JPS63224296A - Manufacture of ceramic multilayer interconnection board - Google Patents

Manufacture of ceramic multilayer interconnection board

Info

Publication number
JPS63224296A
JPS63224296A JP5653087A JP5653087A JPS63224296A JP S63224296 A JPS63224296 A JP S63224296A JP 5653087 A JP5653087 A JP 5653087A JP 5653087 A JP5653087 A JP 5653087A JP S63224296 A JPS63224296 A JP S63224296A
Authority
JP
Japan
Prior art keywords
ceramic multilayer
dimensional
amount
dimensional change
green sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5653087A
Other languages
Japanese (ja)
Inventor
加藤 雅代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5653087A priority Critical patent/JPS63224296A/en
Publication of JPS63224296A publication Critical patent/JPS63224296A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミック多層配線基板の製造工程に係り、
特に、セラミックグリーンシートの寸法変化による層間
位置ずれを低減する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a manufacturing process of a ceramic multilayer wiring board,
In particular, the present invention relates to a method for reducing interlayer misalignment due to dimensional changes in ceramic green sheets.

〔従来の技術〕[Conventional technology]

セラミック多層配線基板は第3図のような製造工程をと
るが、セラミックグリーンシートの寸法変化を低減する
ための寸法安定化処理は、特開昭58−154293号
公報に記載のような条件で各グリーンシートとも同一に
行なわれていた。この方法は比較的密度の低い配線パタ
ーンを形成する場合には寸法安定化に有効な手段であっ
たが、高ぞ変化・大面積化が進むにつれ、層による寸法
変化量の差が大きくなる点については配慮されていなか
った。
Ceramic multilayer wiring boards are manufactured using the manufacturing process shown in Figure 3, and the dimensional stabilization treatment for reducing dimensional changes in ceramic green sheets is carried out under the conditions described in Japanese Patent Laid-Open No. 58-154293. This was done in the same way as the green sheet. This method was an effective means of stabilizing the dimensions when forming wiring patterns with relatively low density, but as the height changes and the area becomes larger, the difference in the amount of dimensional change depending on the layer increases. No consideration was given to this.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、各グリーンシートの寸法変化量が、
配線パターンにより異なることが配慮されて訃らず、パ
ターン密度・面積が大きくなるに従い特に、導体ペース
トのスルーホールへの充填及び配線パターン印刷後、各
層の寸法変化量の差が大きくなる問題があった。これに
より眉間位置ずれを生じ、導通不良が発生する。
In the above conventional technology, the amount of dimensional change of each green sheet is
The difference between wiring patterns is taken into consideration, and as the pattern density and area increase, there is a problem that the difference in the amount of dimensional change between each layer becomes larger, especially after filling the through holes with conductive paste and printing the wiring pattern. Ta. This causes a misalignment between the eyebrows and poor conduction.

本発明の目的は、各層のグリーンシートの寸法変化量を
一致させ、眉間位置ず几の少ないセラミック基板を製造
する方法を提供することにある。
It is an object of the present invention to provide a method for manufacturing a ceramic substrate with no glabellar position and less bulkiness by matching the amount of dimensional change of the green sheets of each layer.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記目的は、グリーンシート寸法安定化処理の条件を各
層により適正に変えることにより達成される、すなわち
、寸法安定化処理条件を強くするほど、導体ペーストを
グリーンシートに充填及ヒ印刷することによる寸法変化
量を小さくすることができることを利用【7、パターン
の密度・面積が大きく、寸法変化量の大きい層に用いる
グリーンシートには、あらかじめ、強い条件の寸法安定
化処理を施しておき、それ以外の層は、弱い条件の処理
を行なって、各層の寸法変化量を一致させる。
The above purpose is achieved by appropriately changing the conditions of the green sheet dimensional stabilization treatment for each layer. In other words, the stronger the dimensional stabilization treatment conditions are, the more the green sheet is filled with conductive paste and the size of the green sheet printed. Taking advantage of the fact that the amount of change can be reduced [7. Green sheets used for layers with large pattern density and area and large amount of dimensional change are subjected to dimensional stabilization treatment under strong conditions in advance, and other The layers are processed under weak conditions to match the amount of dimensional change in each layer.

〔作用〕[Effect]

寸法安定化処理条件のうち、たとえば、プレス圧力を変
えると、第4図に示すようなグリーンシートの寸法変化
量となる。この寸法変化は、経時変化なので、放置時間
にも依存するが、第4図は3日間放置した場合の寸法変
化量を示しである。
Among the dimensional stabilization treatment conditions, for example, when the press pressure is changed, the amount of dimensional change of the green sheet is as shown in FIG. 4. Since this dimensional change is a change over time, it also depends on the standing time, but FIG. 4 shows the amount of dimensional change when left standing for 3 days.

