, in the present invention, the dimensions of the gate electrode at the contact point C can be formed in sub-micrometers without using the photo-etching technique. MIF with low cost and good reproducibility
It is possible to provide ET.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、絶縁磨O側壁に
、異方性のエツチングにより残された金属層によシ、ゲ
ート電極が形成される。このときの能動層と接するゲー
ト電極のシ胃ットキー接合部の寸法は、写真蝕刻技術や
、加工精度には程んど依存せず、ゲートを極を積層する
除のスバッリング技術により、絶l#膜および能動層上
の基板面に平行な部分と、絶縁膜の側壁部への積層厚の
比によって決定されるため、その寸法精度や再現性は、
写真蝕刻技術よシ管理しやすいという効果が得られる。
As described above, according to the present invention, a gate electrode is formed on the sidewall of the insulating polished O through the metal layer left by anisotropic etching. At this time, the dimensions of the Schottky junction of the gate electrode in contact with the active layer do not depend much on photo-etching technology or processing precision, and are determined by the spacing technology that does not involve stacking the gate electrodes. Dimensional accuracy and reproducibility are determined by the ratio of the thickness of the layer parallel to the substrate surface on the film and active layer to the sidewall of the insulating film, so its dimensional accuracy and reproducibility are
The effect of this method is that it is easier to manage than the photo-etching technique.

また、特にシッットキー接合部の寸法がα3μm以下の
場合においては、寸法M度と再現性に優れ、電子ビーム
やイオンビーム、xIIIM等・  の写真蝕刻法に比
べ、低コストの試備で高歩留の、   ME8FETの
ゲー)を極形成ができるという効果がある。
In addition, especially when the dimension of the Sittky joint is α3μm or less, it has excellent dimension M degree and reproducibility, and compared to photolithography methods such as electron beam, ion beam, and xIIIM, it can achieve high yield with low cost trial. This has the effect of forming a pole for the ME8FET.

【図面の簡単な説明】 第1図(a)、第1図(b)、第1図(C)は本発qo
−実施例の半導体素子の製造方法を工ね朧に示す断面1
  図、第2図は本発明の一実施例によって製造1れ九
半導体素子を示す断面図、第3図は本発明の他の実施例
によって製造された半導体素子を示す断面図である。 1.1′・・・・・・ゲート電極、2・・・・・・半絶
縁性基板、3・・・・・・能動層、4・・・・・・絶縁
膜、5・・・・・・オー之、クコンタクト層。
[Brief explanation of the drawings] Figure 1 (a), Figure 1 (b), and Figure 1 (C) are
- Cross section 1 vaguely showing the manufacturing method of the semiconductor device of the example
FIG. 2 is a cross-sectional view of a semiconductor device manufactured according to one embodiment of the present invention, and FIG. 3 is a cross-sectional view of a semiconductor device manufactured according to another embodiment of the present invention. 1.1'...Gate electrode, 2...Semi-insulating substrate, 3...Active layer, 4...Insulating film, 5... ...Oh no, contact layer.

Claims (1)

【特許請求の範囲】[Claims] 基板の能動層を含む主表面上に選択的に絶縁膜層を残置
する工程と、前記能動層上と前記絶縁膜層上とに、ショ
ットキー接合を得るための金属層を形成する工程と、前
記基板に垂直な方向からの異方性ドライエッチング方法
を用いて前記金属層をエッチングすることにより、前記
絶縁膜層の側壁に積層した金属層のみを前記能動層に接
した状態で残置する工程とを含むことを特徴とする半導
体素子の製造方法。
selectively leaving an insulating film layer on the main surface of the substrate including the active layer; forming a metal layer on the active layer and the insulating film layer to obtain a Schottky junction; etching the metal layer using an anisotropic dry etching method in a direction perpendicular to the substrate, leaving only the metal layer laminated on the sidewall of the insulating film layer in contact with the active layer; A method for manufacturing a semiconductor device, comprising the steps of:
JP5800687A 1987-03-13 1987-03-13 Manufacture of semiconductor element Pending JPS63224370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5800687A JPS63224370A (en) 1987-03-13 1987-03-13 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5800687A JPS63224370A (en) 1987-03-13 1987-03-13 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPS63224370A true JPS63224370A (en) 1988-09-19

Family

ID=13071886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5800687A Pending JPS63224370A (en) 1987-03-13 1987-03-13 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS63224370A (en)

Similar Documents

Publication Publication Date Title
US4529686A (en) Method for the manufacture of extremely fine structures
US11094873B2 (en) Transmon qubits with self defined junctions
JPH0156533B2 (en)
US4411929A (en) Method for manufacturing semiconductor device
JPS63224370A (en) Manufacture of semiconductor element
JP2752119B2 (en) Method for forming electrode for semiconductor device
JP2714026B2 (en) Method for forming electrode for semiconductor device
JPH06151852A (en) Thin film transistor
JP2788273B2 (en) Method for forming electrode for semiconductor device
JPS6390171A (en) Manufacture of field effect transistor
JPS605230B2 (en) Manufacturing method of Josephson device
JPH046838A (en) Formation method for t-shaped offset gate
JPH05291301A (en) Field-effect transistor and manufacture thereof
JP2708878B2 (en) Method for manufacturing semiconductor device
JPH02192768A (en) Manufacture of semiconductor device
JPH0684950A (en) Manufacture of field effect transistor
JPH03156933A (en) Manufacture of semiconductor device
JPS58207676A (en) Preparation of semiconductor device
JPH03145140A (en) Manufacture of compound semiconductor device
JPH0273642A (en) Manufacture of semiconductor device
JPH01168069A (en) Manufacture of semiconductor device
JPH07142776A (en) Pattern formation
JPS62299033A (en) Manufacture of semiconductor device
JPH03268332A (en) Manufacture of semiconductor device
JPH06252462A (en) Manufacture of josephson junction device