JPH046838A - Formation method for t-shaped offset gate - Google Patents

Formation method for t-shaped offset gate

Info

Publication number
JPH046838A
JPH046838A JP10960790A JP10960790A JPH046838A JP H046838 A JPH046838 A JP H046838A JP 10960790 A JP10960790 A JP 10960790A JP 10960790 A JP10960790 A JP 10960790A JP H046838 A JPH046838 A JP H046838A
Authority
JP
Japan
Prior art keywords
insulating film
recess
pattern
photoresist
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10960790A
Other languages
Japanese (ja)
Inventor
Koichi Sumiya
光一 住谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10960790A priority Critical patent/JPH046838A/en
Publication of JPH046838A publication Critical patent/JPH046838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To easily offset and form a submicron T-shaped gate pattern inside a recess without using an EB aligner or the like by a method wherein the pattern of an insulating film is formed in the central part inside the recess and a gate electrode is formed inside the recess on one side of the pattern. CONSTITUTION:A first insulating-film pattern 2 is formed on a semiconductor substrate 1; a second insulating-film pattern 5 is formed in the central part of a recessed part 4 formed at its end part; a gate electrode 9 is formed between the first and second insulating films 2, 5; the gate electrode 9 is formed in an offset position inside said recessed part 4. For example, a first insulating film 2 is patterned and formed on a GaAs substrate 1; a first recess 4 is formed while a first photoresist pattern 3 formed in a position away from its end part by about 0.3mum is used as a mask. Then, a second insulating film 5 is deposited; the photoresist 3 is removed; after that, a third insulating film 6 is deposited; a second photoresist 7 is patterned and formed; the insulating film 6 is left only on sidewall parts; a second recess 8 is formed; after that, a T-shaped metal 9 is vapor-deposited.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、GaAs  M E S F E Tなと
のショットキーバリア型トランジスタにおいて、ゲート
電極をソース電極側へオフセットして形成するT型オフ
セットゲートの形成方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a T-type offset formed by offsetting the gate electrode toward the source electrode in a Schottky barrier type transistor such as GaAs MESFET. The present invention relates to a method of forming a gate.

〔従来の技術〕[Conventional technology]

第2図は従来のオフセットゲートの形成方法を示す製造
工程の断面図である。図において、(11はFET等を
形成するGaAs基板、(3)は第1のりセスエツチン
グを行うためのフォトレジストパターン、(4)は第1
のりセスエツチング部分、(7)は第2のリセスエッチ
ングを行いケート金属を形成するためのフォトレジスト
パターン、(8)は第2のリセスエッチング部分、(9
)はゲート金属である。
FIG. 2 is a cross-sectional view of a manufacturing process showing a conventional method of forming an offset gate. In the figure, (11 is a GaAs substrate for forming FETs, etc.), (3) is a photoresist pattern for performing the first layer etching, (4) is the first
(7) is a photoresist pattern for performing the second recess etching to form the gate metal; (8) is the second recess etching portion; (9)
) is the gate metal.

次にその製造工程について説明する。Next, the manufacturing process will be explained.

まず、第1のフォトレジスト(3)によって、第1のリ
セスエッチング(4)を行い、FETの動作電流値の粗
調整を行う。このリセス部分(4)は図には示していな
いか、ソース電極とトレイン電極の間の中央に位置する
ように第1のフォトレジスト(3)を位置決めされてい
る。次に、ゲート金属(9)をソース電極側へオフセッ
トして、第1のりセス部分(4)内に形成するために第
2のレジスト(7)を位置決めしてパターン形成する。
First, first recess etching (4) is performed using a first photoresist (3) to roughly adjust the operating current value of the FET. This recessed portion (4) is either not shown in the figure or the first photoresist (3) is positioned so as to be centrally located between the source electrode and the train electrode. Next, the gate metal (9) is offset toward the source electrode, and a second resist (7) is positioned and patterned to be formed within the first recessed portion (4).