第4図に示すように、パターンの密度により寸法変化量
が異なるため、同一圧力で処理した場合には、これらの
グリーンシートを積層すると、眉間の位置ずれが生じる
が、低密度パターン形成用ツクIJ −:/ シート1
にはP 1 = 5〜10 kg/am”で、高密度パ
ターン形成用グリーンシート2にはP2=50〜100
kg/am”で処理を行なえば、寸法変化量の差は、小
さくなり層間位置ずれを低減することができる・ 〔実施例〕 以下、本発明の一実施例を第1図により説明する。グリ
ーンシートを作成後、低密度パターン4を形成するグリ
ーンシー71には、80〜120°Cで5〜10kg/
am”の寸法安定化処理を、高密度パターン5を形成す
るグリーンシート2には、80〜120°Cで50〜1
oOkg/am”の寸法安定化処理を、あらかじめ施し
ておく。これらのグリーンシートに、ガイド穴6を形成
しスルーホール穴明け、スルーホールへの導体ペースト
充填8、配線印刷4,5を施した後、積層治具6に、ガ
イドビン7を用いてグリーンシートのガイド穴5を基準
に位置合わせを行ない、各グリーンシート1,2をセッ
トする。これをホットプレス120〜150℃60〜1
10 kg/am”で接着する。ホットプレス圧力は、
寸法安定化処理の圧力よりも大きくする必要がある。こ
れは眉間のすきまを防止するためである。この積層体を
、外形切断し、焼結することでセラミック多層基板を得
る。
As shown in Figure 4, the amount of dimensional change differs depending on the density of the pattern, so when these green sheets are stacked with the same pressure, misalignment will occur between the eyebrows. IJ-:/ Sheet 1
P1 = 5 to 10 kg/am'', and P2 = 50 to 100 for the green sheet 2 for high-density pattern formation.
If the treatment is carried out at "kg/am", the difference in the amount of dimensional change will be small and the interlayer misalignment can be reduced. [Example] Hereinafter, an example of the present invention will be explained with reference to FIG. 1. Green After creating the sheet, the green sea 71 that forms the low density pattern 4 is heated at 80 to 120°C with a weight of 5 to 10 kg/
The green sheet 2 forming the high-density pattern 5 was subjected to dimensional stabilization treatment of 50 to 1 am at 80 to 120°C.
Dimensional stabilization treatment of "oOkg/am" was performed in advance. Guide holes 6 were formed in these green sheets, through-holes were drilled, conductive paste was filled into the through-holes 8, and wiring printing 4 and 5 were performed. After that, each green sheet 1, 2 is set in the lamination jig 6, using the guide bin 7 to align the green sheets with the guide hole 5 as a reference.
10 kg/am”.Hot press pressure is
The pressure needs to be higher than the pressure for dimensional stabilization treatment. This is to prevent a gap between the eyebrows. This laminate is cut into external shapes and sintered to obtain a ceramic multilayer substrate.

本実施例によるグリーンシート1.2のパターン形成後
の経時寸法変化を、第2図に示す。
FIG. 2 shows the dimensional change over time after patterning of the green sheet 1.2 according to this example.

低密度パターンのグリーンシート1は、1のような寸法
変化をし、高密度パターンのグリーンシート2は、2の
ような寸法変化をする。2のグリーンシートは、1と同
一の寸法安定化処理をすると、パターン形成後3日で、
0.17チ程度の寸法変化を起こし、1のグリーンシー
トと、0.15%の差を生じ、層間ずれを起こし、ずれ
の許容量が0.1チの時、導通不良(ショート)が発生
する。
The green sheet 1 with a low density pattern has a dimensional change as shown in 1, and the green sheet 2 with a high density pattern has a dimensional change as shown in 2. When green sheet No. 2 is subjected to the same dimensional stabilization treatment as No. 1, 3 days after pattern formation,
A dimensional change of about 0.17 inch occurs, and a difference of 0.15% from the green sheet 1 occurs, causing interlayer misalignment, and when the allowable amount of misalignment is 0.1 inch, a conduction failure (short) occurs. do.