この時、ゲート長は通常の光学露光では0.5μm程度
かフォトレジストの解像限界であり、さらに、微細な0
.25μm以下のパターンを形成するにはEB露光等の
手段を用いる必要かある。第2のレジスト(7)を形成
した後、FETの動作電流値の微調整を行うため、第2
のリセスエッチング(8)を行い、ゲート金属(9)を
蒸着、リフトオフする。
At this time, the gate length is about 0.5 μm in normal optical exposure, which is the resolution limit of the photoresist, and
.. In order to form a pattern of 25 μm or less, it is necessary to use means such as EB exposure. After forming the second resist (7), in order to finely adjust the operating current value of the FET, a second resist (7) is formed.
Recess etching (8) is performed, and gate metal (9) is deposited and lifted off.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

従来のオフセットゲートは以上のように形成されていた
ので、ゲート電極をソース電極側へオフセットするのに
、高精度のアライメント精度か必要で、0.5μm以下
の微細なゲート長を実現するためには通常の光学露光で
は困難であるという問題点があった。
Conventional offset gates were formed as described above, so in order to offset the gate electrode to the source electrode side, high alignment accuracy was required, and in order to realize a fine gate length of 0.5 μm or less. There is a problem in that it is difficult to use normal optical exposure.

この発明は上記のような問題点を解消するためになされ
もので、通常の光学露光では可能なアライメント精度(
0,3μm程度)解像限界(0,5μm程度)て、0.
5μm以下のゲート長をオフセットして形成することが
できるT型オフセットゲートの形成方法を得ることを目
的とする。
This invention was made to solve the above-mentioned problems, and the alignment accuracy (
(about 0.3 μm) resolution limit (about 0.5 μm).
An object of the present invention is to obtain a method for forming a T-type offset gate that can be formed by offsetting the gate length by 5 μm or less.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るT型オフセットゲートの形成方法は、通
常の光学露光で可能なアライメント精度、解像度でゲー
ト電極を0.5μm以下のゲート長で、かつソース電極
側にオフセットして形成することを可能にするもので、
その構成はリセス内部にダミーの絶縁膜パターンを形成
し、その側面とリセスの片側で挟まれた部分にゲート電
極を形成するようにしたものである。
The method for forming a T-shaped offset gate according to the present invention makes it possible to form a gate electrode with a gate length of 0.5 μm or less and offset toward the source electrode with alignment accuracy and resolution that are possible with normal optical exposure. It is something that
The structure is such that a dummy insulating film pattern is formed inside the recess, and a gate electrode is formed on a portion sandwiched between the side surfaces of the pattern and one side of the recess.

〔作 用〕[For production]

この発明におけるゲート長は、基本的に使用する光学露
光装置のアライメント精度によって決まり、実ゲート長
はこのアライメント精度より、サイドウオールと呼ばれ
る絶縁膜の厚みの2倍を差し引いた値となる。また、オ
フセットする位置はリセス内部の絶縁膜のダミーパター
ンの片側の側壁とリセス端によって一意的に決まり、こ
の時のアライメント精度はたかだか1μm以内にあれば
、T型ゲート電極を得ることか可能である。
The gate length in this invention is basically determined by the alignment accuracy of the optical exposure apparatus used, and the actual gate length is the value obtained by subtracting twice the thickness of an insulating film called a sidewall from this alignment accuracy. In addition, the offset position is uniquely determined by the sidewall on one side of the dummy pattern of the insulating film inside the recess and the recess edge, and if the alignment accuracy is within 1 μm at most, it is possible to obtain a T-shaped gate electrode. be.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、(1)はGaAs基板、(2)はゲー
ト端の一方を決定する第1の絶縁膜、(3)は第1のフ
ォトレジスト、(4)は第1のフォトレジスト(3)を
マスクとして形成される第1のリセス、(5)は第1の
フォトレジストでパターン形成される第2の絶縁膜、(
51)は第1のフォトレジストと同時に除去される第2
の絶縁膜、(6)は第3の絶縁膜、(7)はゲート金属
を形成する第2のフォトレジスト、(8)は第2のフォ
トレジストと第1、第2、第3の絶縁膜をマスクにして
形成される第2のリセス、(9)は第2のフォトレジス
トによって形成されるT型ゲート金属である。
In FIG. 1, (1) is a GaAs substrate, (2) is a first insulating film that determines one of the gate ends, (3) is a first photoresist, and (4) is a first photoresist (3). ) is the first recess formed as a mask, (5) is the second insulating film patterned with the first photoresist, (5) is the second insulating film patterned with the first photoresist;
51) is the second photoresist that is removed simultaneously with the first photoresist.
(6) is the third insulating film, (7) is the second photoresist forming the gate metal, (8) is the second photoresist and the first, second, and third insulating films. The second recess (9) formed using the mask is a T-type gate metal formed by the second photoresist.

次に製造工程について説明する。Next, the manufacturing process will be explained.

初めに、第1図(a)に示すように、GaAs基板(1
)上に第1の絶縁膜(2)をプラズマCVD法により堆
積、RIE法でエツチングして形成する。
First, as shown in Figure 1(a), a GaAs substrate (1
) A first insulating film (2) is deposited by plasma CVD and etched by RIE.

次に第1図(b)に示すように、第1の絶縁膜(2)の
端部より0.3μm程離した位置に第1のフォトレジス
トパターン(3)を形成する。このパターン(3)をマ
スクとして第1のりセス(4)を行った断面図が第1図
(C)である。また、第1図(d)はダミーパターンと
なる第2の絶縁膜(5)を蒸着、あるいはECRCVD
の方法により堆積した図である。また、第1図(e)は
第1のフォトレジスト(3)をアセトンなとの溶剤で除
去し、同時に第1のフォトレジスト(3)上の第2の絶
縁膜を除去(本工程、手法をリフトオフという。)した
図である。第1図げ)はプラズマCVDあるいは光CV
D法等により全面に第3の絶縁膜(6)を堆積した図で
ある。第1図(g)はさらに第1の絶縁膜(2)と第2
の絶縁膜(5)の上に第2のフォトレジスト(7)をパ
ターン形成し、側壁部にのみ第3の絶縁膜(blを残し
く残った膜をサイドウオールという)、第2のリセス(
8)を行った断面図である。第2のリセス(8)は、第
1のリセス(4)によりFETの動作電流値か微調整さ
れていれば行わなくてもよい。第1図(社)は第2のフ
ォトレジスト(7)によりT型ゲート金属(9)を蒸着
後リフトオフした断面図である。図に示すようにゲート
長は第1の絶縁膜(2)と第2の絶縁膜(5)とで挟ま
れた間より第3の絶縁膜(6)のサイドウオール分たけ
差し引いた長さとなり、サイドウオールの厚みを0.1
μmとすれば、0.31ttn −2Xo、1 μm 
=0.1 μmのゲート長かこの場合実現てきることに
なる。
Next, as shown in FIG. 1(b), a first photoresist pattern (3) is formed at a position approximately 0.3 μm away from the end of the first insulating film (2). FIG. 1(C) is a cross-sectional view of the first stitching (4) performed using this pattern (3) as a mask. In addition, in FIG. 1(d), a second insulating film (5) which becomes a dummy pattern is deposited by vapor deposition or ECRCV.
FIG. FIG. 1(e) shows that the first photoresist (3) is removed using a solvent such as acetone, and at the same time the second insulating film on the first photoresist (3) is removed (this process, method (This is called lift-off.) Figure 1) is plasma CVD or optical CV
It is a diagram in which a third insulating film (6) is deposited on the entire surface by the D method or the like. FIG. 1(g) further shows the first insulating film (2) and the second insulating film (2).
A second photoresist (7) is patterned on the insulating film (5), and a third insulating film is formed only on the sidewalls (the remaining film excluding BL is called a sidewall), and a second recess (
8) is a cross-sectional view after performing step 8). The second recess (8) may not be provided if the operating current value of the FET is finely adjusted by the first recess (4). FIG. 1 (Corporation) is a cross-sectional view of the T-type gate metal (9) which is lifted off after being deposited with the second photoresist (7). As shown in the figure, the gate length is the length between the first insulating film (2) and the second insulating film (5) minus the sidewall of the third insulating film (6). , the sidewall thickness is 0.1
If μm, 0.31ttn -2Xo, 1 μm
In this case, a gate length of =0.1 μm can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、リセス内中央部に絶縁
膜のパターンを形成し、そのパターンの片側のリセス内
にゲート電極を形成する構造とし、その形成方法も従来
より使われている光学露光法で形成可能なことから、E
B露光装置なとの微細なパターン形成可能な装置を用い
ることなく容易にサブミクロンのT型ゲートパターンを
リセス内でオフセットして形成することかできるという
効果かある。
As described above, according to the present invention, an insulating film pattern is formed in the center of the recess, and a gate electrode is formed in the recess on one side of the pattern. Since it can be formed by exposure method, E
This has the advantage that a submicron T-shaped gate pattern can be easily offset and formed within a recess without using a device capable of forming fine patterns such as a B exposure device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜囚はこの発明の一実施例によるT型オフ
セットゲートの製造工程を示す断面図、第2図は従来の
オフセットゲートの製造工程を示す断面図である。 図において、(1)はGaAs基板、(2)は第1の絶
縁膜、(3)は第1のフォトレジスト、(4)は第1の
リセスエッチング、(5)は第2の絶縁膜、(6)は第
3の絶縁膜、(7)は第2のフォトレジスト、(8)は
第2のリセスエッチング、(9)はT型ゲート金属を示
す。 なお、 示す。 図中、 同一符号は同一、
FIGS. 1A to 1C are cross-sectional views showing the manufacturing process of a T-type offset gate according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the manufacturing process of a conventional offset gate. In the figure, (1) is a GaAs substrate, (2) is a first insulating film, (3) is a first photoresist, (4) is a first recess etching, (5) is a second insulating film, (6) shows the third insulating film, (7) the second photoresist, (8) the second recess etching, and (9) the T-type gate metal. In addition, it is shown. In the figure, the same symbols are the same.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に第1の絶縁膜パターンを形成し、その
端部に設けた凹部の中央部に第2の絶縁膜パターンを形
成し、第1と第2の絶縁膜の間にゲート電極を形成する
ことによって、上記凹部内でオフセットした位置にゲー
ト電極を形成したことを特徴とするT型オフセットゲー
トの形成方法。
A first insulating film pattern is formed on a semiconductor substrate, a second insulating film pattern is formed in the center of a recess provided at an end of the first insulating film pattern, and a gate electrode is formed between the first and second insulating films. A method for forming a T-shaped offset gate, comprising forming a gate electrode at an offset position within the recess.
JP10960790A 1990-04-24 1990-04-24 Formation method for t-shaped offset gate Pending JPH046838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10960790A JPH046838A (en) 1990-04-24 1990-04-24 Formation method for t-shaped offset gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10960790A JPH046838A (en) 1990-04-24 1990-04-24 Formation method for t-shaped offset gate