本実施例では、パターン形成後、3日でグリーンシート
1と2の寸法変化量の差が0.05%とずれ許容量以内
なので、導通不良のない基板を得ることができる。
In this example, the difference in the amount of dimensional change between green sheets 1 and 2 within three days after pattern formation is 0.05%, which is within the deviation tolerance, so a substrate without conduction defects can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、各層のグリーンシートの寸法変化量の
差を小さくすることができるので、層間ずれを低減し、
導通不良を低減する効果がある。
According to the present invention, it is possible to reduce the difference in the amount of dimensional change between the green sheets of each layer, thereby reducing interlayer misalignment,
This has the effect of reducing conduction defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の製造工程、第2図は本発明
により得られる特性線図、第3図はセラミック多層基板
の製造工程図、第4図は本発明の原理となる特性線図で
ある。 3・・・・・・・・・ガイド穴。 4.5・・・配線パターン。 6・・・・・・・・・積層治具。 7・・・・・・・・・ガイドビン。 8・・・・・・・・・スルーホール。
Fig. 1 is a manufacturing process of an embodiment of the present invention, Fig. 2 is a characteristic diagram obtained by the present invention, Fig. 3 is a manufacturing process diagram of a ceramic multilayer substrate, and Fig. 4 is a characteristic that is the principle of the present invention. It is a line diagram. 3...Guide hole. 4.5...Wiring pattern. 6...... Lamination jig. 7・・・・・・・・・Guide bin. 8...Through hole.

Claims (1)

【特許請求の範囲】[Claims] 1、セラミック多層配線基板の製造工程において、セラ
ミックグリーンシートの寸法安定化処理条件を、各層ご
とに適正に変えることにより、パターン密度の異なる各
層の寸法変化量を一致させ、層間位置ずれを低減するこ
とを特徴とするセラミック多層配線基板の製造方法。
1. In the manufacturing process of ceramic multilayer wiring boards, by appropriately changing the dimensional stabilization processing conditions of ceramic green sheets for each layer, the amount of dimensional change in each layer with different pattern density is matched, and interlayer positional deviation is reduced. A method for manufacturing a ceramic multilayer wiring board, characterized in that:
JP5653087A 1987-03-13 1987-03-13 Manufacture of ceramic multilayer interconnection board Pending JPS63224296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5653087A JPS63224296A (en) 1987-03-13 1987-03-13 Manufacture of ceramic multilayer interconnection board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5653087A JPS63224296A (en) 1987-03-13 1987-03-13 Manufacture of ceramic multilayer interconnection board

Publications (1)

Publication Number Publication Date
JPS63224296A true JPS63224296A (en) 1988-09-19

Family

ID=13029654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5653087A Pending JPS63224296A (en) 1987-03-13 1987-03-13 Manufacture of ceramic multilayer interconnection board

Country Status (1)

Country Link
JP (1) JPS63224296A (en)

Similar Documents

Publication Publication Date Title
KR100521941B1 (en) Method of manufacturing a multi-layered ceramic substrate
EP0282625A3 (en) Method for producing rigid-type multilayer printed wiring board
US4884170A (en) Multilayer printed circuit board and method of producing the same
JPS63224296A (en) Manufacture of ceramic multilayer interconnection board
JP2758603B2 (en) Manufacturing method of ceramic multilayer wiring board
JPH0575263A (en) Manufacture of multilayer ceramic board
JP4637389B2 (en) Manufacturing method of multilayer wiring board
JPS59132698A (en) Method of producing multilayer ceramic circuit board
JPS61204920A (en) Forming of laminate ceramic element
JPH0365676B2 (en)
JP2546455B2 (en) Structure of ceramic substrate and manufacturing method thereof
JPS6252999A (en) Formation of through conductor path of ceramic circuit boardand manufacture of multilayer circuit board obtained by laminating same
JP3266986B2 (en) Manufacturing method of ceramic multilayer substrate
JPS58197796A (en) Method of producing ceramic board
JP2003234579A (en) Method of manufacturing multilayer printed wiring board with chip type resistor built therein
JP2903893B2 (en) Method for producing copper-clad laminate for multilayer printed wiring board
JP2882157B2 (en) Manufacturing method of ceramic multilayer electronic component
JP2551064B2 (en) Manufacturing method of ceramic multilayer substrate
JPH0738258A (en) Manufacture of multilayer ceramics sintered body
JPH02181497A (en) Manufacture of multilayered interconnection ceramic board
JP3610591B2 (en) Manufacturing method of multilayer printed wiring board
JPS63194A (en) Manufacture of ceramic board
JP2005159180A (en) Method of manufacturing laminated ceramic electronic part
JPS62272590A (en) Manufacture of ceramic board
JPH0828579B2 (en) Method for manufacturing ceramic multilayer substrate