Publications (1)

Publication Number Publication Date
JPH046838A true JPH046838A (en) 1992-01-10

Family

ID=14514575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10960790A Pending JPH046838A (en) 1990-04-24 1990-04-24 Formation method for t-shaped offset gate

Country Status (1)

Country Link
JP (1) JPH046838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664567A1 (en) * 1994-01-25 1995-07-26 Thomson-Csf Semiconducteurs Specifiques Microwave power transistor with double recess and its fabrication process
FR2740262A1 (en) * 1995-10-20 1997-04-25 Thomson Csf FET with offset T=shaped gate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0664567A1 (en) * 1994-01-25 1995-07-26 Thomson-Csf Semiconducteurs Specifiques Microwave power transistor with double recess and its fabrication process
FR2715505A1 (en) * 1994-01-25 1995-07-28 Thomson Csf Semiconducteurs Dual digging microwave power transistor, and method of manufacturing the same.
FR2740262A1 (en) * 1995-10-20 1997-04-25 Thomson Csf FET with offset T=shaped gate

Similar Documents

Publication Publication Date Title
JPH0355852A (en) Manufacture of semiconductor device
JPH046838A (en) Formation method for t-shaped offset gate
JPH0156533B2 (en)
US6051484A (en) Semiconductor device and method of manufacturing thereof
JPH0228333A (en) Manufacture of semiconductor device
JP2714026B2 (en) Method for forming electrode for semiconductor device
JPS6390171A (en) Manufacture of field effect transistor
JPH0323643A (en) Semiconductor device and manufacture thereof
JPH05299440A (en) Manufacture of semiconductor device
JPH03145738A (en) Formation of gate electrode
KR100304869B1 (en) Method for manufacturing field effect transistor
JPS6246577A (en) Manufacture of semiconductor device
JPS62131584A (en) Manufacture of semiconductor device
JPH0321077A (en) Formation of gate electrode
JPH0346340A (en) Manufacture of semiconductor device
JPH03227528A (en) Manufacture of semiconductor device
JPH027444A (en) Manufacture of field-effect transistor
JP2000243758A (en) Semiconductor device and its manufacture
JPH0327536A (en) Manufacture of field effect transistor
JPH04113635A (en) Manufacture of semiconductor device
JPH03268332A (en) Manufacture of semiconductor device
JPH03145140A (en) Manufacture of compound semiconductor device
JPH09232335A (en) Manufacture of semiconductor device
JPH03246950A (en) Manufacture of gate electrode for transistor
JPH07161735A (en) Manufacture of field effect transistor